Newer
Older
///////////////////////////////////////////////////////////////////////////////
// //
// THcHodoscope //
// //
// Class for a generic hodoscope consisting of multiple //
// planes with multiple paddles with phototubes on both ends. //
// This differs from Hall A scintillator class in that it is the whole //
// hodoscope array, not just one plane. //
// //
// Date July 8 2014: //
// Zafr Ahmed //
// Beta and chis square are calculated for each of the hodoscope track. //
// Two new variables are added. fBeta and fBetaChisq //
// //
///////////////////////////////////////////////////////////////////////////////
#include "THcShower.h"
#include "THcHitList.h"
#include "THcRawShowerHit.h"
#include "TClass.h"
#include "math.h"
#include "THaSubDetector.h"
#include "THcHodoscope.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "THcDetectorMap.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
Gabriel Niculescu
committed
#include <fstream>
using namespace std;
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( const char* name, const char* description,
THaApparatus* apparatus ) :
THaNonTrackingDetector(name,description,apparatus)
{
// Constructor
//fTrackProj = new TClonesArray( "THaTrackProj", 5 );
// Construct the planes
Stephen A. Wood
committed
fNPlanes = 0; // No planes until we make them
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( ) :
THaNonTrackingDetector()
{
// Constructor
}
//_____________________________________________________________________________
void THcHodoscope::Setup(const char* name, const char* description)
{
// static const char* const here = "Setup()";
// static const char* const message =
// "Must construct %s detector with valid name! Object construction failed.";
Stephen A. Wood
committed
cout << "In THcHodoscope::Setup()" << endl;
// Base class constructor failed?
if( IsZombie()) return;
fDebug = 1; // Keep this at one while we're working on the code
char prefix[2];
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
DBRequest listextra[]={
{"hodo_num_planes", &fNPlanes, kInt},
{"hodo_plane_names",&planenamelist, kString},
//fNPlanes = 4; // Default if not defined
gHcParms->LoadParmValues((DBRequest*)&listextra,prefix);
cout << "Plane Name List : " << planenamelist << endl;
vector<string> plane_names = vsplit(planenamelist);
// Plane names
if(plane_names.size() != (UInt_t) fNPlanes) {
cout << "ERROR: Number of planes " << fNPlanes << " doesn't agree with number of plane names " << plane_names.size() << endl;
// Should quit. Is there an official way to quit?
}
fPlaneNames = new char* [fNPlanes];
for(Int_t i=0;i<fNPlanes;i++) {
fPlaneNames[i] = new char[plane_names[i].length()+1];
strcpy(fPlaneNames[i], plane_names[i].c_str());
}
/* fPlaneNames = new char* [fNPlanes];
for(Int_t i=0;i<fNPlanes;i++) {fPlaneNames[i] = new char[3];}
// Should get the plane names from parameters.
Gabriel Niculescu
committed
// could try this: grep _zpos PARAM/hhodo.pos | sed 's/\_/\ /g' | awk '{print $2}'
strcpy(fPlaneNames[0],"1x");
strcpy(fPlaneNames[1],"1y");
strcpy(fPlaneNames[2],"2x");
strcpy(fPlaneNames[3],"2y");
// Probably shouldn't assume that description is defined
char* desc = new char[strlen(description)+100];
fPlanes = new THcScintillatorPlane* [fNPlanes];
for(Int_t i=0;i < fNPlanes;i++) {
strcpy(desc, description);
strcat(desc, " Plane ");
strcat(desc, fPlaneNames[i]);
fPlanes[i] = new THcScintillatorPlane(fPlaneNames[i], desc, i+1,fNPlanes,this); // Number planes starting from zero!!
cout << "Created Scintillator Plane " << fPlaneNames[i] << ", " << desc << endl;
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoscope::Init( const TDatime& date )
{
cout << "In THcHodoscope::Init()" << endl;
Setup(GetName(), GetTitle());
// Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map
// But it needs to happen before the sub detectors are initialized
// so that they can get the pointer to the hitlist.
// --------------- To get energy from THcShower ----------------------
const char* shower_detector_name = "cal";
THaApparatus* app = GetApparatus();
THaDetector* det = app->GetDetector( shower_detector_name );
if( !dynamic_cast<THcShower*>(det) ) {
Error("THcHodoscope", "Cannot find shower detector %s",
shower_detector_name );
return fStatus = kInitError;
}
fShower = static_cast<THcShower*>(det); // fShower is a membervariable
// --------------- To get energy from THcShower ----------------------
InitHitList(fDetMap, "THcRawHodoHit", 100);
EStatus status;
// This triggers call of ReadDatabase and DefineVariables
if( (status = THaNonTrackingDetector::Init( date )) )
return fStatus=status;
for(Int_t ip=0;ip<fNPlanes;ip++) {
if((status = fPlanes[ip]->Init( date ))) {
return fStatus=status;
}
}
// Replace with what we need for Hall C
// const DataDest tmp[NDEST] = {
// { &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
// { &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
// };
// memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );
char EngineDID[]="xSCIN";
EngineDID[0] = toupper(GetApparatus()->GetName()[0]);
if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) {
static const char* const here = "Init()";
Error( Here(here), "Error filling detectormap for %s.",
EngineDID);
return kInitError;
}
fNScinHits = new Int_t [fNPlanes];
fGoodPlaneTime = new Bool_t [fNPlanes];
fNPlaneTime = new Int_t [fNPlanes];
fSumPlaneTime = new Double_t [fNPlanes];
// Double_t fHitCnt4 = 0., fHitCnt3 = 0.;
fScinHit = new Double_t*[fNPlanes];
for (Int_t m = 0; m < fNPlanes; m++ ){
return fStatus = kOK;
}
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//_____________________________________________________________________________
Double_t THcHodoscope::DefineDoubleVariable(const char* fName)
{
// Define a variale of type double by looking it up in the THcParmList
char prefix[2];
char parname[100];
Double_t tmpvar=-1e6;
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
if (gHcParms->Find(parname)) {
tmpvar=*(Double_t *)gHcParms->Find(parname)->GetValuePointer();
if (fDebug>=1) cout << parname << " "<< tmpvar << endl;
} else {
cout << "*** ERROR!!! Could not find " << parname << " in the list of variables! ***" << endl;
}
return tmpvar;
}
//_____________________________________________________________________________
Int_t THcHodoscope::DefineIntVariable(const char* fName)
{
// Define a variale of type int by looking it up in the THcParmList
char prefix[2];
char parname[100];
Int_t tmpvar=-100000;
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
if (gHcParms->Find(parname)) {
tmpvar=*(Int_t *)gHcParms->Find(parname)->GetValuePointer();
if (fDebug>=1) cout << parname << " "<< tmpvar << endl;
} else {
cout << "*** ERROR!!! Could not find " << parname << " in the list of variables! ***" << endl;
}
return tmpvar;
}
//_____________________________________________________________________________
void THcHodoscope::DefineArray(const char* fName, const Int_t index, Double_t *myArray)
{
char prefix[2];
char parname[100];
// Int_t tmpvar=-100000;
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
if (gHcParms->Find(parname)) {
if (fDebug >=1) cout <<parname;
Double_t* p = (Double_t *)gHcParms->Find(parname)->GetValuePointer();
for(Int_t i=0;i<index;i++) {
myArray[i] = p[i];
if (fDebug>=1) cout << " " << myArray[i];
}
if (fDebug>=1) cout << endl;
}
else {
cout <<" Could not find "<<parname<<" in the DataBase!!!\n";
}
}
//_____________________________________________________________________________
void THcHodoscope::DefineArray(const char* fName, char** Suffix, const Int_t index, Double_t *myArray)
{
// Try to read an array made up of what used to be (in the f77 days) a number of variables
// example: hscin_1x_center, hscin_1y_center, hscin_2x_center, hscin_2y_center will become scin_center
//
char prefix[2];
char parname[100],parname2[100];
//
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
for(Int_t i=0;i<index;i++) {
strcpy(parname2,Form(parname,Suffix[i]));
if (gHcParms->Find(parname2)) {
if (fDebug >=1) cout <<parname2;
myArray[i] = *(Double_t *)gHcParms->Find(parname2)->GetValuePointer();
if (fDebug>=1) cout << " " << myArray[i];
}
if (fDebug>=1) cout << endl;
else {
cout <<" Could not find "<<parname2<<" in the DataBase!!!\n";
}
}
}
//_____________________________________________________________________________
void THcHodoscope::DefineArray(const char* fName, char** Suffix, const Int_t index, Int_t *myArray)
{
// Try to read an array made up of what used to be (in the f77 days) a number of variables
// example: hscin_1x_center, hscin_1y_center, hscin_2x_center, hscin_2y_center will become scin_center
//
char prefix[2];
char parname[100],parname2[100];
//
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
for(Int_t i=0;i<index;i++) {
strcpy(parname2,Form(parname,Suffix[i]));
if (gHcParms->Find(parname2)) {
if (fDebug >=1) cout <<parname2;
myArray[i] = *(Int_t *)gHcParms->Find(parname2)->GetValuePointer();
if (fDebug>=1) cout << " " << myArray[i];
}
if (fDebug>=1) cout << endl;
else {
cout <<" Could not find "<<parname2<<" in the DataBase!!!\n";
}
}
}
//_____________________________________________________________________________
Int_t THcHodoscope::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
// static const char* const here = "ReadDatabase()";
char prefix[2];
char parname[100];
// Read data from database
// Pull values from the THcParmList instead of reading a database
// file like Hall A does.
// Will need to determine which spectrometer in order to construct
// the parameter names (e.g. hscin_1x_nr vs. sscin_1x_nr)
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,"scin_");
// Int_t plen=strlen(parname);
cout << " readdatabse hodo fnplanes = " << fNPlanes << endl;
fNPaddle = new UInt_t [fNPlanes];
fFPTime = new Double_t [fNPlanes];
fPlaneCenter = new Double_t[fNPlanes];
fPlaneSpacing = new Double_t[fNPlanes];
prefix[0]=tolower(GetApparatus()->GetName()[0]);
//
prefix[1]='\0';
for(Int_t i=0;i<fNPlanes;i++) {
DBRequest list[]={
{Form("scin_%s_nr",fPlaneNames[i]), &fNPaddle[i], kInt},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
// GN added
// reading variables from *hodo.param
Gabriel Niculescu
committed
fMaxScinPerPlane=fNPaddle[0];
for (Int_t i=1;i<fNPlanes;i++) {
Gabriel Niculescu
committed
fMaxScinPerPlane=(fMaxScinPerPlane > fNPaddle[i])? fMaxScinPerPlane : fNPaddle[i];
}
// need this for "padded arrays" i.e. 4x16 lists of parameters (GN)
fMaxHodoScin=fMaxScinPerPlane*fNPlanes;
if (fDebug>=1) cout <<"fMaxScinPerPlane = "<<fMaxScinPerPlane<<" fMaxHodoScin = "<<fMaxHodoScin<<endl;
fHodoVelLight=new Double_t [fMaxHodoScin];
fHodoPosSigma=new Double_t [fMaxHodoScin];
fHodoNegSigma=new Double_t [fMaxHodoScin];
fHodoPosMinPh=new Double_t [fMaxHodoScin];
fHodoNegMinPh=new Double_t [fMaxHodoScin];
fHodoPosPhcCoeff=new Double_t [fMaxHodoScin];
fHodoNegPhcCoeff=new Double_t [fMaxHodoScin];
fHodoPosTimeOffset=new Double_t [fMaxHodoScin];
fHodoNegTimeOffset=new Double_t [fMaxHodoScin];
fHodoPosPedLimit=new Int_t [fMaxHodoScin];
fHodoNegPedLimit=new Int_t [fMaxHodoScin];
fHodoPosInvAdcOffset=new Double_t [fMaxHodoScin];
fHodoNegInvAdcOffset=new Double_t [fMaxHodoScin];
fHodoPosInvAdcLinear=new Double_t [fMaxHodoScin];
fHodoNegInvAdcLinear=new Double_t [fMaxHodoScin];
fHodoPosInvAdcAdc=new Double_t [fMaxHodoScin];
fHodoNegInvAdcAdc=new Double_t [fMaxHodoScin];
Gabriel Niculescu
committed
prefix[1]='\0';
DBRequest list[]={
{"start_time_center", &fStartTimeCenter, kDouble},
{"start_time_slop", &fStartTimeSlop, kDouble},
{"scin_tdc_to_time", &fScinTdcToTime, kDouble},
{"scin_tdc_min", &fScinTdcMin, kDouble},
{"scin_tdc_max", &fScinTdcMax, kDouble},
{"tof_tolerance", &fTofTolerance, kDouble, 0, 1},
{"pathlength_central", &fPathLengthCentral, kDouble},
{"hodo_vel_light", &fHodoVelLight[0], kDouble, fMaxHodoScin},
{"hodo_pos_sigma", &fHodoPosSigma[0], kDouble, fMaxHodoScin},
{"hodo_neg_sigma", &fHodoNegSigma[0], kDouble, fMaxHodoScin},
{"hodo_pos_minph", &fHodoPosMinPh[0], kDouble, fMaxHodoScin},
{"hodo_neg_minph", &fHodoNegMinPh[0], kDouble, fMaxHodoScin},
{"hodo_pos_phc_coeff", &fHodoPosPhcCoeff[0], kDouble, fMaxHodoScin},
{"hodo_neg_phc_coeff", &fHodoNegPhcCoeff[0], kDouble, fMaxHodoScin},
{"hodo_pos_time_offset", &fHodoPosTimeOffset[0], kDouble, fMaxHodoScin},
{"hodo_neg_time_offset", &fHodoNegTimeOffset[0], kDouble, fMaxHodoScin},
{"hodo_pos_ped_limit", &fHodoPosPedLimit[0], kInt, fMaxHodoScin},
{"hodo_neg_ped_limit", &fHodoNegPedLimit[0], kInt, fMaxHodoScin},
{"tofusinginvadc", &fTofUsingInvAdc, kInt, 0, 1},
{0}
};
fTofUsingInvAdc = 0; // Default if not defined
Mark Jones
committed
fTofTolerance = 3.0; // Default if not defined
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
if (fTofUsingInvAdc) {
DBRequest list2[]={
{"hodo_pos_invadc_offset",&fHodoPosInvAdcOffset[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_offset",&fHodoNegInvAdcOffset[0],kDouble,fMaxHodoScin},
{"hodo_pos_invadc_linear",&fHodoPosInvAdcLinear[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_linear",&fHodoNegInvAdcLinear[0],kDouble,fMaxHodoScin},
{"hodo_pos_invadc_adc",&fHodoPosInvAdcAdc[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_adc",&fHodoNegInvAdcAdc[0],kDouble,fMaxHodoScin},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list2,prefix);
};
Gabriel Niculescu
committed
if (fDebug >=1) {
cout <<"******* Testing Hodoscope Parameter Reading ***\n";
cout<<"StarTimeCenter = "<<fStartTimeCenter<<endl;
cout<<"StartTimeSlop = "<<fStartTimeSlop<<endl;
cout <<"ScintTdcToTime = "<<fScinTdcToTime<<endl;
cout <<"TdcMin = "<<fScinTdcMin<<" TdcMax = "<<fScinTdcMax<<endl;
cout <<"TofTolerance = "<<fTofTolerance<<endl;
cout <<"*** VelLight ***\n";
for (Int_t i1=0;i1<fNPlanes;i1++) {
Gabriel Niculescu
committed
cout<<"Plane "<<i1<<endl;
for (UInt_t i2=0;i2<fMaxScinPerPlane;i2++) {
Gabriel Niculescu
committed
cout<<fHodoVelLight[GetScinIndex(i1,i2)]<<" ";
Gabriel Niculescu
committed
cout <<endl;
Gabriel Niculescu
committed
cout <<endl<<endl;
// check fHodoPosPhcCoeff
/*
cout <<"fHodoPosPhcCoeff = ";
for (int i1=0;i1<fMaxHodoScin;i1++) {
cout<<this->GetHodoPosPhcCoeff(i1)<<" ";
}
cout<<endl;
*/
}
//
if ((fTofTolerance > 0.5) && (fTofTolerance < 10000.)) {
cout << "USING "<<fTofTolerance<<" NSEC WINDOW FOR FP NO_TRACK CALCULATIONS.\n";
}
else {
fTofTolerance= 3.0;
cout << "*** USING DEFAULT 3 NSEC WINDOW FOR FP NO_TRACK CALCULATIONS!! ***\n";
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoscope::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
cout << "THcHodoscope::DefineVariables called " << GetName() << endl;
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
// Move these into THcHallCSpectrometer using track fTracks
// {"fpBeta", "Beta of the track", "fBeta"},
// {"fpBetaChisq", "Chi square of the track", "fBetaChisq"},
{"fpHitsTime", "Time at focal plane from all hits", "fFPTime"},
{"starttime", "Hodoscope Start Time", "fStartTime"},
{"hgoodstarttime", "Hodoscope Good Start Time", "fGoodStartTime"},
// { "nlthit", "Number of Left paddles TDC times", "fLTNhit" },
// { "nrthit", "Number of Right paddles TDC times", "fRTNhit" },
// { "nlahit", "Number of Left paddles ADCs amps", "fLANhit" },
// { "nrahit", "Number of Right paddles ADCs amps", "fRANhit" },
// { "lt", "TDC values left side", "fLT" },
// { "lt_c", "Corrected times left side", "fLT_c" },
// { "rt", "TDC values right side", "fRT" },
// { "rt_c", "Corrected times right side", "fRT_c" },
// { "la", "ADC values left side", "fLA" },
// { "la_p", "Corrected ADC values left side", "fLA_p" },
// { "la_c", "Corrected ADC values left side", "fLA_c" },
// { "ra", "ADC values right side", "fRA" },
// { "ra_p", "Corrected ADC values right side", "fRA_p" },
// { "ra_c", "Corrected ADC values right side", "fRA_c" },
// { "nthit", "Number of paddles with l&r TDCs", "fNhit" },
// { "t_pads", "Paddles with l&r coincidence TDCs", "fHitPad" },
// { "y_t", "y-position from timing (m)", "fYt" },
// { "y_adc", "y-position from amplitudes (m)", "fYa" },
// { "time", "Time of hit at plane (s)", "fTime" },
// { "dtime", "Est. uncertainty of time (s)", "fdTime" },
// { "dedx", "dEdX-like deposited in paddle", "fdEdX" },
// In hphysics will put the dedx for each plane from the best track into hist
// { "troff", "Trigger offset for paddles", "fTrigOff"},
// { "trn", "Number of tracks for hits", "GetNTracks()" },
// { "trx", "x-position of track in det plane", "fTrackProj.THaTrackProj.fX" },
// { "try", "y-position of track in det plane", "fTrackProj.THaTrackProj.fY" },
// { "trpath", "TRCS pathlen of track to det plane","fTrackProj.THaTrackProj.fPathl" },
// { "trdx", "track deviation in x-position (m)", "fTrackProj.THaTrackProj.fdX" },
// { "trpad", "paddle-hit associated with track", "fTrackProj.THaTrackProj.fChannel" },
{ 0 }
};
return DefineVarsFromList( vars, mode );
// return kOK;
}
//_____________________________________________________________________________
THcHodoscope::~THcHodoscope()
{
// Destructor. Remove variables from global list.
delete [] fPlaneCenter;
delete [] fPlaneSpacing;
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
void THcHodoscope::DeleteArrays()
{
// Delete member arrays. Used by destructor.
for(Int_t k = 0; k < fNPlanes; k++){
delete [] fNPaddle; fNPaddle = NULL;
delete [] fHodoVelLight; fHodoVelLight = NULL;
delete [] fHodoPosSigma; fHodoPosSigma = NULL;
delete [] fHodoNegSigma; fHodoNegSigma = NULL;
delete [] fHodoPosMinPh; fHodoPosMinPh = NULL;
delete [] fHodoNegMinPh; fHodoNegMinPh = NULL;
delete [] fHodoPosPhcCoeff; fHodoPosPhcCoeff = NULL;
delete [] fHodoNegPhcCoeff; fHodoNegPhcCoeff = NULL;
delete [] fHodoPosTimeOffset; fHodoPosTimeOffset = NULL;
delete [] fHodoNegTimeOffset; fHodoNegTimeOffset = NULL;
delete [] fHodoPosPedLimit; fHodoPosPedLimit = NULL;
delete [] fHodoNegPedLimit; fHodoNegPedLimit = NULL;
delete [] fHodoPosInvAdcOffset; fHodoPosInvAdcOffset = NULL;
delete [] fHodoNegInvAdcOffset; fHodoNegInvAdcOffset = NULL;
delete [] fHodoPosInvAdcLinear; fHodoPosInvAdcLinear = NULL;
delete [] fHodoNegInvAdcLinear; fHodoNegInvAdcLinear = NULL;
delete [] fHodoPosInvAdcAdc; fHodoPosInvAdcAdc = NULL;
delete [] fGoodPlaneTime; fGoodPlaneTime = NULL; // Ahmed
delete [] fNPlaneTime; fNPlaneTime = NULL; // Ahmed
delete [] fSumPlaneTime; fSumPlaneTime = NULL; // Ahmed
Gabriel Niculescu
committed
// delete [] fSpacing; fSpacing = NULL;
//delete [] fCenter; fCenter = NULL; // This 2D. What is correct way to delete?
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
// delete [] fRA_c; fRA_c = NULL;
// delete [] fRA_p; fRA_p = NULL;
// delete [] fRA; fRA = NULL;
// delete [] fLA_c; fLA_c = NULL;
// delete [] fLA_p; fLA_p = NULL;
// delete [] fLA; fLA = NULL;
// delete [] fRT_c; fRT_c = NULL;
// delete [] fRT; fRT = NULL;
// delete [] fLT_c; fLT_c = NULL;
// delete [] fLT; fLT = NULL;
// delete [] fRGain; fRGain = NULL;
// delete [] fLGain; fLGain = NULL;
// delete [] fRPed; fRPed = NULL;
// delete [] fLPed; fLPed = NULL;
// delete [] fROff; fROff = NULL;
// delete [] fLOff; fLOff = NULL;
// delete [] fTWalkPar; fTWalkPar = NULL;
// delete [] fTrigOff; fTrigOff = NULL;
// delete [] fHitPad; fHitPad = NULL;
// delete [] fTime; fTime = NULL;
// delete [] fdTime; fdTime = NULL;
// delete [] fYt; fYt = NULL;
// delete [] fYa; fYa = NULL;
}
//_____________________________________________________________________________
inline
void THcHodoscope::ClearEvent()
{
// Reset per-event data.
// for ( Int_t imaxhit = 0; imaxhit < MAXHODHITS; imaxhit++ ){
// fBeta[imaxhit] = 0.;
// fBetaChisq[imaxhit] = 0.;
// }
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlanes[ip]->Clear();
fPlaneCenter[ip]=0.;
fPlaneSpacing[ip]=0.;
fdEdX.clear();
fNScinHit.clear();
}
//_____________________________________________________________________________
Int_t THcHodoscope::Decode( const THaEvData& evdata )
{
ClearEvent();
// Get the Hall C style hitlist (fRawHitList) for this event
Stephen A. Wood
committed
Int_t nhits = DecodeToHitList(evdata);
//
// GN: print event number so we can cross-check with engine
// if (evdata.GetEvNum()>1000)
if(gHaCuts->Result("Pedestal_event")) {
Int_t nexthit = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
nexthit = fPlanes[ip]->AccumulatePedestals(fRawHitList, nexthit);
}
fAnalyzePedestals = 1; // Analyze pedestals first normal events
return(0);
}
if(fAnalyzePedestals) {
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlanes[ip]->CalculatePedestals();
}
fAnalyzePedestals = 0; // Don't analyze pedestals next event
}
// Let each plane get its hits
Int_t nexthit = 0;
fNfptimes=0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlaneCenter[ip] = fPlanes[ip]->GetPosCenter(0) + fPlanes[ip]->GetPosOffset();
fPlaneSpacing[ip] = fPlanes[ip]->GetSpacing();
// nexthit = fPlanes[ip]->ProcessHits(fRawHitList, nexthit);
// GN: select only events that have reasonable TDC values to start with
// as per the Engine h_strip_scin.f
nexthit = fPlanes[ip]->ProcessHits(fRawHitList,nexthit);
fPlanes[ip]->PulseHeightCorrection();
// GN: allow for more than one fptime per plane!!
for (Int_t i=0;i<fPlanes[ip]->GetNScinGoodHits();i++) {
if (TMath::Abs(fPlanes[ip]->GetFpTime(i)-fStartTimeCenter)<=fStartTimeSlop) {
fStartTime=fStartTime+fPlanes[ip]->GetFpTime(i);
// GN write stuff out so I can compare with engine
/// cout<<"hcana event= "<<evdata.GetEvNum()<<" fNfptimes= "<<fNfptimes<<" fptime= "<<fPlanes[ip]->GetFpTime(i)<<endl;
fNfptimes++;
}
}
if (fNfptimes>0) {
fStartTime=fStartTime/fNfptimes;
fGoodStartTime=kTRUE;
} else {
fGoodStartTime=kFALSE;
fStartTime=fStartTimeCenter;
}
for(Int_t ihit = 0; ihit < fNRawHits ; ihit++) {
THcRawHodoHit* hit = (THcRawHodoHit *) fRawHitList->At(ihit);
cout << ihit << " : " << hit->fPlane << ":" << hit->fCounter << " : "
<< hit->fADC_pos << " " << hit->fADC_neg << " " << hit->fTDC_pos
<< " " << hit->fTDC_neg << endl;
}
cout << endl;
Stephen A. Wood
committed
return nhits;
}
//_____________________________________________________________________________
Int_t THcHodoscope::ApplyCorrections( void )
{
return(0);
}
//_____________________________________________________________________________
Double_t THcHodoscope::TimeWalkCorrection(const Int_t& paddle,
const ESide side)
{
return(0.0);
}
//_____________________________________________________________________________
Int_t THcHodoscope::CoarseProcess( TClonesArray& tracks )
{
ApplyCorrections();
return 0;
}
//_____________________________________________________________________________
Int_t THcHodoscope::FineProcess( TClonesArray& tracks )
Int_t Ntracks = tracks.GetLast()+1; // Number of reconstructed tracks
Int_t fJMax, fMaxHit;
Int_t fRawIndex = -1;
Double_t fScinTrnsCoord, fScinLongCoord, fScinCenter, fSumfpTime;
Double_t fP, fXcoord, fYcoord, fTMin;
// -------------------------------------------------
Double_t hpartmass=0.00051099; // Fix it
// **MAIN LOOP: Loop over all tracks and get corrected time, tof, beta...
Double_t* fNPmtHit = new Double_t [Ntracks];
Double_t* fTimeAtFP = new Double_t [Ntracks];
for ( Int_t itrack = 0; itrack < Ntracks; itrack++ ) { // Line 133
fNPmtHit[itrack]=0;
fTimeAtFP[itrack]=0;
THaTrack* theTrack = dynamic_cast<THaTrack*>( tracks.At(itrack) );
if (!theTrack) return -1;
for ( Int_t ip = 0; ip < fNPlanes; ip++ ){
fNPlaneTime[ip] = 0;
fSumPlaneTime[ip] = 0.;
std::vector<Double_t> dedx_temp;
fdEdX.push_back(dedx_temp); // Create array of dedx per hit
Int_t fNfpTime = 0;
Double_t betaChisq = -3;
Double_t beta = 0;
// fTimeAtFP[itrack] = 0.;
fSumfpTime = 0.; // Line 138
fNScinHit.push_back(0);
Double_t betaP = fP/( TMath::Sqrt( fP * fP + hpartmass * hpartmass) );
//! Calculate all corrected hit times and histogram
//! This uses a copy of code below. Results are save in time_pos,neg
//! including the z-pos. correction assuming nominal value of betap
//! Code is currently hard-wired to look for a peak in the
//! range of 0 to 100 nsec, with a group of times that all
//! agree withing a time_tolerance of time_tolerance nsec. The normal
//! peak position appears to be around 35 nsec.
//! NOTE: if want to find farticles with beta different than
//! reference particle, need to make sure this is big enough
//! to accomodate difference in TOF for other particles
//! Default value in case user hasnt definedd something reasonable
// Line 162 to 171 is already done above in ReadDatabase
for (Int_t j=0; j<200; j++) { fTimeHist[j]=0; } // Line 176
// Loop over scintillator planes.
// In ENGINE, its loop over good scintillator hits.
fTOFCalc.clear();
Int_t ihhit = 0; // Hit # overall
for( Int_t ip = 0; ip < fNPlanes; ip++ ) {
// first loop over hits with in a single plane
fTOFPInfo.clear();
for ( Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
// iphit is hit # within a plane
fTOFPInfo.push_back(TOFPInfo());
// Can remove these as we will initialize in the constructor
fTOFPInfo[iphit].time_pos = -99.0;
fTOFPInfo[iphit].time_neg = -99.0;
fTOFPInfo[iphit].keep_pos = kFALSE;
fTOFPInfo[iphit].keep_neg = kFALSE;
fTOFPInfo[iphit].scin_pos_time = 0.0;
fTOFPInfo[iphit].scin_neg_time = 0.0;
scinPosADC = fPlanes[ip]->GetPosADC();
scinNegADC = fPlanes[ip]->GetNegADC();
scinPosTDC = fPlanes[ip]->GetPosTDC();
scinNegTDC = fPlanes[ip]->GetNegTDC();
Int_t paddle = ((THcSignalHit*)scinPosTDC->At(iphit))->GetPaddleNumber()-1;
fXcoord = theTrack->GetX() + theTrack->GetTheta() *
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 183
fYcoord = theTrack->GetY() + theTrack->GetPhi() *
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 184
if ( ( ip == 0 ) || ( ip == 2 ) ){ // !x plane. Line 185
fScinTrnsCoord = fXcoord;
fScinLongCoord = fYcoord;
}
else if ( ( ip == 1 ) || ( ip == 3 ) ){ // !y plane. Line 188
fScinTrnsCoord = fYcoord;
fScinLongCoord = fXcoord;
}
else { return -1; } // Line 195
fScinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
// Index to access the 2d arrays of paddle/scintillator properties
Int_t pindex = fNPlanes * paddle + ip;
if ( TMath::Abs( fScinCenter - fScinTrnsCoord ) <
( fPlanes[ip]->GetSize() * 0.5 + fPlanes[ip]->GetHodoSlop() ) ){ // Line 293
if ( ( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() > fScinTdcMin ) &&
( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() < fScinTdcMax ) ) { // Line 199
Double_t adcPh = ((THcSignalHit*)scinPosADC->At(iphit))->GetData();
fTOFPInfo[iphit].adcPh = adcPh;
Double_t path = fPlanes[ip]->GetPosLeft() - fScinLongCoord;
fTOFPInfo[iphit].path = path;
Double_t time = ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() * fScinTdcToTime;
time = time - fHodoPosPhcCoeff[pindex] *
TMath::Sqrt( TMath::Max( 0., ( ( adcPh / fHodoPosMinPh[pindex] ) - 1 ) ) );
time = time - ( path / fHodoVelLight[pindex] ) - ( fPlanes[ip]->GetZpos() +
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ) / ( 29.979 * betaP ) *
TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
fTOFPInfo[iphit].time = time;
fTOFPInfo[iphit].time_pos = time - fHodoPosTimeOffset[pindex];
for ( Int_t k = 0; k < 200; k++ ){ // Line 211
fTMin = 0.5 * ( k + 1 ) ;
if ( ( fTOFPInfo[iphit].time_pos > fTMin ) && ( fTOFPInfo[iphit].time_pos < ( fTMin + fTofTolerance ) ) )
}
} // TDC pos hit condition
if ( ( ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() > fScinTdcMin ) &&
( ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() < fScinTdcMax ) ) { // Line 218
Double_t adcPh = ((THcSignalHit*)scinNegADC->At(iphit))->GetData();
fTOFPInfo[iphit].adcPh = adcPh;
Double_t path = fScinLongCoord - fPlanes[ip]->GetPosRight();
fTOFPInfo[iphit].path = path;
Double_t time = ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() * fScinTdcToTime;
time =time - fHodoNegPhcCoeff[pindex] *
TMath::Sqrt( TMath::Max( 0., ( ( adcPh / fHodoNegMinPh[pindex] ) - 1 ) ) );
time = time - ( path / fHodoVelLight[pindex] ) - ( fPlanes[ip]->GetZpos() +
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ) / ( 29.979 * betaP ) *
TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
fTOFPInfo[iphit].time = time;
fTOFPInfo[iphit].time_neg = time - fHodoNegTimeOffset[pindex];
for ( Int_t k = 0; k < 200; k++ ){ // Line 230
fTMin = 0.5 * ( k + 1 );
if ( ( fTOFPInfo[iphit].time_neg > fTMin ) && ( fTOFPInfo[iphit].time_neg < ( fTMin + fTofTolerance ) ) )
} // condition for cenetr on a paddle
} // First loop over hits in a plane <---------
//-----------------------------------------------------------------------------------------------
//------------- First large loop over scintillator hits in a plane ends here --------------------
//-----------------------------------------------------------------------------------------------
fJMax = 0; // Line 240
fMaxHit = 0;
for ( Int_t k = 0; k < 200; k++ ){
if ( fTimeHist[k] > fMaxHit ){
fJMax = k+1;
fMaxHit = fTimeHist[k];
if ( fJMax >= 0 ){ // Line 248. Here I followed the code of THcSCintilaltorPlane::PulseHeightCorrection
fTMin = 0.5 * fJMax;
for( Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++) { // Loop over sinc. hits. in plane
if ( ( fTOFPInfo[iphit].time_pos > fTMin ) && ( fTOFPInfo[iphit].time_pos < ( fTMin + fTofTolerance ) ) ) {
fTOFPInfo[iphit].keep_pos=kTRUE;
if ( ( fTOFPInfo[iphit].time_neg > fTMin ) && ( fTOFPInfo[iphit].time_neg < ( fTMin + fTofTolerance ) ) ){
fTOFPInfo[iphit].keep_neg=kTRUE;
} // fJMax > 0 condition
//---------------------------------------------------------------------------------------------
// ---------------------- Scond loop over scint. hits in a plane ------------------------------
//---------------------------------------------------------------------------------------------
for ( Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
fTOFCalc.push_back(TOFCalc());
// Do we set back to false for each track, or just once per event?
fTOFCalc[ihhit].good_scin_time = kFALSE;
// These need a track index too to calculate efficiencies
fTOFCalc[ihhit].good_tdc_pos = kFALSE;
fTOFCalc[ihhit].good_tdc_neg = kFALSE;
// ihhit ++;
// fRawIndex ++; // Is fRawIndex ever different from ihhit
fRawIndex = ihhit;
Int_t paddle = ((THcSignalHit*)scinPosTDC->At(iphit))->GetPaddleNumber()-1;
fTOFCalc[ihhit].hit_paddle = paddle;
fTOFCalc[fRawIndex].good_raw_pad = paddle;
fXcoord = theTrack->GetX() + theTrack->GetTheta() *
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 277
fYcoord = theTrack->GetY() + theTrack->GetPhi() *
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 278
if ( ( ip == 0 ) || ( ip == 2 ) ){ // !x plane. Line 278
fScinTrnsCoord = fXcoord;
fScinLongCoord = fYcoord;
}
else if ( ( ip == 1 ) || ( ip == 3 ) ){ // !y plane. Line 281
fScinTrnsCoord = fYcoord;
fScinLongCoord = fXcoord;
}
else { return -1; } // Line 288
fScinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
Int_t pindex = fNPlanes * paddle + ip;
// ** Check if scin is on track
if ( TMath::Abs( fScinCenter - fScinTrnsCoord ) >
( fPlanes[ip]->GetSize() * 0.5 + fPlanes[ip]->GetHodoSlop() ) ){ // Line 293
// scinOnTrack[itrack][iphit] = kFALSE;
// scinOnTrack[itrack][iphit] = kTRUE;
if ( ( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() > fScinTdcMin ) &&
( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() < fScinTdcMax ) &&
( fTOFPInfo[iphit].keep_pos ) ) { // 301
// ** Calculate time for each tube with a good tdc. 'pos' side first.
fTOFCalc[ihhit].good_tdc_pos = kTRUE;
Double_t adcPh = ((THcSignalHit*)scinPosADC->At(iphit))->GetData();
fTOFPInfo[iphit].adcPh = adcPh;
Double_t path = fPlanes[ip]->GetPosLeft() - fScinLongCoord;
fTOFPInfo[iphit].path = path;
// * Convert TDC value to time, do pulse height correction, correction for
// * propogation of light thru scintillator, and offset.
Double_t time = ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() * fScinTdcToTime;
time = time - ( fHodoPosPhcCoeff[pindex] * TMath::Sqrt( TMath::Max( 0. ,
( ( adcPh / fHodoPosMinPh[pindex] ) - 1 ) ) ) );
time = time - ( path / fHodoVelLight[pindex] );
fTOFPInfo[iphit].time = time;
fTOFPInfo[iphit].scin_pos_time = time - fHodoPosTimeOffset[pindex];