Newer
Older
} // time at focal plane condition
} // on track else condition
// ** See if there are any good time measurements in the plane.
if ( fTOFCalc[ihhit].good_scin_time ){
fGoodPlaneTime[ip] = kTRUE;
fTOFCalc[ihhit].dedx = fdEdX[itrack][fNScinHit[itrack]-1];
} else {
fTOFCalc[ihhit].dedx = 0.0;
// Can this be done after looping over hits and planes?
if ( fGoodPlaneTime[2] ) theTrack->SetGoodPlane3( 1 );
if ( !fGoodPlaneTime[2] ) theTrack->SetGoodPlane3( 0 );
if ( fGoodPlaneTime[3] ) theTrack->SetGoodPlane4( 1 );
if ( !fGoodPlaneTime[3] ) theTrack->SetGoodPlane4( 0 );
ihhit ++;
} // Second loop over hits of a scintillator plane ends here
} // Loop over scintillator planes ends here
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// * * Fit beta if there are enough time measurements (one upper, one lower)
// From h_tof_fit
if ( ( ( fGoodPlaneTime[0] ) || ( fGoodPlaneTime[1] ) ) &&
( ( fGoodPlaneTime[2] ) || ( fGoodPlaneTime[3] ) ) ){
Double_t sumW = 0.;
Double_t sumT = 0.;
Double_t sumZ = 0.;
Double_t sumZZ = 0.;
Double_t sumTZ = 0.;
if (!fPlanes[ip])
return -1;
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
if ( fTOFCalc[ihhit].good_scin_time ) {
Double_t scinWeight = 1 / ( fTOFCalc[ihhit].scin_sigma * fTOFCalc[ihhit].scin_sigma );
Double_t zPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ihhit].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
sumW += scinWeight;
sumT += scinWeight * fTOFCalc[ihhit].scin_time;
sumZ += scinWeight * zPosition;
sumZZ += scinWeight * ( zPosition * zPosition );
sumTZ += scinWeight * zPosition * fTOFCalc[ihhit].scin_time;
} // condition of good scin time
ihhit ++;
} // loop over hits of plane
} // loop over planes
Double_t tmp = sumW * sumZZ - sumZ * sumZ ;
Double_t t0 = ( sumT * sumZZ - sumZ * sumTZ ) / tmp ;
Double_t tmpDenom = sumW * sumTZ - sumZ * sumT;
if ( TMath::Abs( tmpDenom ) > ( 1 / 10000000000.0 ) ) {
ihhit = 0;
for (Int_t ip = 0; ip < fNPlanes; ip++ ){ // Loop over planes
if (!fPlanes[ip])
return -1;
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){ // Loop over hits of a plane
if ( fTOFCalc[ihhit].good_scin_time ){
Double_t zPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ihhit].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
Double_t timeDif = ( fTOFCalc[ihhit].scin_time - t0 );
betaChiSq += ( ( zPosition / beta - timeDif ) *
( zPosition / beta - timeDif ) ) /
( fTOFCalc[ihhit].scin_sigma * fTOFCalc[ihhit].scin_sigma );
} // condition for good scin time
ihhit++;
} // loop over hits of a plane
} // loop over planes
Double_t pathNorm = TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
} // condition for fTmpDenom
} // else condition for fTmpDenom
if ( nFPTime != 0 ){
timeAtFP[itrack] = ( sumFPTime / nFPTime );
//
// ---------------------------------------------------------------------------
Double_t FPTimeSum=0.0;
Int_t nFPTimeSum=0;
if ( fNPlaneTime[ip] != 0 ){
fFPTime[ip] = ( fSumPlaneTime[ip] / fNPlaneTime[ip] );
FPTimeSum += fSumPlaneTime[ip];
nFPTimeSum += fNPlaneTime[ip];
fFPTime[ip] = 1000. * ( ip + 1 );
Double_t dedx=0.0;
for(UInt_t ih=0;ih<fTOFCalc.size();ih++) {
if(fTOFCalc[ih].good_scin_time) {
dedx = fTOFCalc[ih].dedx;
break;
}
}
theTrack->SetDedx(dedx);
theTrack->SetFPTime(fptime);
theTrack->SetBeta(beta);
theTrack->SetBetaChi2( betaChiSq );
theTrack->SetNPMT(nPmtHit[itrack]);
theTrack->SetFPTime( timeAtFP[itrack]);
} // Main loop over tracks ends here.
} // If condition for at least one track
//-----------------------------------------------------------------------
//
// Trnslation of h_track_tests.f file for tracking efficiency
//
//-----------------------------------------------------------------------
//************************now look at some hodoscope tests
// *second, we move the scintillators. here we use scintillator cuts to see
// *if a track should have been found.
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
std::vector<Double_t> scin_temp;
fScinHitPaddle.push_back(scin_temp); // Create array of hits per plane
for (UInt_t ipaddle = 0; ipaddle < fNPaddle[0]; ipaddle++ ){
fScinHitPaddle[ip].push_back(0.0);
fScinHitPaddle[ip][ipaddle] = 0.0;
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
if (!fPlanes[ip])
return -1;
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
// TClonesArray* scinPosTDC = fPlanes[ip]->GetPosTDC();
// TClonesArray* scinNegTDC = fPlanes[ip]->GetNegTDC();
fNScinHits[ip] = fPlanes[ip]->GetNScinHits();
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
Int_t paddle = ((THcHodoHit*)hodoHits->At(iphit))->GetPaddleNumber()-1;
fScinHitPaddle[ip][paddle] = 1;
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
}
}
// *next, look for clusters of hits in a scin plane. a cluster is a group of
// *adjacent scintillator hits separated by a non-firing scintillator.
// *Wwe count the number of three adjacent scintillators too. (A signle track
// *shouldn't fire three adjacent scintillators.
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
// Planes ip = 0 = 1X
// Planes ip = 2 = 2X
if (!fPlanes[ip]) return -1;
fNClust.push_back(0);
fThreeScin.push_back(0);
}
// *look for clusters in x planes... (16 scins) !this assume both x planes have same
// *number of scintillators.
Int_t icount;
for (Int_t ip = 0; ip < 3; ip +=2 ) {
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
} // Loop over paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 2; ipaddle++ ){
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
} // Loop over X plane
// *look for clusters in y planes... (10 scins) !this assume both y planes have same
// *number of scintillators.
for (Int_t ip = 1; ip < 4; ip +=2 ) {
// Planes ip = 1 = 1Y
// Planes ip = 3 = 2Y
if (!fPlanes[ip]) return -1;
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
} // Loop over Y paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 2; ipaddle++ ){
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over Y paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
}// Loop over Y planes
// *now put some "tracking" like cuts on the hslopes, based only on scins...
// *by "slope" here, I mean the difference in the position of scin hits in two
// *like-planes. For example, a track that those great straight through will
// *have a slope of zero. If it moves one scin over from s1x to s2x it has an
// *x-slope of 1... I pick the minimum slope if there are multiple scin hits.
Double_t bestXpScin = 100.0;
Double_t bestYpScin = 100.0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0]; ipaddle++ ){
for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[0]; ipaddle2++ ){
if ( ( fScinHitPaddle[0][ipaddle] == 1 ) &&
( fScinHitPaddle[2][ipaddle2] == 1 ) ){
Double_t slope = TMath::Abs(ipaddle - ipaddle2);
if ( slope < bestXpScin ) {
bestXpScin = slope;
} // Second loop over X paddles
} // First loop over X paddles
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1]; ipaddle++ ){
for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[1]; ipaddle2++ ){
if ( ( fScinHitPaddle[1][ipaddle] == 1 ) &&
( fScinHitPaddle[3][ipaddle2] == 1 ) ){
Double_t slope = TMath::Abs(ipaddle - ipaddle2);
if ( slope < bestYpScin ) {
bestYpScin = slope;
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
} // Second loop over Y paddles
} // First loop over Y paddles
// *next we mask out the edge scintillators, and look at triggers that happened
// *at the center of the acceptance. To change which scins are in the mask
// *change the values of h*loscin and h*hiscin in htracking.param
// fGoodScinHits = 0;
for (Int_t ifidx = fxLoScin[0]; ifidx < (Int_t) fxHiScin[0]; ifidx ++ ){
fGoodScinHitsX.push_back(0);
}
// *first x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[0]-1; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){
fHitSweet1X = 1;
fSweet1XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
for (Int_t ifidx = fxHiScin[0]; ifidx < (Int_t) fNPaddle[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
// *second x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[1]-1; ifidx < fxHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){
fHitSweet2X = 1;
fSweet2XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
for (Int_t ifidx = fxHiScin[1]; ifidx < (Int_t) fNPaddle[2]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
// *first y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[0]-1; ifidx < fyHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){
fHitSweet1Y = 1;
fSweet1YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
for (Int_t ifidx = fyHiScin[0]; ifidx < (Int_t) fNPaddle[1]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
// *second y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[1]-1; ifidx < fyHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){
fHitSweet2Y = 1;
fSweet2YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
for (Int_t ifidx = fyHiScin[1]; ifidx < (Int_t) fNPaddle[3]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
fTestSum = fHitSweet1X + fHitSweet2X + fHitSweet1Y + fHitSweet2Y;
// * now define a 3/4 or 4/4 trigger of only good scintillators the value
// * is specified in htracking.param...
if ( fTestSum > fTrackEffTestNScinPlanes ){
fGoodScinHits = 1;
for (Int_t ifidx = fxLoScin[0]; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fSweet1XScin == ifidx )
fGoodScinHitsX[ifidx] = 1;
}
}
// * require front/back hodoscopes be close to each other
if ( ( fGoodScinHits == 1 ) && ( fTrackEffTestNScinPlanes == 4 ) ){
if ( TMath::Abs( fSweet1XScin - fSweet2XScin ) > 3 )
fGoodScinHits = 0;
if ( TMath::Abs( fSweet1YScin - fSweet2YScin ) > 2 )
fGoodScinHits = 0;
}
if ( !fChern || !fShower ) {
return 0;
}
if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
( fChern->GetCerNPE() > fNCerNPE ) )
fScinShould = 1;
if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
( fChern->GetCerNPE() > fNCerNPE ) && ( tracks.GetLast() + 1 > 0 ) ) {
fScinDid = 1;
Gabriel Niculescu
committed
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nPlane, Int_t nPaddle ) {
// GN: Return the index of a scintillator given the plane # and the paddle #
// This assumes that both planes and
// paddles start counting from 0!
// Result also counts from 0.
return fNPlanes*nPaddle+nPlane;
Gabriel Niculescu
committed
}
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nSide, Int_t nPlane, Int_t nPaddle ) {
return nSide*fMaxHodoScin+fNPlanes*nPaddle+nPlane-1;
}
//_____________________________________________________________________________
Double_t THcHodoscope::GetPathLengthCentral() {
return fPathLengthCentral;
}
ClassImp(THcHodoscope)
////////////////////////////////////////////////////////////////////////////////