Newer
Older
fTOFCalc[ihhit].pindex = ip;
// ihhit ++;
// fRawIndex ++; // Is fRawIndex ever different from ihhit
Int_t paddle = ((THcHodoHit*)hodoHits->At(iphit))->GetPaddleNumber()-1;
Double_t xHitCoord = theTrack->GetX() + theTrack->GetTheta() *
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 277
Double_t yHitCoord = theTrack->GetY() + theTrack->GetPhi() *
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 278
if ( ( ip == 0 ) || ( ip == 2 ) ){ // !x plane. Line 278
scinTrnsCoord = xHitCoord;
scinLongCoord = yHitCoord;
}
else if ( ( ip == 1 ) || ( ip == 3 ) ){ // !y plane. Line 281
scinTrnsCoord = yHitCoord;
scinLongCoord = xHitCoord;
}
else { return -1; } // Line 288
Double_t scinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
// ** Check if scin is on track
( fPlanes[ip]->GetSize() * 0.5 + fPlanes[ip]->GetHodoSlop() ) ){ // Line 293
if ( fTOFPInfo[iphit].keep_pos ) { // 301
// ** Calculate time for each tube with a good tdc. 'pos' side first.
fTOFCalc[ihhit].good_tdc_pos = kTRUE;
fGoodFlags[itrack][ip][iphit].goodTdcPos = kTRUE;
Double_t path = fPlanes[ip]->GetPosLeft() - scinLongCoord;
// * Convert TDC value to time, do pulse height correction, correction for
// * propogation of light thru scintillator, and offset.
Double_t time = ((THcHodoHit*)hodoHits->At(iphit))->GetPosCorrectedTime();
time = time - ( path / fHodoVelLight[fPIndex] );
fTOFPInfo[iphit].scin_pos_time = time;
} // check for good pos TDC condition
if ( fTOFPInfo[iphit].keep_neg ) { //
// ** Calculate time for each tube with a good tdc. 'pos' side first.
fTOFCalc[ihhit].good_tdc_neg = kTRUE;
fGoodFlags[itrack][ip][iphit].goodTdcNeg = kTRUE;
Double_t path = scinLongCoord - fPlanes[ip]->GetPosRight();
// * Convert TDC value to time, do pulse height correction, correction for
// * propogation of light thru scintillator, and offset.
Double_t time = ((THcHodoHit*)hodoHits->At(iphit))->GetNegCorrectedTime();
time = time - ( path / fHodoVelLight[fPIndex] );
fTOFPInfo[iphit].scin_neg_time = time;
} // check for good neg TDC condition
// ** Calculate ave time for scin and error.
if ( fTOFCalc[ihhit].good_tdc_pos ){
if ( fTOFCalc[ihhit].good_tdc_neg ){
fTOFCalc[ihhit].scin_time = ( fTOFPInfo[iphit].scin_pos_time +
fTOFPInfo[iphit].scin_neg_time ) / 2.;
fTOFCalc[ihhit].scin_sigma = TMath::Sqrt( fHodoPosSigma[fPIndex] * fHodoPosSigma[fPIndex] +
fHodoNegSigma[fPIndex] * fHodoNegSigma[fPIndex] )/2.;
fTOFCalc[ihhit].good_scin_time = kTRUE;
fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
fTOFCalc[ihhit].scin_time = fTOFPInfo[iphit].scin_pos_time;
fTOFCalc[ihhit].scin_sigma = fHodoPosSigma[fPIndex];
fTOFCalc[ihhit].good_scin_time = kTRUE;
fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
if ( fTOFCalc[ihhit].good_tdc_neg ){
fTOFCalc[ihhit].scin_time = fTOFPInfo[iphit].scin_neg_time;
fTOFCalc[ihhit].scin_sigma = fHodoNegSigma[fPIndex];
fTOFCalc[ihhit].good_scin_time = kTRUE;
fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
} // In h_tof.f this includes the following if condition for time at focal plane
// // because it is written in FORTRAN code
// c Get time at focal plane
if ( fTOFCalc[ihhit].good_scin_time ){
// scin_time_fp doesn't need to be an array
Double_t scin_time_fp = fTOFCalc[ihhit].scin_time -
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ) /
TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
sumFPTime = sumFPTime + scin_time_fp;
nFPTime ++;
fSumPlaneTime[ip] = fSumPlaneTime[ip] + scin_time_fp;
fNPlaneTime[ip] ++;
fNScinHit[itrack] ++;
if ( ( fTOFCalc[ihhit].good_tdc_pos ) && ( fTOFCalc[ihhit].good_tdc_neg ) ){
fdEdX[itrack].push_back(0.0);
// --------------------------------------------------------------------------------------------
if ( fTOFCalc[ihhit].good_tdc_pos ){
if ( fTOFCalc[ihhit].good_tdc_neg ){
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Sqrt( TMath::Max( 0., ((THcHodoHit*)hodoHits->At(iphit))->GetPosADC() *
((THcHodoHit*)hodoHits->At(iphit))->GetNegADC() ) );
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Max( 0., ((THcHodoHit*)hodoHits->At(iphit))->GetPosADC() );
if ( fTOFCalc[ihhit].good_tdc_neg ){
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Max( 0., ((THcHodoHit*)hodoHits->At(iphit))->GetNegADC() );
fdEdX[itrack][fNScinHit[itrack]-1]=0.0;
// --------------------------------------------------------------------------------------------
} // time at focal plane condition
} // on track else condition
// ** See if there are any good time measurements in the plane.
if ( fTOFCalc[ihhit].good_scin_time ){
fGoodPlaneTime[ip] = kTRUE;
fTOFCalc[ihhit].dedx = fdEdX[itrack][fNScinHit[itrack]-1];
} else {
fTOFCalc[ihhit].dedx = 0.0;
// Can this be done after looping over hits and planes?
if ( fGoodPlaneTime[2] ) theTrack->SetGoodPlane3( 1 );
if ( !fGoodPlaneTime[2] ) theTrack->SetGoodPlane3( 0 );
if ( fGoodPlaneTime[3] ) theTrack->SetGoodPlane4( 1 );
if ( !fGoodPlaneTime[3] ) theTrack->SetGoodPlane4( 0 );
ihhit ++;
} // Second loop over hits of a scintillator plane ends here
} // Loop over scintillator planes ends here
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// * * Fit beta if there are enough time measurements (one upper, one lower)
// From h_tof_fit
if ( ( ( fGoodPlaneTime[0] ) || ( fGoodPlaneTime[1] ) ) &&
( ( fGoodPlaneTime[2] ) || ( fGoodPlaneTime[3] ) ) ){
Double_t sumW = 0.;
Double_t sumT = 0.;
Double_t sumZ = 0.;
Double_t sumZZ = 0.;
Double_t sumTZ = 0.;
if (!fPlanes[ip])
return -1;
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
if ( fTOFCalc[ihhit].good_scin_time ) {
Double_t scinWeight = 1 / ( fTOFCalc[ihhit].scin_sigma * fTOFCalc[ihhit].scin_sigma );
Double_t zPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ihhit].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
sumW += scinWeight;
sumT += scinWeight * fTOFCalc[ihhit].scin_time;
sumZ += scinWeight * zPosition;
sumZZ += scinWeight * ( zPosition * zPosition );
sumTZ += scinWeight * zPosition * fTOFCalc[ihhit].scin_time;
} // condition of good scin time
ihhit ++;
} // loop over hits of plane
} // loop over planes
Double_t tmp = sumW * sumZZ - sumZ * sumZ ;
Double_t t0 = ( sumT * sumZZ - sumZ * sumTZ ) / tmp ;
Double_t tmpDenom = sumW * sumTZ - sumZ * sumT;
if ( TMath::Abs( tmpDenom ) > ( 1 / 10000000000.0 ) ) {
ihhit = 0;
for (Int_t ip = 0; ip < fNPlanes; ip++ ){ // Loop over planes
if (!fPlanes[ip])
return -1;
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){ // Loop over hits of a plane
if ( fTOFCalc[ihhit].good_scin_time ){
Double_t zPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ihhit].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
Double_t timeDif = ( fTOFCalc[ihhit].scin_time - t0 );
betaChiSq += ( ( zPosition / beta - timeDif ) *
( zPosition / beta - timeDif ) ) /
( fTOFCalc[ihhit].scin_sigma * fTOFCalc[ihhit].scin_sigma );
} // condition for good scin time
ihhit++;
} // loop over hits of a plane
} // loop over planes
Double_t pathNorm = TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
} // condition for fTmpDenom
} // else condition for fTmpDenom
if ( nFPTime != 0 ){
timeAtFP[itrack] = ( sumFPTime / nFPTime );
//
// ---------------------------------------------------------------------------
Double_t FPTimeSum=0.0;
Int_t nFPTimeSum=0;
if ( fNPlaneTime[ip] != 0 ){
fFPTime[ip] = ( fSumPlaneTime[ip] / fNPlaneTime[ip] );
FPTimeSum += fSumPlaneTime[ip];
nFPTimeSum += fNPlaneTime[ip];
fFPTime[ip] = 1000. * ( ip + 1 );
Double_t dedx=0.0;
for(UInt_t ih=0;ih<fTOFCalc.size();ih++) {
if(fTOFCalc[ih].good_scin_time) {
dedx = fTOFCalc[ih].dedx;
break;
}
}
theTrack->SetDedx(dedx);
theTrack->SetFPTime(fptime);
theTrack->SetBeta(beta);
theTrack->SetBetaChi2( betaChiSq );
theTrack->SetNPMT(nPmtHit[itrack]);
theTrack->SetFPTime( timeAtFP[itrack]);
} // Main loop over tracks ends here.
} // If condition for at least one track
//-----------------------------------------------------------------------
//
// Trnslation of h_track_tests.f file for tracking efficiency
//
//-----------------------------------------------------------------------
//************************now look at some hodoscope tests
// *second, we move the scintillators. here we use scintillator cuts to see
// *if a track should have been found.
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
std::vector<Double_t> scin_temp;
fScinHitPaddle.push_back(scin_temp); // Create array of hits per plane
for (UInt_t ipaddle = 0; ipaddle < fNPaddle[0]; ipaddle++ ){
fScinHitPaddle[ip].push_back(0.0);
fScinHitPaddle[ip][ipaddle] = 0.0;
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
if (!fPlanes[ip])
return -1;
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
// TClonesArray* scinPosTDC = fPlanes[ip]->GetPosTDC();
// TClonesArray* scinNegTDC = fPlanes[ip]->GetNegTDC();
fNScinHits[ip] = fPlanes[ip]->GetNScinHits();
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
Int_t paddle = ((THcHodoHit*)hodoHits->At(iphit))->GetPaddleNumber()-1;
fScinHitPaddle[ip][paddle] = 1;
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
}
}
// *next, look for clusters of hits in a scin plane. a cluster is a group of
// *adjacent scintillator hits separated by a non-firing scintillator.
// *Wwe count the number of three adjacent scintillators too. (A signle track
// *shouldn't fire three adjacent scintillators.
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
// Planes ip = 0 = 1X
// Planes ip = 2 = 2X
if (!fPlanes[ip]) return -1;
fNClust.push_back(0);
fThreeScin.push_back(0);
}
// *look for clusters in x planes... (16 scins) !this assume both x planes have same
// *number of scintillators.
Int_t icount;
for (Int_t ip = 0; ip < 3; ip +=2 ) {
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
} // Loop over paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 2; ipaddle++ ){
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
} // Loop over X plane
// *look for clusters in y planes... (10 scins) !this assume both y planes have same
// *number of scintillators.
for (Int_t ip = 1; ip < 4; ip +=2 ) {
// Planes ip = 1 = 1Y
// Planes ip = 3 = 2Y
if (!fPlanes[ip]) return -1;
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
} // Loop over Y paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 2; ipaddle++ ){
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over Y paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
}// Loop over Y planes
// *now put some "tracking" like cuts on the hslopes, based only on scins...
// *by "slope" here, I mean the difference in the position of scin hits in two
// *like-planes. For example, a track that those great straight through will
// *have a slope of zero. If it moves one scin over from s1x to s2x it has an
// *x-slope of 1... I pick the minimum slope if there are multiple scin hits.
Double_t bestXpScin = 100.0;
Double_t bestYpScin = 100.0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0]; ipaddle++ ){
for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[0]; ipaddle2++ ){
if ( ( fScinHitPaddle[0][ipaddle] == 1 ) &&
( fScinHitPaddle[2][ipaddle2] == 1 ) ){
Double_t slope = TMath::Abs(ipaddle - ipaddle2);
if ( slope < bestXpScin ) {
bestXpScin = slope;
} // Second loop over X paddles
} // First loop over X paddles
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1]; ipaddle++ ){
for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[1]; ipaddle2++ ){
if ( ( fScinHitPaddle[1][ipaddle] == 1 ) &&
( fScinHitPaddle[3][ipaddle2] == 1 ) ){
Double_t slope = TMath::Abs(ipaddle - ipaddle2);
if ( slope < bestYpScin ) {
bestYpScin = slope;
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
} // Second loop over Y paddles
} // First loop over Y paddles
// *next we mask out the edge scintillators, and look at triggers that happened
// *at the center of the acceptance. To change which scins are in the mask
// *change the values of h*loscin and h*hiscin in htracking.param
// fGoodScinHits = 0;
for (Int_t ifidx = fxLoScin[0]; ifidx < (Int_t) fxHiScin[0]; ifidx ++ ){
fGoodScinHitsX.push_back(0);
}
// *first x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[0]-1; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){
fHitSweet1X = 1;
fSweet1XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
for (Int_t ifidx = fxHiScin[0]; ifidx < (Int_t) fNPaddle[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
// *second x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[1]-1; ifidx < fxHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){
fHitSweet2X = 1;
fSweet2XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
for (Int_t ifidx = fxHiScin[1]; ifidx < (Int_t) fNPaddle[2]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
// *first y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[0]-1; ifidx < fyHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){
fHitSweet1Y = 1;
fSweet1YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
for (Int_t ifidx = fyHiScin[0]; ifidx < (Int_t) fNPaddle[1]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
// *second y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[1]-1; ifidx < fyHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){
fHitSweet2Y = 1;
fSweet2YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
for (Int_t ifidx = fyHiScin[1]; ifidx < (Int_t) fNPaddle[3]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
fTestSum = fHitSweet1X + fHitSweet2X + fHitSweet1Y + fHitSweet2Y;
// * now define a 3/4 or 4/4 trigger of only good scintillators the value
// * is specified in htracking.param...
if ( fTestSum > fTrackEffTestNScinPlanes ){
fGoodScinHits = 1;
for (Int_t ifidx = fxLoScin[0]; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fSweet1XScin == ifidx )
fGoodScinHitsX[ifidx] = 1;
}
}
// * require front/back hodoscopes be close to each other
if ( ( fGoodScinHits == 1 ) && ( fTrackEffTestNScinPlanes == 4 ) ){
if ( TMath::Abs( fSweet1XScin - fSweet2XScin ) > 3 )
fGoodScinHits = 0;
if ( TMath::Abs( fSweet1YScin - fSweet2YScin ) > 2 )
fGoodScinHits = 0;
}
if ( !fChern || !fShower ) {
return 0;
}
if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
( fChern->GetCerNPE() > fNCerNPE ) )
fScinShould = 1;
if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
( fChern->GetCerNPE() > fNCerNPE ) && ( tracks.GetLast() + 1 > 0 ) ) {
fScinDid = 1;
Gabriel Niculescu
committed
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nPlane, Int_t nPaddle ) {
// GN: Return the index of a scintillator given the plane # and the paddle #
// This assumes that both planes and
// paddles start counting from 0!
// Result also counts from 0.
return fNPlanes*nPaddle+nPlane;
Gabriel Niculescu
committed
}
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nSide, Int_t nPlane, Int_t nPaddle ) {
return nSide*fMaxHodoScin+fNPlanes*nPaddle+nPlane-1;
}
//_____________________________________________________________________________
Double_t THcHodoscope::GetPathLengthCentral() {
return fPathLengthCentral;
}
ClassImp(THcHodoscope)
////////////////////////////////////////////////////////////////////////////////