Newer
Older
/** \class THcHodoscope
\ingroup Detectors
\brief Generic hodoscope consisting of multiple
planes with multiple paddles with phototubes on both ends.
This differs from Hall A scintillator class in that it is the whole
hodoscope array, not just one plane.
*/
#include "THcCherenkov.h"
#include "THcHallCSpectrometer.h"
#include "THcHitList.h"
#include "THcRawShowerHit.h"
#include "TClass.h"
#include "math.h"
#include "THaSubDetector.h"
#include "THcHodoscope.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "THcDetectorMap.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <iomanip>
Gabriel Niculescu
committed
#include <fstream>
using namespace std;
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( const char* name, const char* description,
THaApparatus* apparatus ) :
THaNonTrackingDetector(name,description,apparatus)
{
// Constructor
//fTrackProj = new TClonesArray( "THaTrackProj", 5 );
// Construct the planes
Stephen A. Wood
committed
fNPlanes = 0; // No planes until we make them
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( ) :
THaNonTrackingDetector()
{
// Constructor
}
//_____________________________________________________________________________
void THcHodoscope::Setup(const char* name, const char* description)
{
// static const char* const here = "Setup()";
// static const char* const message =
// "Must construct %s detector with valid name! Object construction failed.";
// Base class constructor failed?
if( IsZombie()) return;
// fDebug = 1; // Keep this at one while we're working on the code
char prefix[2];
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
TString temp(prefix[0]);
fSHMS=kFALSE;
if (temp == "p" ) fSHMS=kTRUE;
DBRequest listextra[]={
{"hodo_num_planes", &fNPlanes, kInt},
{"hodo_plane_names",&planenamelist, kString},
//fNPlanes = 4; // Default if not defined
gHcParms->LoadParmValues((DBRequest*)&listextra,prefix);
cout << "Plane Name List : " << planenamelist << endl;
vector<string> plane_names = vsplit(planenamelist);
if(plane_names.size() != (UInt_t) fNPlanes) {
cout << "ERROR: Number of planes " << fNPlanes << " doesn't agree with number of plane names " << plane_names.size() << endl;
// Should quit. Is there an official way to quit?
}
fPlaneNames = new char* [fNPlanes];
for(Int_t i=0;i<fNPlanes;i++) {
fPlaneNames[i] = new char[plane_names[i].length()+1];
strcpy(fPlaneNames[i], plane_names[i].c_str());
}
// Probably shouldn't assume that description is defined
char* desc = new char[strlen(description)+100];
fPlanes = new THcScintillatorPlane* [fNPlanes];
for(Int_t i=0;i < fNPlanes;i++) {
strcpy(desc, description);
strcat(desc, " Plane ");
strcat(desc, fPlaneNames[i]);
fPlanes[i] = new THcScintillatorPlane(fPlaneNames[i], desc, i+1, this); // Number planes starting from zero!!
cout << "Created Scintillator Plane " << fPlaneNames[i] << ", " << desc << endl;
// Save the nominal particle mass
THcHallCSpectrometer *app = dynamic_cast<THcHallCSpectrometer*>(GetApparatus());
fPartMass = app->GetParticleMass();
fBetaNominal = app->GetBetaAtPcentral();
if (fSHMS) {
fCherenkov = dynamic_cast<THcCherenkov*>(app->GetDetector("hgcer"));
} else {
fCherenkov = dynamic_cast<THcCherenkov*>(app->GetDetector("cer"));
}
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoscope::Init( const TDatime& date )
{
Setup(GetName(), GetTitle());
char EngineDID[] = "xSCIN";
EngineDID[0] = toupper(GetApparatus()->GetName()[0]);
if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) {
static const char* const here = "Init()";
Error( Here(here), "Error filling detectormap for %s.", EngineDID );
return kInitError;
}
// Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map
// But it needs to happen before the sub detectors are initialized
// so that they can get the pointer to the hitlist.
InitHitList(fDetMap, "THcRawHodoHit", fDetMap->GetTotNumChan()+1);
EStatus status;
// This triggers call of ReadDatabase and DefineVariables
if( (status = THaNonTrackingDetector::Init( date )) )
return fStatus=status;
for(Int_t ip=0;ip<fNPlanes;ip++) {
if((status = fPlanes[ip]->Init( date ))) {
return fStatus=status;
}
}
// Replace with what we need for Hall C
// const DataDest tmp[NDEST] = {
// { &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
// { &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
// };
// memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );
fGoodPlaneTime = new Bool_t [fNPlanes];
fNPlaneTime = new Int_t [fNPlanes];
fSumPlaneTime = new Double_t [fNPlanes];
// Double_t fHitCnt4 = 0., fHitCnt3 = 0.;
// fScinHit = new Double_t*[fNPlanes];
// for ( m = 0; m < fNPlanes; m++ ){
// fScinHit[m] = new Double_t[fNPaddle[0]];
// }
for (int ip=0; ip<fNPlanes; ++ip) {
fScinHitPaddle.push_back(std::vector<Int_t>(fNPaddle[ip], 0));
}
fPresentP = 0;
THaVar* vpresent = gHaVars->Find(Form("%s.present",GetApparatus()->GetName()));
if(vpresent) {
fPresentP = (Bool_t *) vpresent->GetValuePointer();
}
return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcHodoscope::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
// static const char* const here = "ReadDatabase()";
char prefix[2];
char parname[100];
// Read data from database
// Pull values from the THcParmList instead of reading a database
// file like Hall A does.
// Will need to determine which spectrometer in order to construct
// the parameter names (e.g. hscin_1x_nr vs. sscin_1x_nr)
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,"scin_");
// Int_t plen=strlen(parname);
// cout << " readdatabse hodo fnplanes = " << fNPlanes << endl;
fFPTime = new Double_t [fNPlanes];
fPlaneCenter = new Double_t[fNPlanes];
fPlaneSpacing = new Double_t[fNPlanes];
prefix[0]=tolower(GetApparatus()->GetName()[0]);
//
prefix[1]='\0';
for(Int_t i=0;i<fNPlanes;i++) {
DBRequest list[]={
{Form("scin_%s_nr",fPlaneNames[i]), &fNPaddle[i], kInt},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
// GN added
// reading variables from *hodo.param
Gabriel Niculescu
committed
fMaxScinPerPlane=fNPaddle[0];
for (Int_t i=1;i<fNPlanes;i++) {
Gabriel Niculescu
committed
fMaxScinPerPlane=(fMaxScinPerPlane > fNPaddle[i])? fMaxScinPerPlane : fNPaddle[i];
}
// need this for "padded arrays" i.e. 4x16 lists of parameters (GN)
fMaxHodoScin=fMaxScinPerPlane*fNPlanes;
Gabriel Niculescu
committed
if (fDebug>=1) cout <<"fMaxScinPerPlane = "<<fMaxScinPerPlane<<" fMaxHodoScin = "<<fMaxHodoScin<<endl;
fHodoVelLight=new Double_t [fMaxHodoScin];
fHodoPosSigma=new Double_t [fMaxHodoScin];
fHodoNegSigma=new Double_t [fMaxHodoScin];
fHodoPosMinPh=new Double_t [fMaxHodoScin];
fHodoNegMinPh=new Double_t [fMaxHodoScin];
fHodoPosPhcCoeff=new Double_t [fMaxHodoScin];
fHodoNegPhcCoeff=new Double_t [fMaxHodoScin];
fHodoPosTimeOffset=new Double_t [fMaxHodoScin];
fHodoNegTimeOffset=new Double_t [fMaxHodoScin];
fHodoPosPedLimit=new Int_t [fMaxHodoScin];
fHodoNegPedLimit=new Int_t [fMaxHodoScin];
fHodoPosInvAdcOffset=new Double_t [fMaxHodoScin];
fHodoNegInvAdcOffset=new Double_t [fMaxHodoScin];
fHodoPosInvAdcLinear=new Double_t [fMaxHodoScin];
fHodoNegInvAdcLinear=new Double_t [fMaxHodoScin];
fHodoPosInvAdcAdc=new Double_t [fMaxHodoScin];
fHodoNegInvAdcAdc=new Double_t [fMaxHodoScin];
fxLoScin = new Int_t [fNHodoscopes];
fxHiScin = new Int_t [fNHodoscopes];
fyLoScin = new Int_t [fNHodoscopes];
fyHiScin = new Int_t [fNHodoscopes];
fHodoSlop = new Double_t [fNPlanes];
fTdcOffset = new Int_t [fNPlanes];
fAdcTdcOffset = new Double_t [fNPlanes];
fAdcTimeWindowMin = new Double_t [fNPlanes];
fAdcTimeWindowMax = new Double_t [fNPlanes];
for(Int_t ip=0;ip<fNPlanes;ip++) { // Set a large default window
fTdcOffset[ip] = 0 ;
fAdcTdcOffset[ip] = 0.0 ;
DBRequest list[]={
{"cosmicflag", &fCosmicFlag, kInt, 0, 1},
{"NumPlanesBetaCalc", &fNumPlanesBetaCalc, kInt, 0, 1},
{"start_time_center", &fStartTimeCenter, kDouble},
{"start_time_slop", &fStartTimeSlop, kDouble},
{"scin_tdc_to_time", &fScinTdcToTime, kDouble},
{"scin_tdc_min", &fScinTdcMin, kDouble},
{"scin_tdc_max", &fScinTdcMax, kDouble},
{"tof_tolerance", &fTofTolerance, kDouble, 0, 1},
{"pathlength_central", &fPathLengthCentral, kDouble},
{"hodo_pos_sigma", &fHodoPosSigma[0], kDouble, fMaxHodoScin},
{"hodo_neg_sigma", &fHodoNegSigma[0], kDouble, fMaxHodoScin},
{"hodo_pos_ped_limit", &fHodoPosPedLimit[0], kInt, fMaxHodoScin},
{"hodo_neg_ped_limit", &fHodoNegPedLimit[0], kInt, fMaxHodoScin},
{"tofusinginvadc", &fTofUsingInvAdc, kInt, 0, 1},
{"xloscin", &fxLoScin[0], kInt, (UInt_t) fNHodoscopes},
{"xhiscin", &fxHiScin[0], kInt, (UInt_t) fNHodoscopes},
{"yloscin", &fyLoScin[0], kInt, (UInt_t) fNHodoscopes},
{"yhiscin", &fyHiScin[0], kInt, (UInt_t) fNHodoscopes},
{"track_eff_test_num_scin_planes", &fTrackEffTestNScinPlanes, kInt},
{"cer_npe", &fNCerNPE, kDouble, 0, 1},
{"normalized_energy_tot", &fNormETot, kDouble, 0, 1},
{"hodo_slop", fHodoSlop, kDouble, (UInt_t) fNPlanes},
{"debugprintscinraw", &fdebugprintscinraw, kInt, 0,1},
{"hodo_tdc_offset", fTdcOffset, kInt, (UInt_t) fNPlanes, 1},
{"hodo_adc_tdc_offset", fAdcTdcOffset, kDouble, (UInt_t) fNPlanes, 1},
{"hodo_AdcTimeWindowMin", fAdcTimeWindowMin, kDouble, (UInt_t) fNPlanes},
{"hodo_AdcTimeWindowMax", fAdcTimeWindowMax, kDouble, (UInt_t) fNPlanes},
{"dumptof", &fDumpTOF, kInt, 0, 1},
{"TOFCalib_shtrk_lo", &fTOFCalib_shtrk_lo, kDouble, 0, 1},
{"TOFCalib_shtrk_hi", &fTOFCalib_shtrk_hi, kDouble, 0, 1},
{"TOFCalib_cer_lo", &fTOFCalib_cer_lo, kDouble, 0, 1},
{"TOFCalib_beta_lo", &fTOFCalib_beta_lo, kDouble, 0, 1},
{"TOFCalib_beta_hi", &fTOFCalib_beta_hi, kDouble, 0, 1},
{"dumptof_filename", &fTOFDumpFile, kString, 0, 1},
{0}
};
// Defaults if not defined in parameter file
for(Int_t ip=0;ip<fNPlanes;ip++) {
fAdcTimeWindowMin[ip] = 0.;
fAdcTimeWindowMax[ip] = 1000.;
}
fTOFCalib_shtrk_lo=-kBig;
fTOFCalib_shtrk_hi= kBig;
fTOFCalib_cer_lo=-kBig;
fTOFCalib_beta_lo=-kBig;
fTOFCalib_beta_hi= kBig;
fdebugprintscinraw=0;
fDumpTOF = 0;
fTOFDumpFile="";
fTofUsingInvAdc = 1;
fTofTolerance = 3.0;
fNCerNPE = 2.0;
fNormETot = 0.7;
// Gets added to each reference time corrected raw TDC value
// to make sure valid range is all positive.
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
if (fCosmicFlag==1) cout << "Setup for cosmics in TOF"<< endl;
// cout << " cosmic flag = " << fCosmicFlag << endl;
fDumpOut.open(fTOFDumpFile.c_str());
if(fDumpOut.is_open()) {
//fDumpOut << "Hodoscope Time of Flight calibration data" << endl;
} else {
fDumpTOF = 0;
cout << "WARNING: Unable to open TOF Dump file " << fTOFDumpFile << endl;
cout << "Data for TOF calibration not being written." << endl;
}
}
// cout << " x1 lo = " << fxLoScin[0]
// << " x2 lo = " << fxLoScin[1]
// << " x1 hi = " << fxHiScin[0]
// << " x2 hi = " << fxHiScin[1]
// << endl;
// cout << " y1 lo = " << fyLoScin[0]
// << " y2 lo = " << fyLoScin[1]
// << " y1 hi = " << fyHiScin[0]
// << " y2 hi = " << fyHiScin[1]
// << endl;
// cout << "Hdososcope planes hits for trigger = " << fTrackEffTestNScinPlanes
// << " normalized energy min = " << fNormETot
// << " number of photo electrons = " << fNCerNPE
// << endl;
if (fTofUsingInvAdc) {
DBRequest list2[]={
{"hodo_vel_light", &fHodoVelLight[0], kDouble, fMaxHodoScin},
{"hodo_pos_invadc_offset",&fHodoPosInvAdcOffset[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_offset",&fHodoNegInvAdcOffset[0],kDouble,fMaxHodoScin},
{"hodo_pos_invadc_linear",&fHodoPosInvAdcLinear[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_linear",&fHodoNegInvAdcLinear[0],kDouble,fMaxHodoScin},
{"hodo_pos_invadc_adc",&fHodoPosInvAdcAdc[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_adc",&fHodoNegInvAdcAdc[0],kDouble,fMaxHodoScin},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list2,prefix);
};
if (!fTofUsingInvAdc) {
DBRequest list3[]={
{"hodo_vel_light", &fHodoVelLight[0], kDouble, fMaxHodoScin},
{"hodo_pos_minph", &fHodoPosMinPh[0], kDouble, fMaxHodoScin},
{"hodo_neg_minph", &fHodoNegMinPh[0], kDouble, fMaxHodoScin},
{"hodo_pos_phc_coeff", &fHodoPosPhcCoeff[0], kDouble, fMaxHodoScin},
{"hodo_neg_phc_coeff", &fHodoNegPhcCoeff[0], kDouble, fMaxHodoScin},
{"hodo_pos_time_offset", &fHodoPosTimeOffset[0], kDouble, fMaxHodoScin},
{"hodo_neg_time_offset", &fHodoNegTimeOffset[0], kDouble, fMaxHodoScin},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list3,prefix);
};
Gabriel Niculescu
committed
if (fDebug >=1) {
cout <<"******* Testing Hodoscope Parameter Reading ***\n";
cout<<"StarTimeCenter = "<<fStartTimeCenter<<endl;
cout<<"StartTimeSlop = "<<fStartTimeSlop<<endl;
cout <<"ScintTdcToTime = "<<fScinTdcToTime<<endl;
cout <<"TdcMin = "<<fScinTdcMin<<" TdcMax = "<<fScinTdcMax<<endl;
cout <<"TofTolerance = "<<fTofTolerance<<endl;
cout <<"*** VelLight ***\n";
Gabriel Niculescu
committed
cout<<"Plane "<<i1<<endl;
Gabriel Niculescu
committed
cout<<fHodoVelLight[GetScinIndex(i1,i2)]<<" ";
Gabriel Niculescu
committed
cout <<endl;
Gabriel Niculescu
committed
cout <<endl<<endl;
// check fHodoPosPhcCoeff
/*
cout <<"fHodoPosPhcCoeff = ";
for (int i1=0;i1<fMaxHodoScin;i1++) {
cout<<this->GetHodoPosPhcCoeff(i1)<<" ";
}
cout<<endl;
*/
}
//
if ((fTofTolerance > 0.5) && (fTofTolerance < 10000.)) {
cout << "USING "<<fTofTolerance<<" NSEC WINDOW FOR FP NO_TRACK CALCULATIONS.\n";
}
else {
fTofTolerance= 3.0;
cout << "*** USING DEFAULT 3 NSEC WINDOW FOR FP NO_TRACK CALCULATIONS!! ***\n";
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoscope::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
// cout << "THcHodoscope::DefineVariables called " << GetName() << endl;
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
// Move these into THcHallCSpectrometer using track fTracks
{"beta", "Beta including track info", "fBeta"},
{"betanotrack", "Beta from scintillator hits", "fBetaNoTrk"},
{"betachisqnotrack", "Chi square of beta from scintillator hits", "fBetaNoTrkChiSq"},
{"fpHitsTime", "Time at focal plane from all hits", "fFPTimeAll"},
{"goodstarttime", "Hodoscope Good Start Time (logical flag)", "fGoodStartTime"},
return DefineVarsFromList( vars, mode );
// return kOK;
}
//_____________________________________________________________________________
THcHodoscope::~THcHodoscope()
{
// Destructor. Remove variables from global list.
delete [] fPlaneCenter;
delete [] fPlaneSpacing;
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
void THcHodoscope::DeleteArrays()
{
// Delete member arrays. Used by destructor.
// for( k = 0; k < fNPlanes; k++){
// delete [] fScinHit[k];
// }
// delete [] fScinHit;
delete [] fxLoScin; fxLoScin = NULL;
delete [] fxHiScin; fxHiScin = NULL;
delete [] fHodoSlop; fHodoSlop = NULL;
delete [] fNPaddle; fNPaddle = NULL;
delete [] fHodoVelLight; fHodoVelLight = NULL;
delete [] fHodoPosSigma; fHodoPosSigma = NULL;
delete [] fHodoNegSigma; fHodoNegSigma = NULL;
delete [] fHodoPosMinPh; fHodoPosMinPh = NULL;
delete [] fHodoNegMinPh; fHodoNegMinPh = NULL;
delete [] fHodoPosPhcCoeff; fHodoPosPhcCoeff = NULL;
delete [] fHodoNegPhcCoeff; fHodoNegPhcCoeff = NULL;
delete [] fHodoPosTimeOffset; fHodoPosTimeOffset = NULL;
delete [] fHodoNegTimeOffset; fHodoNegTimeOffset = NULL;
delete [] fHodoPosPedLimit; fHodoPosPedLimit = NULL;
delete [] fHodoNegPedLimit; fHodoNegPedLimit = NULL;
delete [] fHodoPosInvAdcOffset; fHodoPosInvAdcOffset = NULL;
delete [] fHodoNegInvAdcOffset; fHodoNegInvAdcOffset = NULL;
delete [] fHodoPosInvAdcLinear; fHodoPosInvAdcLinear = NULL;
delete [] fHodoNegInvAdcLinear; fHodoNegInvAdcLinear = NULL;
delete [] fHodoPosInvAdcAdc; fHodoPosInvAdcAdc = NULL;
delete [] fGoodPlaneTime; fGoodPlaneTime = NULL;
delete [] fNPlaneTime; fNPlaneTime = NULL;
delete [] fSumPlaneTime; fSumPlaneTime = NULL;
delete [] fNScinHits; fNScinHits = NULL;
delete [] fTdcOffset; fTdcOffset = NULL;
delete [] fAdcTimeWindowMin; fAdcTimeWindowMin = NULL;
delete [] fAdcTimeWindowMax; fAdcTimeWindowMax = NULL;
}
//_____________________________________________________________________________
void THcHodoscope::ClearEvent()
/*! \brief Clears variables
*
* Called by THcHodoscope::Decode
*
*/
fStartTime = 0.0;
fFPTimeAll= -1000.;
fGoodStartTime = kFALSE;
fGoodScinHits = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlanes[ip]->Clear();
fPlaneCenter[ip]=0.;
fPlaneSpacing[ip]=0.;
for(UInt_t iPaddle=0;iPaddle<fNPaddle[ip]; ++iPaddle) {
fdEdX.clear();
fNScinHit.clear();
fNClust.clear();
fThreeScin.clear();
fGoodScinHitsX.clear();
}
//_____________________________________________________________________________
Int_t THcHodoscope::Decode( const THaEvData& evdata )
{
/*! \brief Decodes raw data and processes raw data into hits for each instance of THcScintillatorPlane
*
* - Calls THcHodoscope::ClearEvent
* - Reads raw data using THcHitList::DecodeToHitList
* - If one wants to subtract pedestals (assumed to be a set of data at beginning of run)
* + Must define "Pedestal_event" cut in the cuts definition file
* + For each "Pedestal_event" calls THcScintillatorPlane::AccumulatePedestals and returns
* + After First event which is not a "Pedestal_event" calls THcScintillatorPlane::CalculatePedestals
* - For each scintillator plane THcScintillatorPlane::ProcessHits
* - Calls THcHodoscope::EstimateFocalPlaneTime
ClearEvent();
// Get the Hall C style hitlist (fRawHitList) for this event
Bool_t present = kTRUE; // Suppress reference time warnings
if(fPresentP) { // if this spectrometer not part of trigger
present = *fPresentP;
}
fNHits = DecodeToHitList(evdata, !present);
//
// GN: print event number so we can cross-check with engine
// if (evdata.GetEvNum()>1000)
fCheckEvent = evdata.GetEvNum();
if(gHaCuts->Result("Pedestal_event")) {
Int_t nexthit = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
nexthit = fPlanes[ip]->AccumulatePedestals(fRawHitList, nexthit);
}
fAnalyzePedestals = 1; // Analyze pedestals first normal events
return(0);
}
if(fAnalyzePedestals) {
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlanes[ip]->CalculatePedestals();
}
fAnalyzePedestals = 0; // Don't analyze pedestals next event
}
// Let each plane get its hits
Int_t nexthit = 0;
fNfptimes=0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlaneCenter[ip] = fPlanes[ip]->GetPosCenter(0) + fPlanes[ip]->GetPosOffset();
fPlaneSpacing[ip] = fPlanes[ip]->GetSpacing();
// nexthit = fPlanes[ip]->ProcessHits(fRawHitList, nexthit);
// GN: select only events that have reasonable TDC values to start with
// as per the Engine h_strip_scin.f
nexthit = fPlanes[ip]->ProcessHits(fRawHitList,nexthit);
EstimateFocalPlaneTime();
if (fdebugprintscinraw == 1) {
Mark Jones
committed
cout << " Event number = " << evdata.GetEvNum()<<endl;
for(UInt_t ihit = 0; ihit < fNRawHits ; ihit++) {
// THcRawHodoHit* hit = (THcRawHodoHit *) fRawHitList->At(ihit);
// cout << ihit << " : " << hit->fPlane << ":" << hit->fCounter << " : "
// << hit->fADC_pos << " " << hit->fADC_neg << " " << hit->fTDC_pos
// << " " << hit->fTDC_neg << endl;
}
cout << endl;
Stephen A. Wood
committed
return fNHits;
//_____________________________________________________________________________
void THcHodoscope::EstimateFocalPlaneTime( void )
{
/*! \brief Calculates the Drift Chamber start time and fBetaNoTrk (velocity determined without track info)
*
* - Called by THcHodoscope::Decode
* + loops through hits in each scintillator plane and fills histogram array, "timehist", with corrected times for positive
* + Determines the peak of "timehist"
Int_t timehist[200];
for (Int_t i=0;i<200;i++) {
timehist[i] = 0;
}
Int_t ihit=0;
Int_t nscinhits=0; // Total # hits with at least one good tdc
for(Int_t ip=0;ip<fNPlanes;ip++) {
Int_t nphits=fPlanes[ip]->GetNScinHits();
nscinhits += nphits;
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for(Int_t i=0;i<nphits;i++) {
THcHodoHit *hit = (THcHodoHit*)hodoHits->At(i);
if(hit->GetHasCorrectedTimes()) {
Double_t postime=hit->GetPosTOFCorrectedTime();
Double_t negtime=hit->GetNegTOFCorrectedTime();
for (Int_t k=0;k<200;k++) {
Double_t tmin=0.5*(k+1);
if ((postime> tmin) && (postime < tmin+fTofTolerance)) {
timehist[k]++;
}
if ((negtime> tmin) && (negtime < tmin+fTofTolerance)) {
timehist[k]++;
}
}
}
}
}
// Find the bin with most hits
Int_t binmax=0;
Int_t maxhit=0;
for(Int_t i=0;i<200;i++) {
if(timehist[i]>maxhit) {
binmax = i+1;
maxhit = timehist[i];
}
}
ihit = 0;
Double_t fpTimeSum = 0.0;
fNfptimes=0;
Mark Jones
committed
Int_t Ngood_hits_plane=0;
Double_t Plane_fptime_sum=0.0;
Bool_t goodplanetime[fNPlanes];
Bool_t twogoodtimes[nscinhits];
goodplanetime[ip] = kFALSE;
Int_t nphits=fPlanes[ip]->GetNScinHits();
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
Mark Jones
committed
Ngood_hits_plane=0;
Plane_fptime_sum=0.0;
for(Int_t i=0;i<nphits;i++) {
THcHodoHit *hit = (THcHodoHit*)hodoHits->At(i);
twogoodtimes[ihit] = kFALSE;
if(hit->GetHasCorrectedTimes()) {
Double_t tmin = 0.5*binmax;
Double_t postime=hit->GetPosTOFCorrectedTime();
Double_t negtime=hit->GetNegTOFCorrectedTime();
if ((postime>tmin) && (postime<tmin+fTofTolerance) &&
(negtime>tmin) && (negtime<tmin+fTofTolerance)) {
hit->SetTwoGoodTimes(kTRUE);
twogoodtimes[ihit] = kTRUE; // Both tubes fired
Int_t index=hit->GetPaddleNumber()-1; //
Double_t fptime;
if(fCosmicFlag==1) {
fptime = hit->GetScinCorrectedTime()
+ (fPlanes[ip]->GetZpos()+(index%2)*fPlanes[ip]->GetDzpos())
/ (29.979 * fBetaNominal);
}else{
fptime = hit->GetScinCorrectedTime()
- (fPlanes[ip]->GetZpos()+(index%2)*fPlanes[ip]->GetDzpos())
/ (29.979 * fBetaNominal);
Mark Jones
committed
Ngood_hits_plane++;
Plane_fptime_sum+=fptime;
fpTimeSum += fptime;
fNfptimes++;
goodplanetime[ip] = kTRUE;
} else {
hit->SetTwoGoodTimes(kFALSE);
}
ihit++;
fPlanes[ip]->SetFpTime(Plane_fptime_sum/float(Ngood_hits_plane));
fPlanes[ip]->SetNGoodHits(Ngood_hits_plane);
if(fNfptimes>0) {
fStartTime = fpTimeSum/fNfptimes;
fGoodStartTime=kTRUE;
} else {
fStartTime = fStartTimeCenter;
fGoodStartTime=kFALSE;
if((goodplanetime[0]||goodplanetime[1])
&&(goodplanetime[2]||goodplanetime[3])) {
Double_t sumW = 0.;
Double_t sumT = 0.;
Double_t sumZ = 0.;
Double_t sumZZ = 0.;
Double_t sumTZ = 0.;
Int_t ihhit = 0;
Int_t nphits=fPlanes[ip]->GetNScinHits();
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for(Int_t i=0;i<nphits;i++) {
Int_t index=((THcHodoHit*)hodoHits->At(i))->GetPaddleNumber()-1;
if(twogoodtimes[ihhit]){
Double_t sigma = 0.5 * ( TMath::Sqrt( TMath::Power( fHodoPosSigma[GetScinIndex(ip,index)],2) +
TMath::Power( fHodoNegSigma[GetScinIndex(ip,index)],2) ) );
Double_t scinWeight = 1 / TMath::Power(sigma,2);
Double_t zPosition = fPlanes[ip]->GetZpos() + (index%2)*fPlanes[ip]->GetDzpos();
// cout << "hit = " << ihhit + 1 << " zpos = " << zPosition << " sigma = " << sigma << endl;
sumW += scinWeight;
sumT += scinWeight * ((THcHodoHit*)hodoHits->At(i))->GetScinCorrectedTime();
sumZ += scinWeight * zPosition;
sumZZ += scinWeight * ( zPosition * zPosition );
sumTZ += scinWeight * zPosition * ((THcHodoHit*)hodoHits->At(i))->GetScinCorrectedTime();
} // condition of good scin time
ihhit ++;
} // loop over hits of plane
} // loop over planes
Double_t tmp = sumW * sumZZ - sumZ * sumZ ;
Double_t t0 = ( sumT * sumZZ - sumZ * sumTZ ) / tmp ;
Double_t tmpDenom = sumW * sumTZ - sumZ * sumT;
if ( TMath::Abs( tmpDenom ) > ( 1 / 10000000000.0 ) ) {
fBetaNoTrkChiSq = 0.;
for (Int_t ip = 0; ip < fNumPlanesBetaCalc; ip++ ){ // Loop over planes
Int_t nphits=fPlanes[ip]->GetNScinHits();
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for(Int_t i=0;i<nphits;i++) {
Int_t index=((THcHodoHit*)hodoHits->At(i))->GetPaddleNumber()-1;
if(twogoodtimes[ihhit]) {
Double_t zPosition = fPlanes[ip]->GetZpos() + (index%2)*fPlanes[ip]->GetDzpos();
Double_t timeDif = ( ((THcHodoHit*)hodoHits->At(i))->GetScinCorrectedTime() - t0 );
Double_t sigma = 0.5 * ( TMath::Sqrt( TMath::Power( fHodoPosSigma[GetScinIndex(ip,index)],2) +
TMath::Power( fHodoNegSigma[GetScinIndex(ip,index)],2) ) );
fBetaNoTrkChiSq += ( ( zPosition / fBetaNoTrk - timeDif ) *
( zPosition / fBetaNoTrk - timeDif ) ) / ( sigma * sigma );
} // condition for good scin time
ihhit++;
} // loop over hits of a plane
} // loop over planes
fBetaNoTrk = fBetaNoTrk / 29.979; // velocity / c
} // condition for fTmpDenom
else {
fBetaNoTrk = 0.;
fBetaNoTrkChiSq = -2.;
} // else condition for fTmpDenom
fGoodEventTOFCalib=kFALSE;
if ((fNumPlanesBetaCalc==4)&&goodplanetime[0]&&goodplanetime[1]&&goodplanetime[2]&&goodplanetime[3]&&fPlanes[0]->GetNGoodHits()==1&&fPlanes[1]->GetNGoodHits()==1&&fPlanes[2]->GetNGoodHits()==1&&fPlanes[3]->GetNGoodHits()==1) fGoodEventTOFCalib=kTRUE;
if ((fNumPlanesBetaCalc==3)&&goodplanetime[0]&&goodplanetime[1]&&goodplanetime[2]&&fPlanes[0]->GetNGoodHits()==1&&fPlanes[1]->GetNGoodHits()==1&&fPlanes[2]->GetNGoodHits()==1) fGoodEventTOFCalib=kTRUE;
//_____________________________________________________________________________
Int_t THcHodoscope::ApplyCorrections( void )
{
return(0);
}
//_____________________________________________________________________________
Double_t THcHodoscope::TimeWalkCorrection(const Int_t& paddle,
const ESide side)
{
return(0.0);
}
//_____________________________________________________________________________
Int_t THcHodoscope::CoarseProcess( TClonesArray& tracks )
Int_t ntracks = tracks.GetLast()+1; // Number of reconstructed tracks
Int_t timehist[200];
// -------------------------------------------------
// fDumpOut << " ntrack = " << ntracks << endl;
// **MAIN LOOP: Loop over all tracks and get corrected time, tof, beta...
Double_t* nPmtHit = new Double_t [ntracks];
Double_t* timeAtFP = new Double_t [ntracks];
for ( Int_t itrack = 0; itrack < ntracks; itrack++ ) { // Line 133
nPmtHit[itrack]=0;
timeAtFP[itrack]=0;
THaTrack* theTrack = dynamic_cast<THaTrack*>( tracks.At(itrack) );
if (!theTrack) return -1;
for (Int_t ip = 0; ip < fNumPlanesBetaCalc; ip++ ){
fGoodPlaneTime[ip] = kFALSE;
fNPlaneTime[ip] = 0;
fSumPlaneTime[ip] = 0.;
std::vector<Double_t> dedx_temp;
fdEdX.push_back(dedx_temp); // Create array of dedx per hit
std::vector<std::vector<GoodFlags> > goodflagstmp1;
fGoodFlags.push_back(goodflagstmp1);
// timeAtFP[itrack] = 0.;
Double_t sumFPTime = 0.; // Line 138
fNScinHit.push_back(0);
//! Calculate all corrected hit times and histogram
//! This uses a copy of code below. Results are save in time_pos,neg
//! including the z-pos. correction assuming nominal value of betap
//! Code is currently hard-wired to look for a peak in the
//! range of 0 to 100 nsec, with a group of times that all
//! agree withing a time_tolerance of time_tolerance nsec. The normal
//! peak position appears to be around 35 nsec.
//! NOTE: if want to find particles with beta different than
//! reference particle, need to make sure this is big enough
//! to accomodate difference in TOF for other particles
//! Default value in case user hasnt defined something reasonable
for (Int_t j=0; j<200; j++) { timehist[j]=0; } // Line 176
// Loop over scintillator planes.
// In ENGINE, its loop over good scintillator hits.
fTOFCalc.clear(); // SAW - Can we
fTOFPInfo.clear(); // SAW - combine these two?
Int_t ihhit = 0; // Hit # overall
for(Int_t ip = 0; ip < fNumPlanesBetaCalc; ip++ ) {
std::vector<GoodFlags> goodflagstmp2;
fGoodFlags[itrack].push_back(goodflagstmp2);
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
Double_t zPos = fPlanes[ip]->GetZpos();
Double_t dzPos = fPlanes[ip]->GetDzpos();
// first loop over hits with in a single plane
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
// iphit is hit # within a plane
THcHodoHit *hit = (THcHodoHit*)hodoHits->At(iphit);
fTOFPInfo.push_back(TOFPInfo());
// Can remove these as we will initialize in the constructor
// fTOFPInfo[ihhit].time_pos = -99.0;
// fTOFPInfo[ihhit].time_neg = -99.0;
// fTOFPInfo[ihhit].keep_pos = kFALSE;
// fTOFPInfo[ihhit].keep_neg = kFALSE;
fTOFPInfo[ihhit].scin_pos_time = 0.0;
fTOFPInfo[ihhit].scin_neg_time = 0.0;
fTOFPInfo[ihhit].hit = hit;
fTOFPInfo[ihhit].planeIndex = ip;
fTOFPInfo[ihhit].hitNumInPlane = iphit;
fTOFPInfo[ihhit].onTrack = kFALSE;
Int_t paddle = hit->GetPaddleNumber()-1;
Double_t zposition = zPos + (paddle%2)*dzPos;
Double_t xHitCoord = theTrack->GetX() + theTrack->GetTheta() *
( zposition ); // Line 183
Double_t yHitCoord = theTrack->GetY() + theTrack->GetPhi() *
( zposition ); // Line 184
if ( ( ip == 0 ) || ( ip == 2 ) ){ // !x plane. Line 185
scinTrnsCoord = xHitCoord;
scinLongCoord = yHitCoord;
else if ( ( ip == 1 ) || ( ip == 3 ) ){ // !y plane. Line 188
scinTrnsCoord = yHitCoord;
scinLongCoord = xHitCoord;
}
else { return -1; } // Line 195
fTOFPInfo[ihhit].scinTrnsCoord = scinTrnsCoord;
fTOFPInfo[ihhit].scinLongCoord = scinLongCoord;
Double_t scinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
// Index to access the 2d arrays of paddle/scintillator properties
Int_t fPIndex = GetScinIndex(ip,paddle);
( fPlanes[ip]->GetSize() * 0.5 + fPlanes[ip]->GetHodoSlop() ) ){ // Line 293
fTOFPInfo[ihhit].onTrack = kTRUE;
Double_t zcor = zposition/(29.979*fBetaNominal)*
TMath::Sqrt(1. + theTrack->GetTheta()*theTrack->GetTheta()
+ theTrack->GetPhi()*theTrack->GetPhi());
fTOFPInfo[ihhit].zcor = zcor;
if (fCosmicFlag) {
Double_t zcor = -zposition/(29.979*1.0)*
TMath::Sqrt(1. + theTrack->GetTheta()*theTrack->GetTheta()
+ theTrack->GetPhi()*theTrack->GetPhi());
fTOFPInfo[ihhit].zcor = zcor;
}
Double_t tdc_pos = hit->GetPosTDC();
if(tdc_pos >=fScinTdcMin && tdc_pos <= fScinTdcMax ) {
Double_t adc_pos = hit->GetPosADC();
Double_t pathp = fPlanes[ip]->GetPosLeft() - scinLongCoord;
fTOFPInfo[ihhit].pathp = pathp;
Double_t timep = tdc_pos*fScinTdcToTime;
if(fTofUsingInvAdc) {
timep -= fHodoPosInvAdcOffset[fPIndex]
+ pathp/fHodoPosInvAdcLinear[fPIndex]
+ fHodoPosInvAdcAdc[fPIndex]
/TMath::Sqrt(TMath::Max(20.0*.020,adc_pos));
} else {
timep -= fHodoPosPhcCoeff[fPIndex]*
TMath::Sqrt(TMath::Max(0.0,adc_pos/fHodoPosMinPh[fPIndex]-1.0))
+ pathp/fHodoVelLight[fPIndex]
+ fHodoPosTimeOffset[fPIndex];
}
fTOFPInfo[ihhit].scin_pos_time = timep;
timep -= zcor;
fTOFPInfo[ihhit].time_pos = timep;
for ( Int_t k = 0; k < 200; k++ ){ // Line 211
Double_t tmin = 0.5 * ( k + 1 ) ;
if ( ( timep > tmin ) && ( timep < ( tmin + fTofTolerance ) ) )
timehist[k] ++;
}
Double_t tdc_neg = hit->GetNegTDC();
if(tdc_neg >=fScinTdcMin && tdc_neg <= fScinTdcMax ) {
Double_t adc_neg = hit->GetNegADC();
Double_t pathn = scinLongCoord - fPlanes[ip]->GetPosRight();
fTOFPInfo[ihhit].pathn = pathn;
Double_t timen = tdc_neg*fScinTdcToTime;
if(fTofUsingInvAdc) {
timen -= fHodoNegInvAdcOffset[fPIndex]
+ pathn/fHodoNegInvAdcLinear[fPIndex]
+ fHodoNegInvAdcAdc[fPIndex]
/TMath::Sqrt(TMath::Max(20.0*.020,adc_neg));
} else {
timen -= fHodoNegPhcCoeff[fPIndex]*
TMath::Sqrt(TMath::Max(0.0,adc_neg/fHodoNegMinPh[fPIndex]-1.0))
+ pathn/fHodoVelLight[fPIndex]
+ fHodoNegTimeOffset[fPIndex];
}
fTOFPInfo[ihhit].scin_neg_time = timen;
fTOFPInfo[ihhit].time_neg = timen;
for ( Int_t k = 0; k < 200; k++ ){ // Line 230
Double_t tmin = 0.5 * ( k + 1 );
if ( ( timen > tmin ) && ( timen < ( tmin + fTofTolerance ) ) )
timehist[k] ++;
}
} // condition for cenetr on a paddle
} // First loop over hits in a plane <---------
//-----------------------------------------------------------------------------------------------
//------------- First large loop over scintillator hits ends here --------------------
//-----------------------------------------------------------------------------------------------
Int_t nhits=ihhit;
// Find bin with the most hits
Int_t jmax = 0; // Line 240
Int_t maxhit = 0;
for ( Int_t k = 0; k < 200; k++ ){
if ( timehist[k] > maxhit ){
jmax = k+1;
maxhit = timehist[k];
Double_t tmin = 0.5 * jmax;
for(Int_t ih = 0; ih < nhits; ih++) { // loop over all scintillator hits
if ( ( fTOFPInfo[ih].time_pos > tmin ) && ( fTOFPInfo[ih].time_pos < ( tmin + fTofTolerance ) ) ) {
fTOFPInfo[ih].keep_pos=kTRUE;
if ( ( fTOFPInfo[ih].time_neg > tmin ) && ( fTOFPInfo[ih].time_neg < ( tmin + fTofTolerance ) ) ){
fTOFPInfo[ih].keep_neg=kTRUE;
//---------------------------------------------------------------------------------------------
// ---------------------- Scond loop over scint. hits in a plane ------------------------------
//---------------------------------------------------------------------------------------------
for(Int_t ih=0; ih < nhits; ih++) {
THcHodoHit *hit = fTOFPInfo[ih].hit;
Int_t iphit = fTOFPInfo[ih].hitNumInPlane;
Int_t ip = fTOFPInfo[ih].planeIndex;
// fDumpOut << " looping over hits = " << ih << " plane = " << ip+1 << endl;
GoodFlags flags;
// Flags are used by THcHodoEff
fGoodFlags[itrack][ip].push_back(flags);
fGoodFlags[itrack][ip][iphit].onTrack = kFALSE;
fGoodFlags[itrack][ip][iphit].goodScinTime = kFALSE;
fGoodFlags[itrack][ip][iphit].goodTdcNeg = kFALSE;
fGoodFlags[itrack][ip][iphit].goodTdcPos = kFALSE;
fTOFCalc.push_back(TOFCalc());
// Do we set back to false for each track, or just once per event?
fTOFCalc[ih].good_scin_time = kFALSE;
// These need a track index too to calculate efficiencies
fTOFCalc[ih].good_tdc_pos = kFALSE;
fTOFCalc[ih].good_tdc_neg = kFALSE;
fTOFCalc[ih].pindex = ip;
Int_t paddle = hit->GetPaddleNumber()-1;
fTOFCalc[ih].hit_paddle = paddle;
fTOFCalc[ih].good_raw_pad = paddle;
// Double_t scinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
// Double_t scinTrnsCoord = fTOFPInfo[ih].scinTrnsCoord;
// Double_t scinLongCoord = fTOFPInfo[ih].scinLongCoord;
Int_t fPIndex = GetScinIndex(ip,paddle);
if (fTOFPInfo[ih].onTrack) {
fGoodFlags[itrack][ip][iphit].onTrack = kTRUE;
if ( fTOFPInfo[ih].keep_pos ) { // 301
fTOFCalc[ih].good_tdc_pos = kTRUE;
fGoodFlags[itrack][ip][iphit].goodTdcPos = kTRUE;
if ( fTOFPInfo[ih].keep_neg ) { //
fTOFCalc[ih].good_tdc_neg = kTRUE;
fGoodFlags[itrack][ip][iphit].goodTdcNeg = kTRUE;
// ** Calculate ave time for scin and error.
if ( fTOFCalc[ih].good_tdc_pos ){
if ( fTOFCalc[ih].good_tdc_neg ){
fTOFCalc[ih].scin_time = ( fTOFPInfo[ih].scin_pos_time +
fTOFPInfo[ih].scin_neg_time ) / 2.;
fTOFCalc[ih].scin_time_fp = ( fTOFPInfo[ih].time_pos +
fTOFPInfo[ih].time_neg ) / 2.;
fTOFCalc[ih].scin_sigma = TMath::Sqrt( fHodoPosSigma[fPIndex] * fHodoPosSigma[fPIndex] +
fHodoNegSigma[fPIndex] * fHodoNegSigma[fPIndex] )/2.;
fTOFCalc[ih].good_scin_time = kTRUE;
fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
} else{
fTOFCalc[ih].scin_time = fTOFPInfo[ih].scin_pos_time;
fTOFCalc[ih].scin_time_fp = fTOFPInfo[ih].time_pos;
fTOFCalc[ih].scin_sigma = fHodoPosSigma[fPIndex];
fTOFCalc[ih].good_scin_time = kTRUE;
fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
if ( fTOFCalc[ih].good_tdc_neg ){
fTOFCalc[ih].scin_time = fTOFPInfo[ih].scin_neg_time;
fTOFCalc[ih].scin_time_fp = fTOFPInfo[ih].time_neg;
fTOFCalc[ih].scin_sigma = fHodoNegSigma[fPIndex];
fTOFCalc[ih].good_scin_time = kTRUE;
fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
}
} // In h_tof.f this includes the following if condition for time at focal plane
// // because it is written in FORTRAN code
// c Get time at focal plane
if ( fTOFCalc[ih].good_scin_time ){
// scin_time_fp doesn't need to be an array
// Is this any different than the average of time_pos and time_neg?
// Double_t scin_time_fp = ( fTOFPInfo[ih].time_pos +
// fTOFPInfo[ih].time_neg ) / 2.;
Double_t scin_time_fp = fTOFCalc[ih].scin_time_fp;
sumFPTime = sumFPTime + scin_time_fp;
nFPTime ++;
fSumPlaneTime[ip] = fSumPlaneTime[ip] + scin_time_fp;
fNPlaneTime[ip] ++;
fNScinHit[itrack] ++;
if ( ( fTOFCalc[ih].good_tdc_pos ) && ( fTOFCalc[ih].good_tdc_neg ) ){
nPmtHit[itrack] = nPmtHit[itrack] + 2;
} else {
nPmtHit[itrack] = nPmtHit[itrack] + 1;
}
fdEdX[itrack].push_back(0.0);
// --------------------------------------------------------------------------------------------
if ( fTOFCalc[ih].good_tdc_pos ){
if ( fTOFCalc[ih].good_tdc_neg ){
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Sqrt( TMath::Max( 0., hit->GetPosADC() * hit->GetNegADC() ) );
} else{
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Max( 0., hit->GetPosADC() );
if ( fTOFCalc[ih].good_tdc_neg ){
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Max( 0., hit->GetNegADC() );
} else{
fdEdX[itrack][fNScinHit[itrack]-1]=0.0;
}
// --------------------------------------------------------------------------------------------
} // time at focal plane condition
} // on track condition
// ** See if there are any good time measurements in the plane.
if ( fTOFCalc[ih].good_scin_time ){
fGoodPlaneTime[ip] = kTRUE;
fTOFCalc[ih].dedx = fdEdX[itrack][fNScinHit[itrack]-1];
fTOFCalc[ih].dedx = 0.0;
} // Second loop over hits of a scintillator plane ends here
theTrack->SetGoodPlane3( fGoodPlaneTime[2] ? 1 : 0 );
if (fNumPlanesBetaCalc==4) theTrack->SetGoodPlane4( fGoodPlaneTime[3] ? 1 : 0 );
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// * * Fit beta if there are enough time measurements (one upper, one lower)
// From h_tof_fit
if ( ( ( fGoodPlaneTime[0] ) || ( fGoodPlaneTime[1] ) ) &&
( ( fGoodPlaneTime[2] ) || ( fGoodPlaneTime[3] ) ) ){
Double_t sumW = 0.;
Double_t sumT = 0.;
Double_t sumZ = 0.;
Double_t sumZZ = 0.;
Double_t sumTZ = 0.;
for(Int_t ih=0; ih < nhits; ih++) {
Int_t ip = fTOFPInfo[ih].planeIndex;
if ( fTOFCalc[ih].good_scin_time ) {
Double_t scinWeight = 1 / ( fTOFCalc[ih].scin_sigma * fTOFCalc[ih].scin_sigma );
Double_t zPosition = ( fPlanes[ip]->GetZpos()
+( fTOFCalc[ih].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
sumW += scinWeight;
sumT += scinWeight * fTOFCalc[ih].scin_time;
sumZ += scinWeight * zPosition;
sumZZ += scinWeight * ( zPosition * zPosition );
sumTZ += scinWeight * zPosition * fTOFCalc[ih].scin_time;
} // condition of good scin time
} // loop over hits
Double_t tmp = sumW * sumZZ - sumZ * sumZ ;
Double_t t0 = ( sumT * sumZZ - sumZ * sumTZ ) / tmp ;
Double_t tmpDenom = sumW * sumTZ - sumZ * sumT;
if ( TMath::Abs( tmpDenom ) > ( 1 / 10000000000.0 ) ) {
betaChiSq = 0.;
for(Int_t ih=0; ih < nhits; ih++) {
Int_t ip = fTOFPInfo[ih].planeIndex;
if ( fTOFCalc[ih].good_scin_time ){
Double_t zPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ih].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
Double_t timeDif = ( fTOFCalc[ih].scin_time - t0 );
betaChiSq += ( ( zPosition / beta - timeDif ) *
( zPosition / beta - timeDif ) ) /
( fTOFCalc[ih].scin_sigma * fTOFCalc[ih].scin_sigma );
} // condition for good scin time
} // loop over hits
Double_t pathNorm = TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
// Take angle into account
beta = beta / 29.979; // velocity / c
} // condition for fTmpDenom
} // else condition for fTmpDenom
timeAtFP[itrack] = ( sumFPTime / nFPTime );
//
// ---------------------------------------------------------------------------
Double_t FPTimeSum=0.0;
Int_t nFPTimeSum=0;
for (Int_t ip = 0; ip < fNumPlanesBetaCalc; ip++ ){
if ( fNPlaneTime[ip] != 0 ){
fFPTime[ip] = ( fSumPlaneTime[ip] / fNPlaneTime[ip] );
FPTimeSum += fSumPlaneTime[ip];
nFPTimeSum += fNPlaneTime[ip];
fFPTime[ip] = 1000. * ( ip + 1 );
fFPTimeAll = fptime;
Double_t dedx=0.0;
for(UInt_t ih=0;ih<fTOFCalc.size();ih++) {
if(fTOFCalc[ih].good_scin_time) {
dedx = fTOFCalc[ih].dedx;
break;
}
}
theTrack->SetDedx(dedx);
theTrack->SetFPTime(fptime);
theTrack->SetBeta(beta);
theTrack->SetBetaChi2( betaChiSq );
theTrack->SetNPMT(nPmtHit[itrack]);
theTrack->SetFPTime( timeAtFP[itrack]);
} // Main loop over tracks ends here.
} // If condition for at least one track
//-----------------------------------------------------------------------
//
// Trnslation of h_track_tests.f file for tracking efficiency
//
//-----------------------------------------------------------------------
//************************now look at some hodoscope tests
// *second, we move the scintillators. here we use scintillator cuts to see
// *if a track should have been found.
for(Int_t ip = 0; ip < fNumPlanesBetaCalc; ip++ ) {
if (!fPlanes[ip])
return -1;
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
// TClonesArray* scinPosTDC = fPlanes[ip]->GetPosTDC();
// TClonesArray* scinNegTDC = fPlanes[ip]->GetNegTDC();
fNScinHits[ip] = fPlanes[ip]->GetNScinHits();
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
Int_t paddle = ((THcHodoHit*)hodoHits->At(iphit))->GetPaddleNumber()-1;
fScinHitPaddle[ip][paddle] = 1;
}
}
// *next, look for clusters of hits in a scin plane. a cluster is a group of
// *adjacent scintillator hits separated by a non-firing scintillator.
// *Wwe count the number of three adjacent scintillators too. (A signle track
// *shouldn't fire three adjacent scintillators.
for(Int_t ip = 0; ip < fNumPlanesBetaCalc; ip++ ) {
// Planes ip = 0 = 1X
// Planes ip = 2 = 2X
if (!fPlanes[ip]) return -1;
fNClust.push_back(0);
fThreeScin.push_back(0);
}
// *look for clusters in x planes... (16 scins) !this assume both x planes have same
// *number of scintillators.
Int_t icount;
for (Int_t ip = 0; ip < 3; ip +=2 ) {
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[ip] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
} // Loop over paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[ip] - 2; ipaddle++ ){
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
} // Loop over X plane
// *look for clusters in y planes... (10 scins) !this assume both y planes have same
// *number of scintillators.
for (Int_t ip = 1; ip < fNumPlanesBetaCalc; ip +=2 ) {
// Planes ip = 1 = 1Y
// Planes ip = 3 = 2Y
if (!fPlanes[ip]) return -1;
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[ip] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
} // Loop over Y paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[ip] - 2; ipaddle++ ){
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over Y paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
}// Loop over Y planes
// *next we mask out the edge scintillators, and look at triggers that happened
// *at the center of the acceptance. To change which scins are in the mask
// *change the values of h*loscin and h*hiscin in htracking.param
// fGoodScinHits = 0;
for (Int_t ifidx = fxLoScin[0]; ifidx < (Int_t) fxHiScin[0]; ifidx ++ ){
fGoodScinHitsX.push_back(0);
}
fHitSweet1X=0;
fHitSweet2X=0;
fHitSweet1Y=0;
fHitSweet2Y=0;
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
// *first x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[0]-1; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){
fHitSweet1X = 1;
fSweet1XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
for (Int_t ifidx = fxHiScin[0]; ifidx < (Int_t) fNPaddle[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
// *second x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[1]-1; ifidx < fxHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){
fHitSweet2X = 1;
fSweet2XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
for (Int_t ifidx = fxHiScin[1]; ifidx < (Int_t) fNPaddle[2]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
// *first y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[0]-1; ifidx < fyHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){
fHitSweet1Y = 1;
fSweet1YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
for (Int_t ifidx = fyHiScin[0]; ifidx < (Int_t) fNPaddle[1]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
// *second y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[1]-1; ifidx < fyHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){
fHitSweet2Y = 1;
fSweet2YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
for (Int_t ifidx = fyHiScin[1]; ifidx < (Int_t) fNPaddle[3]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
fTestSum = fHitSweet1X + fHitSweet2X + fHitSweet1Y + fHitSweet2Y;
// * now define a 3/4 or 4/4 trigger of only good scintillators the value
if ( fTestSum >= fTrackEffTestNScinPlanes ){
fGoodScinHits = 1;
for (Int_t ifidx = fxLoScin[0]; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fSweet1XScin == ifidx )
fGoodScinHitsX[ifidx] = 1;
}
}
// * require front/back hodoscopes be close to each other
if ( ( fGoodScinHits == 1 ) && ( fTrackEffTestNScinPlanes == 4 ) ){
if ( TMath::Abs( fSweet1XScin - fSweet2XScin ) > 3 )
fGoodScinHits = 0;
if ( TMath::Abs( fSweet1YScin - fSweet2YScin ) > 2 )
fGoodScinHits = 0;
}
Gabriel Niculescu
committed
//_____________________________________________________________________________
Int_t THcHodoscope::FineProcess( TClonesArray& tracks )
{
Int_t Ntracks = tracks.GetLast()+1; // Number of reconstructed tracks
Double_t hitPos;
Double_t hitDistance;
for (Int_t itrk=0; itrk<Ntracks; itrk++) {
THaTrack* theTrack = static_cast<THaTrack*>( tracks[itrk] );
if (theTrack->GetIndex()==0) {
fBeta=theTrack->GetBeta();
Double_t shower_track_enorm = theTrack->GetEnergy()/theTrack->GetP();
for (Int_t ip = 0; ip < fNumPlanesBetaCalc; ip++ ){
Double_t pl_xypos=0;
Double_t pl_zpos=0;
Int_t num_good_pad=0;
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for (Int_t iphit = 0; iphit < fPlanes[ip]->GetNScinHits(); iphit++ ){
if (fGoodFlags[itrk][ip][iphit].goodScinTime) {
Bool_t sh_pid=(shower_track_enorm > fTOFCalib_shtrk_lo && shower_track_enorm < fTOFCalib_shtrk_hi);
Bool_t beta_pid=( fBeta > fTOFCalib_beta_lo && fBeta < fTOFCalib_beta_hi);
Bool_t cer_pid=( fCherenkov->GetCerNPE() > fTOFCalib_cer_lo);
if(fDumpTOF && Ntracks==1 && fGoodEventTOFCalib && sh_pid && beta_pid && cer_pid) {
fDumpOut << fixed << setprecision(2);
fDumpOut << showpoint << " 1" << setw(3) << ip+1 << setw(3) << hit->GetPaddleNumber() << setw(10) << hit->GetPosTDC()*fScinTdcToTime << setw(10) << fTOFPInfo[ih].pathp << setw(10) << fTOFPInfo[ih].zcor << setw(10) << fTOFPInfo[ih].time_pos << setw(10) << hit->GetPosADC() << endl;
fDumpOut << showpoint << " 2" << setw(3) << ip+1 << setw(3) << hit->GetPaddleNumber() << setw(10) << hit->GetNegTDC()*fScinTdcToTime << setw(10) << fTOFPInfo[ih].pathn << setw(10) << fTOFPInfo[ih].zcor << setw(10) << fTOFPInfo[ih].time_neg << setw(10) << hit->GetNegADC() << endl;
}
Int_t padind = ((THcHodoHit*)hodoHits->At(iphit))->GetPaddleNumber()-1;
pl_xypos+=fPlanes[ip]->GetPosCenter(padind)+ fPlanes[ip]->GetPosOffset();
pl_zpos+=fPlanes[ip]->GetZpos()+ (padind%2)*fPlanes[ip]->GetDzpos();
num_good_pad++;
}
// cout << ip << " " << iphit << " " << fGoodFlags[itrk][ip][iphit].goodScinTime << " " << fGoodFlags[itrk][ip][iphit].goodTdcPos << " " << fGoodFlags[itrk][ip][iphit].goodTdcNeg << endl;
}
hitDistance=kBig;
if (num_good_pad !=0 ) {
pl_xypos=pl_xypos/num_good_pad;
pl_zpos=pl_zpos/num_good_pad;
hitPos = theTrack->GetY() + theTrack->GetPhi()*pl_zpos ;
if (ip%2 == 0) hitPos = theTrack->GetX() + theTrack->GetTheta()*pl_zpos ;
hitDistance = hitPos - pl_xypos;
fPlanes[ip]->SetTrackXPosition(theTrack->GetX() + theTrack->GetTheta()*pl_zpos );
fPlanes[ip]->SetTrackYPosition(theTrack->GetY() + theTrack->GetPhi()*pl_zpos );
}
// cout << " ip " << ip << " " << hitPos << " " << pl_xypos << " " << pl_zpos << " " << hitDistance << endl;
fPlanes[ip]->SetHitDistance(hitDistance);
if(ih>0&&fDumpTOF && Ntracks==1 && fGoodEventTOFCalib && shower_track_enorm > fTOFCalib_shtrk_lo && shower_track_enorm < fTOFCalib_shtrk_hi ) {
fDumpOut << "0 " << endl;
}
return 0;
}
//_____________________________________________________________________________
Gabriel Niculescu
committed
Int_t THcHodoscope::GetScinIndex( Int_t nPlane, Int_t nPaddle ) {
// GN: Return the index of a scintillator given the plane # and the paddle #
// This assumes that both planes and
// paddles start counting from 0!
// Result also counts from 0.
return fNPlanes*nPaddle+nPlane;
Gabriel Niculescu
committed
}
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nSide, Int_t nPlane, Int_t nPaddle ) {
return nSide*fMaxHodoScin+fNPlanes*nPaddle+nPlane-1;
}
//_____________________________________________________________________________
Double_t THcHodoscope::GetPathLengthCentral() {
return fPathLengthCentral;
}
ClassImp(THcHodoscope)
////////////////////////////////////////////////////////////////////////////////