Newer
Older
///////////////////////////////////////////////////////////////////////////////
// //
// THcHodoscope //
// //
// Class for a generic hodoscope consisting of multiple //
// planes with multiple paddles with phototubes on both ends. //
// This differs from Hall A scintillator class in that it is the whole //
// hodoscope array, not just one plane. //
// //
// Date July 8 2014: //
// Zafr Ahmed //
// Beta and chis square are calculated for each of the hodoscope track. //
// Two new variables are added. fBeta and fBetaChisq //
// //
///////////////////////////////////////////////////////////////////////////////
#include "THcCherenkov.h"
#include "THcHallCSpectrometer.h"
#include "THcHitList.h"
#include "THcRawShowerHit.h"
#include "TClass.h"
#include "math.h"
#include "THaSubDetector.h"
#include "THcHodoscope.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "THcDetectorMap.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
Gabriel Niculescu
committed
#include <fstream>
using namespace std;
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( const char* name, const char* description,
THaApparatus* apparatus ) :
THaNonTrackingDetector(name,description,apparatus)
{
// Constructor
//fTrackProj = new TClonesArray( "THaTrackProj", 5 );
// Construct the planes
Stephen A. Wood
committed
fNPlanes = 0; // No planes until we make them
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( ) :
THaNonTrackingDetector()
{
// Constructor
}
//_____________________________________________________________________________
void THcHodoscope::Setup(const char* name, const char* description)
{
// static const char* const here = "Setup()";
// static const char* const message =
// "Must construct %s detector with valid name! Object construction failed.";
Stephen A. Wood
committed
cout << "In THcHodoscope::Setup()" << endl;
// Base class constructor failed?
if( IsZombie()) return;
fDebug = 1; // Keep this at one while we're working on the code
char prefix[2];
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
DBRequest listextra[]={
{"hodo_num_planes", &fNPlanes, kInt},
{"hodo_plane_names",&planenamelist, kString},
//fNPlanes = 4; // Default if not defined
gHcParms->LoadParmValues((DBRequest*)&listextra,prefix);
cout << "Plane Name List : " << planenamelist << endl;
vector<string> plane_names = vsplit(planenamelist);
// Plane names
if(plane_names.size() != (UInt_t) fNPlanes) {
cout << "ERROR: Number of planes " << fNPlanes << " doesn't agree with number of plane names " << plane_names.size() << endl;
// Should quit. Is there an official way to quit?
}
fPlaneNames = new char* [fNPlanes];
for(Int_t i=0;i<fNPlanes;i++) {
fPlaneNames[i] = new char[plane_names[i].length()+1];
strcpy(fPlaneNames[i], plane_names[i].c_str());
}
/* fPlaneNames = new char* [fNPlanes];
for(Int_t i=0;i<fNPlanes;i++) {fPlaneNames[i] = new char[3];}
// Should get the plane names from parameters.
Gabriel Niculescu
committed
// could try this: grep _zpos PARAM/hhodo.pos | sed 's/\_/\ /g' | awk '{print $2}'
strcpy(fPlaneNames[0],"1x");
strcpy(fPlaneNames[1],"1y");
strcpy(fPlaneNames[2],"2x");
strcpy(fPlaneNames[3],"2y");
// Probably shouldn't assume that description is defined
char* desc = new char[strlen(description)+100];
fPlanes = new THcScintillatorPlane* [fNPlanes];
for(Int_t i=0;i < fNPlanes;i++) {
strcpy(desc, description);
strcat(desc, " Plane ");
strcat(desc, fPlaneNames[i]);
fPlanes[i] = new THcScintillatorPlane(fPlaneNames[i], desc, i+1,fNPlanes,this); // Number planes starting from zero!!
cout << "Created Scintillator Plane " << fPlaneNames[i] << ", " << desc << endl;
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// --------------- To get energy from THcShower ----------------------
const char* shower_detector_name = "cal";
// THaApparatus* app;
THcHallCSpectrometer *app = dynamic_cast<THcHallCSpectrometer*>(GetApparatus());
THaDetector* det = app->GetDetector( shower_detector_name );
if( dynamic_cast<THcShower*>(det) ) {
fShower = dynamic_cast<THcShower*>(det);
}
else if( !dynamic_cast<THcShower*>(det) ) {
cout << "Warining: calorimeter analysis module "
<< shower_detector_name << " not loaded for spectrometer "
<< prefix << endl;
fShower = NULL;
}
// --------------- To get energy from THcShower ----------------------
// --------------- To get NPEs from THcCherenkov -------------------
const char* chern_detector_name = "cher";
THaDetector* detc = app->GetDetector( chern_detector_name );
if( dynamic_cast<THcCherenkov*>(detc) ) {
fChern = dynamic_cast<THcCherenkov*>(detc);
}
else if( !dynamic_cast<THcCherenkov*>(detc) ) {
cout << "Warining: Cherenkov detector analysis module "
<< chern_detector_name << " not loaded for spectrometer "
<< prefix << endl;
fChern = NULL;
}
// --------------- To get NPEs from THcCherenkov -------------------
fScinShould = 0;
fScinDid = 0;
gHcParms->Define(Form("%shodo_did",prefix),"Total hodo tracks",fScinDid);
gHcParms->Define(Form("%shodo_should",prefix),"Total hodo triggers",fScinShould);
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoscope::Init( const TDatime& date )
{
cout << "In THcHodoscope::Init()" << endl;
Setup(GetName(), GetTitle());
// Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map
// But it needs to happen before the sub detectors are initialized
// so that they can get the pointer to the hitlist.
InitHitList(fDetMap, "THcRawHodoHit", 100);
EStatus status;
// This triggers call of ReadDatabase and DefineVariables
if( (status = THaNonTrackingDetector::Init( date )) )
return fStatus=status;
for(Int_t ip=0;ip<fNPlanes;ip++) {
if((status = fPlanes[ip]->Init( date ))) {
return fStatus=status;
}
}
// Replace with what we need for Hall C
// const DataDest tmp[NDEST] = {
// { &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
// { &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
// };
// memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );
char EngineDID[]="xSCIN";
EngineDID[0] = toupper(GetApparatus()->GetName()[0]);
if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) {
static const char* const here = "Init()";
Error( Here(here), "Error filling detectormap for %s.",
EngineDID);
return kInitError;
}
fNScinHits = new Int_t [fNPlanes];
fGoodPlaneTime = new Bool_t [fNPlanes];
fNPlaneTime = new Int_t [fNPlanes];
fSumPlaneTime = new Double_t [fNPlanes];
// Double_t fHitCnt4 = 0., fHitCnt3 = 0.;
// Int_t m = 0;
// fScinHit = new Double_t*[fNPlanes];
// for ( m = 0; m < fNPlanes; m++ ){
// fScinHit[m] = new Double_t[fNPaddle[0]];
// }
return fStatus = kOK;
}
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//_____________________________________________________________________________
Double_t THcHodoscope::DefineDoubleVariable(const char* fName)
{
// Define a variale of type double by looking it up in the THcParmList
char prefix[2];
char parname[100];
Double_t tmpvar=-1e6;
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
if (gHcParms->Find(parname)) {
tmpvar=*(Double_t *)gHcParms->Find(parname)->GetValuePointer();
if (fDebug>=1) cout << parname << " "<< tmpvar << endl;
} else {
cout << "*** ERROR!!! Could not find " << parname << " in the list of variables! ***" << endl;
}
return tmpvar;
}
//_____________________________________________________________________________
Int_t THcHodoscope::DefineIntVariable(const char* fName)
{
// Define a variale of type int by looking it up in the THcParmList
char prefix[2];
char parname[100];
Int_t tmpvar=-100000;
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
if (gHcParms->Find(parname)) {
tmpvar=*(Int_t *)gHcParms->Find(parname)->GetValuePointer();
if (fDebug>=1) cout << parname << " "<< tmpvar << endl;
} else {
cout << "*** ERROR!!! Could not find " << parname << " in the list of variables! ***" << endl;
}
return tmpvar;
}
//_____________________________________________________________________________
void THcHodoscope::DefineArray(const char* fName, const Int_t index, Double_t *myArray)
{
char prefix[2];
char parname[100];
// Int_t tmpvar=-100000;
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
if (gHcParms->Find(parname)) {
if (fDebug >=1) cout <<parname;
Double_t* p = (Double_t *)gHcParms->Find(parname)->GetValuePointer();
for(Int_t i=0;i<index;i++) {
myArray[i] = p[i];
if (fDebug>=1) cout << " " << myArray[i];
}
if (fDebug>=1) cout << endl;
}
else {
cout <<" Could not find "<<parname<<" in the DataBase!!!\n";
}
}
//_____________________________________________________________________________
void THcHodoscope::DefineArray(const char* fName, char** Suffix, const Int_t index, Double_t *myArray)
{
// Try to read an array made up of what used to be (in the f77 days) a number of variables
// example: hscin_1x_center, hscin_1y_center, hscin_2x_center, hscin_2y_center will become scin_center
//
char prefix[2];
char parname[100],parname2[100];
//
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
for(Int_t i=0;i<index;i++) {
strcpy(parname2,Form(parname,Suffix[i]));
if (gHcParms->Find(parname2)) {
if (fDebug >=1) cout <<parname2;
myArray[i] = *(Double_t *)gHcParms->Find(parname2)->GetValuePointer();
if (fDebug>=1) cout << " " << myArray[i];
}
if (fDebug>=1) cout << endl;
else {
cout <<" Could not find "<<parname2<<" in the DataBase!!!\n";
}
}
}
//_____________________________________________________________________________
void THcHodoscope::DefineArray(const char* fName, char** Suffix, const Int_t index, Int_t *myArray)
{
// Try to read an array made up of what used to be (in the f77 days) a number of variables
// example: hscin_1x_center, hscin_1y_center, hscin_2x_center, hscin_2y_center will become scin_center
//
char prefix[2];
char parname[100],parname2[100];
//
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,fName);
for(Int_t i=0;i<index;i++) {
strcpy(parname2,Form(parname,Suffix[i]));
if (gHcParms->Find(parname2)) {
if (fDebug >=1) cout <<parname2;
myArray[i] = *(Int_t *)gHcParms->Find(parname2)->GetValuePointer();
if (fDebug>=1) cout << " " << myArray[i];
}
if (fDebug>=1) cout << endl;
else {
cout <<" Could not find "<<parname2<<" in the DataBase!!!\n";
}
}
}
//_____________________________________________________________________________
Int_t THcHodoscope::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
// static const char* const here = "ReadDatabase()";
char prefix[2];
char parname[100];
// Read data from database
// Pull values from the THcParmList instead of reading a database
// file like Hall A does.
// Will need to determine which spectrometer in order to construct
// the parameter names (e.g. hscin_1x_nr vs. sscin_1x_nr)
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
strcpy(parname,prefix);
strcat(parname,"scin_");
// Int_t plen=strlen(parname);
cout << " readdatabse hodo fnplanes = " << fNPlanes << endl;
fFPTime = new Double_t [fNPlanes];
fPlaneCenter = new Double_t[fNPlanes];
fPlaneSpacing = new Double_t[fNPlanes];
prefix[0]=tolower(GetApparatus()->GetName()[0]);
//
prefix[1]='\0';
for(Int_t i=0;i<fNPlanes;i++) {
DBRequest list[]={
{Form("scin_%s_nr",fPlaneNames[i]), &fNPaddle[i], kInt},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
// GN added
// reading variables from *hodo.param
Gabriel Niculescu
committed
fMaxScinPerPlane=fNPaddle[0];
for (Int_t i=1;i<fNPlanes;i++) {
Gabriel Niculescu
committed
fMaxScinPerPlane=(fMaxScinPerPlane > fNPaddle[i])? fMaxScinPerPlane : fNPaddle[i];
}
// need this for "padded arrays" i.e. 4x16 lists of parameters (GN)
fMaxHodoScin=fMaxScinPerPlane*fNPlanes;
if (fDebug>=1) cout <<"fMaxScinPerPlane = "<<fMaxScinPerPlane<<" fMaxHodoScin = "<<fMaxHodoScin<<endl;
fHodoVelLight=new Double_t [fMaxHodoScin];
fHodoPosSigma=new Double_t [fMaxHodoScin];
fHodoNegSigma=new Double_t [fMaxHodoScin];
fHodoPosMinPh=new Double_t [fMaxHodoScin];
fHodoNegMinPh=new Double_t [fMaxHodoScin];
fHodoPosPhcCoeff=new Double_t [fMaxHodoScin];
fHodoNegPhcCoeff=new Double_t [fMaxHodoScin];
fHodoPosTimeOffset=new Double_t [fMaxHodoScin];
fHodoNegTimeOffset=new Double_t [fMaxHodoScin];
fHodoPosPedLimit=new Int_t [fMaxHodoScin];
fHodoNegPedLimit=new Int_t [fMaxHodoScin];
fHodoPosInvAdcOffset=new Double_t [fMaxHodoScin];
fHodoNegInvAdcOffset=new Double_t [fMaxHodoScin];
fHodoPosInvAdcLinear=new Double_t [fMaxHodoScin];
fHodoNegInvAdcLinear=new Double_t [fMaxHodoScin];
fHodoPosInvAdcAdc=new Double_t [fMaxHodoScin];
fHodoNegInvAdcAdc=new Double_t [fMaxHodoScin];
fNHodoscopes = 2;
fxLoScin = new Int_t [fNHodoscopes];
fxHiScin = new Int_t [fNHodoscopes];
fyLoScin = new Int_t [fNHodoscopes];
fyHiScin = new Int_t [fNHodoscopes];
Gabriel Niculescu
committed
prefix[1]='\0';
DBRequest list[]={
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
{"start_time_center", &fStartTimeCenter, kDouble},
{"start_time_slop", &fStartTimeSlop, kDouble},
{"scin_tdc_to_time", &fScinTdcToTime, kDouble},
{"scin_tdc_min", &fScinTdcMin, kDouble},
{"scin_tdc_max", &fScinTdcMax, kDouble},
{"tof_tolerance", &fTofTolerance, kDouble, 0, 1},
{"pathlength_central", &fPathLengthCentral, kDouble},
{"hodo_vel_light", &fHodoVelLight[0], kDouble, fMaxHodoScin},
{"hodo_pos_sigma", &fHodoPosSigma[0], kDouble, fMaxHodoScin},
{"hodo_neg_sigma", &fHodoNegSigma[0], kDouble, fMaxHodoScin},
{"hodo_pos_minph", &fHodoPosMinPh[0], kDouble, fMaxHodoScin},
{"hodo_neg_minph", &fHodoNegMinPh[0], kDouble, fMaxHodoScin},
{"hodo_pos_phc_coeff", &fHodoPosPhcCoeff[0], kDouble, fMaxHodoScin},
{"hodo_neg_phc_coeff", &fHodoNegPhcCoeff[0], kDouble, fMaxHodoScin},
{"hodo_pos_time_offset", &fHodoPosTimeOffset[0], kDouble, fMaxHodoScin},
{"hodo_neg_time_offset", &fHodoNegTimeOffset[0], kDouble, fMaxHodoScin},
{"hodo_pos_ped_limit", &fHodoPosPedLimit[0], kInt, fMaxHodoScin},
{"hodo_neg_ped_limit", &fHodoNegPedLimit[0], kInt, fMaxHodoScin},
{"tofusinginvadc", &fTofUsingInvAdc, kInt, 0, 1},
{"xloscin", &fxLoScin[0], kInt, (UInt_t) fNHodoscopes},
{"xhiscin", &fxHiScin[0], kInt, (UInt_t) fNHodoscopes},
{"yloscin", &fyLoScin[0], kInt, (UInt_t) fNHodoscopes},
{"yhiscin", &fyHiScin[0], kInt, (UInt_t) fNHodoscopes},
{"track_eff_test_num_scin_planes", &fTrackEffTestNScinPlanes, kInt},
{"cer_npe", &fNCerNPE, kDouble, 0, 1},
{"normalized_energy_tot", &fNormETot, kDouble, 0, 1},
{0}
};
fTofUsingInvAdc = 0; // Default if not defined
Mark Jones
committed
fTofTolerance = 3.0; // Default if not defined
fNCerNPE = 2.0;
fNormETot = 0.7;
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
cout << " x1 lo = " << fxLoScin[0]
<< " x2 lo = " << fxLoScin[1]
<< " x1 hi = " << fxHiScin[0]
<< " x2 hi = " << fxHiScin[1]
<< endl;
cout << " y1 lo = " << fyLoScin[0]
<< " y2 lo = " << fyLoScin[1]
<< " y1 hi = " << fyHiScin[0]
<< " y2 hi = " << fyHiScin[1]
<< endl;
cout << "Hdososcope planes hits for trigger = " << fTrackEffTestNScinPlanes
<< " normalized energy min = " << fNormETot
<< " number of photo electrons = " << fNCerNPE
<< endl;
if (fTofUsingInvAdc) {
DBRequest list2[]={
{"hodo_pos_invadc_offset",&fHodoPosInvAdcOffset[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_offset",&fHodoNegInvAdcOffset[0],kDouble,fMaxHodoScin},
{"hodo_pos_invadc_linear",&fHodoPosInvAdcLinear[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_linear",&fHodoNegInvAdcLinear[0],kDouble,fMaxHodoScin},
{"hodo_pos_invadc_adc",&fHodoPosInvAdcAdc[0],kDouble,fMaxHodoScin},
{"hodo_neg_invadc_adc",&fHodoNegInvAdcAdc[0],kDouble,fMaxHodoScin},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list2,prefix);
};
Gabriel Niculescu
committed
if (fDebug >=1) {
cout <<"******* Testing Hodoscope Parameter Reading ***\n";
cout<<"StarTimeCenter = "<<fStartTimeCenter<<endl;
cout<<"StartTimeSlop = "<<fStartTimeSlop<<endl;
cout <<"ScintTdcToTime = "<<fScinTdcToTime<<endl;
cout <<"TdcMin = "<<fScinTdcMin<<" TdcMax = "<<fScinTdcMax<<endl;
cout <<"TofTolerance = "<<fTofTolerance<<endl;
cout <<"*** VelLight ***\n";
Gabriel Niculescu
committed
cout<<"Plane "<<i1<<endl;
Gabriel Niculescu
committed
cout<<fHodoVelLight[GetScinIndex(i1,i2)]<<" ";
Gabriel Niculescu
committed
cout <<endl;
Gabriel Niculescu
committed
cout <<endl<<endl;
// check fHodoPosPhcCoeff
/*
cout <<"fHodoPosPhcCoeff = ";
for (int i1=0;i1<fMaxHodoScin;i1++) {
cout<<this->GetHodoPosPhcCoeff(i1)<<" ";
}
cout<<endl;
*/
}
//
if ((fTofTolerance > 0.5) && (fTofTolerance < 10000.)) {
cout << "USING "<<fTofTolerance<<" NSEC WINDOW FOR FP NO_TRACK CALCULATIONS.\n";
}
else {
fTofTolerance= 3.0;
cout << "*** USING DEFAULT 3 NSEC WINDOW FOR FP NO_TRACK CALCULATIONS!! ***\n";
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoscope::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
cout << "THcHodoscope::DefineVariables called " << GetName() << endl;
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
// Move these into THcHallCSpectrometer using track fTracks
{"fpHitsTime", "Time at focal plane from all hits", "fFPTime"},
{"starttime", "Hodoscope Start Time", "fStartTime"},
{"goodstarttime", "Hodoscope Good Start Time", "fGoodStartTime"},
{"goodscinhit", "Hit in fid area", "fGoodScinHits"},
{"goodscinhitx", "Hit in fid x range", "fGoodScinHitsX"},
{"scinshould", "Total scin Hits in fid area", "fScinShould"},
{"scindid", "Total scin Hits in fid area with a track", "fScinDid"},
return DefineVarsFromList( vars, mode );
// return kOK;
}
//_____________________________________________________________________________
THcHodoscope::~THcHodoscope()
{
// Destructor. Remove variables from global list.
delete [] fPlaneCenter;
delete [] fPlaneSpacing;
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
void THcHodoscope::DeleteArrays()
{
// Delete member arrays. Used by destructor.
// Int_t k;
// for( k = 0; k < fNPlanes; k++){
// delete [] fScinHit[k];
// }
// delete [] fScinHit;
delete [] fxLoScin; fxLoScin = NULL;
delete [] fxHiScin; fxHiScin = NULL;
delete [] fNPaddle; fNPaddle = NULL;
delete [] fHodoVelLight; fHodoVelLight = NULL;
delete [] fHodoPosSigma; fHodoPosSigma = NULL;
delete [] fHodoNegSigma; fHodoNegSigma = NULL;
delete [] fHodoPosMinPh; fHodoPosMinPh = NULL;
delete [] fHodoNegMinPh; fHodoNegMinPh = NULL;
delete [] fHodoPosPhcCoeff; fHodoPosPhcCoeff = NULL;
delete [] fHodoNegPhcCoeff; fHodoNegPhcCoeff = NULL;
delete [] fHodoPosTimeOffset; fHodoPosTimeOffset = NULL;
delete [] fHodoNegTimeOffset; fHodoNegTimeOffset = NULL;
delete [] fHodoPosPedLimit; fHodoPosPedLimit = NULL;
delete [] fHodoNegPedLimit; fHodoNegPedLimit = NULL;
delete [] fHodoPosInvAdcOffset; fHodoPosInvAdcOffset = NULL;
delete [] fHodoNegInvAdcOffset; fHodoNegInvAdcOffset = NULL;
delete [] fHodoPosInvAdcLinear; fHodoPosInvAdcLinear = NULL;
delete [] fHodoNegInvAdcLinear; fHodoNegInvAdcLinear = NULL;
delete [] fHodoPosInvAdcAdc; fHodoPosInvAdcAdc = NULL;
delete [] fGoodPlaneTime; fGoodPlaneTime = NULL;
delete [] fNPlaneTime; fNPlaneTime = NULL;
delete [] fSumPlaneTime; fSumPlaneTime = NULL;
delete [] fNScinHits; fNScinHits = NULL;
}
//_____________________________________________________________________________
inline
void THcHodoscope::ClearEvent()
{
// Reset per-event data.
// for ( Int_t imaxhit = 0; imaxhit < MAXHODHITS; imaxhit++ ){
// fBeta[imaxhit] = 0.;
// fBetaChisq[imaxhit] = 0.;
// }
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlanes[ip]->Clear();
fPlaneCenter[ip]=0.;
fPlaneSpacing[ip]=0.;
fdEdX.clear();
fScinHitPaddle.clear();
fNScinHit.clear();
fNClust.clear();
fThreeScin.clear();
fGoodScinHitsX.clear();
}
//_____________________________________________________________________________
Int_t THcHodoscope::Decode( const THaEvData& evdata )
{
ClearEvent();
// Get the Hall C style hitlist (fRawHitList) for this event
Stephen A. Wood
committed
Int_t nhits = DecodeToHitList(evdata);
//
// GN: print event number so we can cross-check with engine
// if (evdata.GetEvNum()>1000)
fCheckEvent = evdata.GetEvNum();
if(gHaCuts->Result("Pedestal_event")) {
Int_t nexthit = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
nexthit = fPlanes[ip]->AccumulatePedestals(fRawHitList, nexthit);
}
fAnalyzePedestals = 1; // Analyze pedestals first normal events
return(0);
}
if(fAnalyzePedestals) {
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlanes[ip]->CalculatePedestals();
}
fAnalyzePedestals = 0; // Don't analyze pedestals next event
}
// Let each plane get its hits
Int_t nexthit = 0;
fNfptimes=0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlaneCenter[ip] = fPlanes[ip]->GetPosCenter(0) + fPlanes[ip]->GetPosOffset();
fPlaneSpacing[ip] = fPlanes[ip]->GetSpacing();
// nexthit = fPlanes[ip]->ProcessHits(fRawHitList, nexthit);
// GN: select only events that have reasonable TDC values to start with
// as per the Engine h_strip_scin.f
nexthit = fPlanes[ip]->ProcessHits(fRawHitList,nexthit);
fPlanes[ip]->PulseHeightCorrection();
// GN: allow for more than one fptime per plane!!
for (Int_t i=0;i<fPlanes[ip]->GetNScinGoodHits();i++) {
if (TMath::Abs(fPlanes[ip]->GetFpTime(i)-fStartTimeCenter)<=fStartTimeSlop) {
fStartTime=fStartTime+fPlanes[ip]->GetFpTime(i);
// GN write stuff out so I can compare with engine
/// cout<<"hcana event= "<<evdata.GetEvNum()<<" fNfptimes= "<<fNfptimes<<" fptime= "<<fPlanes[ip]->GetFpTime(i)<<endl;
fNfptimes++;
}
}
if (fNfptimes>0) {
fStartTime=fStartTime/fNfptimes;
fGoodStartTime=kTRUE;
} else {
fGoodStartTime=kFALSE;
fStartTime=fStartTimeCenter;
}
for(Int_t ihit = 0; ihit < fNRawHits ; ihit++) {
THcRawHodoHit* hit = (THcRawHodoHit *) fRawHitList->At(ihit);
cout << ihit << " : " << hit->fPlane << ":" << hit->fCounter << " : "
<< hit->fADC_pos << " " << hit->fADC_neg << " " << hit->fTDC_pos
<< " " << hit->fTDC_neg << endl;
}
cout << endl;
Stephen A. Wood
committed
return nhits;
}
//_____________________________________________________________________________
Int_t THcHodoscope::ApplyCorrections( void )
{
return(0);
}
//_____________________________________________________________________________
Double_t THcHodoscope::TimeWalkCorrection(const Int_t& paddle,
const ESide side)
{
return(0.0);
}
//_____________________________________________________________________________
Int_t THcHodoscope::CoarseProcess( TClonesArray& tracks )
{
ApplyCorrections();
return 0;
}
//_____________________________________________________________________________
Int_t THcHodoscope::FineProcess( TClonesArray& tracks )
Int_t fNtracks = tracks.GetLast()+1; // Number of reconstructed tracks
Int_t fJMax, fMaxHit;
Double_t fScinTrnsCoord, fScinLongCoord, fScinCenter, fSumfpTime, fSlope;
Double_t fP, fXcoord, fYcoord, fTMin, fBestXpScin, fBestYpScin;
// -------------------------------------------------
Double_t hpartmass=0.00051099; // Fix it
fScinShould = 0; fScinDid = 0;
// **MAIN LOOP: Loop over all tracks and get corrected time, tof, beta...
Double_t* fNPmtHit = new Double_t [fNtracks];
Double_t* fTimeAtFP = new Double_t [fNtracks];
for ( Int_t itrack = 0; itrack < fNtracks; itrack++ ) { // Line 133
fNPmtHit[itrack]=0;
fTimeAtFP[itrack]=0;
THaTrack* theTrack = dynamic_cast<THaTrack*>( tracks.At(itrack) );
if (!theTrack) return -1;
fNPlaneTime[ip] = 0;
fSumPlaneTime[ip] = 0.;
std::vector<Double_t> dedx_temp;
fdEdX.push_back(dedx_temp); // Create array of dedx per hit
// fTimeAtFP[itrack] = 0.;
fSumfpTime = 0.; // Line 138
fNScinHit.push_back(0);
Double_t betaP = fP/( TMath::Sqrt( fP * fP + hpartmass * hpartmass) );
//! Calculate all corrected hit times and histogram
//! This uses a copy of code below. Results are save in time_pos,neg
//! including the z-pos. correction assuming nominal value of betap
//! Code is currently hard-wired to look for a peak in the
//! range of 0 to 100 nsec, with a group of times that all
//! agree withing a time_tolerance of time_tolerance nsec. The normal
//! peak position appears to be around 35 nsec.
//! NOTE: if want to find farticles with beta different than
//! reference particle, need to make sure this is big enough
//! to accomodate difference in TOF for other particles
//! Default value in case user hasnt definedd something reasonable
// Line 162 to 171 is already done above in ReadDatabase
for (Int_t j=0; j<200; j++) { fTimeHist[j]=0; } // Line 176
// Loop over scintillator planes.
// In ENGINE, its loop over good scintillator hits.
fTOFCalc.clear();
Int_t ihhit = 0; // Hit # overall
// first loop over hits with in a single plane
fTOFPInfo.clear();
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
// iphit is hit # within a plane
fTOFPInfo.push_back(TOFPInfo());
// Can remove these as we will initialize in the constructor
fTOFPInfo[iphit].time_pos = -99.0;
fTOFPInfo[iphit].time_neg = -99.0;
fTOFPInfo[iphit].keep_pos = kFALSE;
fTOFPInfo[iphit].keep_neg = kFALSE;
fTOFPInfo[iphit].scin_pos_time = 0.0;
fTOFPInfo[iphit].scin_neg_time = 0.0;
scinPosADC = fPlanes[ip]->GetPosADC();
scinNegADC = fPlanes[ip]->GetNegADC();
scinPosTDC = fPlanes[ip]->GetPosTDC();
scinNegTDC = fPlanes[ip]->GetNegTDC();
Int_t paddle = ((THcSignalHit*)scinPosTDC->At(iphit))->GetPaddleNumber()-1;
fXcoord = theTrack->GetX() + theTrack->GetTheta() *
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 183
fYcoord = theTrack->GetY() + theTrack->GetPhi() *
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 184
if ( ( ip == 0 ) || ( ip == 2 ) ){ // !x plane. Line 185
fScinTrnsCoord = fXcoord;
fScinLongCoord = fYcoord;
}
else if ( ( ip == 1 ) || ( ip == 3 ) ){ // !y plane. Line 188
fScinTrnsCoord = fYcoord;
fScinLongCoord = fXcoord;
}
else { return -1; } // Line 195
fScinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
// Index to access the 2d arrays of paddle/scintillator properties
if ( TMath::Abs( fScinCenter - fScinTrnsCoord ) <
( fPlanes[ip]->GetSize() * 0.5 + fPlanes[ip]->GetHodoSlop() ) ){ // Line 293
if ( ( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() > fScinTdcMin ) &&
( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() < fScinTdcMax ) ) { // Line 199
Double_t fADCph = ((THcSignalHit*)scinPosADC->At(iphit))->GetData();
fTOFPInfo[iphit].adcPh = fADCph;
Double_t fPath = fPlanes[ip]->GetPosLeft() - fScinLongCoord;
fTOFPInfo[iphit].path = fPath;
Double_t fTime = ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() * fScinTdcToTime;
fTime = fTime - fHodoPosPhcCoeff[fPIndex] *
TMath::Sqrt( TMath::Max( 0., ( ( fADCph / fHodoPosMinPh[fPIndex] ) - 1 ) ) );
fTime = fTime - ( fPath / fHodoVelLight[fPIndex] ) - ( fPlanes[ip]->GetZpos() +
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ) / ( 29.979 * betaP ) *
TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
fTOFPInfo[iphit].time = fTime;
fTOFPInfo[iphit].time_pos = fTime - fHodoPosTimeOffset[fPIndex];
for ( Int_t k = 0; k < 200; k++ ){ // Line 211
fTMin = 0.5 * ( k + 1 ) ;
if ( ( fTOFPInfo[iphit].time_pos > fTMin ) && ( fTOFPInfo[iphit].time_pos < ( fTMin + fTofTolerance ) ) )
}
} // TDC pos hit condition
if ( ( ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() > fScinTdcMin ) &&
( ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() < fScinTdcMax ) ) { // Line 218
Double_t fADCph = ((THcSignalHit*)scinNegADC->At(iphit))->GetData();
fTOFPInfo[iphit].adcPh = fADCph;
Double_t fPath = fScinLongCoord - fPlanes[ip]->GetPosRight();
fTOFPInfo[iphit].path = fPath;
Double_t fTime = ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() * fScinTdcToTime;
fTime =fTime - fHodoNegPhcCoeff[fPIndex] *
TMath::Sqrt( TMath::Max( 0., ( ( fADCph / fHodoNegMinPh[fPIndex] ) - 1 ) ) );
fTime = fTime - ( fPath / fHodoVelLight[fPIndex] ) - ( fPlanes[ip]->GetZpos() +
( paddle % 2 ) * fPlanes[ip]->GetDzpos() ) / ( 29.979 * betaP ) *
TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
fTOFPInfo[iphit].time = fTime;
fTOFPInfo[iphit].time_neg = fTime - fHodoNegTimeOffset[fPIndex];
for ( Int_t k = 0; k < 200; k++ ){ // Line 230
fTMin = 0.5 * ( k + 1 );
if ( ( fTOFPInfo[iphit].time_neg > fTMin ) && ( fTOFPInfo[iphit].time_neg < ( fTMin + fTofTolerance ) ) )
} // condition for cenetr on a paddle
} // First loop over hits in a plane <---------
//-----------------------------------------------------------------------------------------------
//------------- First large loop over scintillator hits in a plane ends here --------------------
//-----------------------------------------------------------------------------------------------
fJMax = 0; // Line 240
fMaxHit = 0;
for ( Int_t k = 0; k < 200; k++ ){
if ( fTimeHist[k] > fMaxHit ){
fJMax = k+1;
fMaxHit = fTimeHist[k];
if ( fJMax > 0 ){ // Line 248. Here I followed the code of THcSCintilaltorPlane::PulseHeightCorrection
for(Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++) { // Loop over sinc. hits. in plane
if ( ( fTOFPInfo[iphit].time_pos > fTMin ) && ( fTOFPInfo[iphit].time_pos < ( fTMin + fTofTolerance ) ) ) {
fTOFPInfo[iphit].keep_pos=kTRUE;
if ( ( fTOFPInfo[iphit].time_neg > fTMin ) && ( fTOFPInfo[iphit].time_neg < ( fTMin + fTofTolerance ) ) ){
fTOFPInfo[iphit].keep_neg=kTRUE;
} // fJMax > 0 condition
//---------------------------------------------------------------------------------------------
// ---------------------- Scond loop over scint. hits in a plane ------------------------------
//---------------------------------------------------------------------------------------------
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
fTOFCalc.push_back(TOFCalc());
// Do we set back to false for each track, or just once per event?
fTOFCalc[ihhit].good_scin_time = kFALSE;
// These need a track index too to calculate efficiencies
fTOFCalc[ihhit].good_tdc_pos = kFALSE;
fTOFCalc[ihhit].good_tdc_neg = kFALSE;
// ihhit ++;
// fRawIndex ++; // Is fRawIndex ever different from ihhit
fRawIndex = ihhit;
Int_t paddle = ((THcSignalHit*)scinPosTDC->At(iphit))->GetPaddleNumber()-1;
fTOFCalc[ihhit].hit_paddle = paddle;
fTOFCalc[fRawIndex].good_raw_pad = paddle;
fXcoord = theTrack->GetX() + theTrack->GetTheta() *
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 277
fYcoord = theTrack->GetY() + theTrack->GetPhi() *
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ); // Line 278
if ( ( ip == 0 ) || ( ip == 2 ) ){ // !x plane. Line 278
fScinTrnsCoord = fXcoord;
fScinLongCoord = fYcoord;
}
else if ( ( ip == 1 ) || ( ip == 3 ) ){ // !y plane. Line 281
fScinTrnsCoord = fYcoord;
fScinLongCoord = fXcoord;
}
else { return -1; } // Line 288
fScinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
Int_t fPIndex = fNPlanes * paddle + ip;
// ** Check if scin is on track
if ( TMath::Abs( fScinCenter - fScinTrnsCoord ) >
( fPlanes[ip]->GetSize() * 0.5 + fPlanes[ip]->GetHodoSlop() ) ){ // Line 293
if ( ( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() > fScinTdcMin ) &&
( ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() < fScinTdcMax ) &&
( fTOFPInfo[iphit].keep_pos ) ) { // 301
// ** Calculate time for each tube with a good tdc. 'pos' side first.
fTOFCalc[ihhit].good_tdc_pos = kTRUE;
Double_t fADCph = ((THcSignalHit*)scinPosADC->At(iphit))->GetData();
fTOFPInfo[iphit].adcPh = fADCph;
Double_t fPath = fPlanes[ip]->GetPosLeft() - fScinLongCoord;
fTOFPInfo[iphit].path = fPath;
// * Convert TDC value to time, do pulse height correction, correction for
// * propogation of light thru scintillator, and offset.
Double_t fTime = ((THcSignalHit*)scinPosTDC->At(iphit))->GetData() * fScinTdcToTime;
fTime = fTime - ( fHodoPosPhcCoeff[fPIndex] * TMath::Sqrt( TMath::Max( 0. ,
( ( fADCph / fHodoPosMinPh[fPIndex] ) - 1 ) ) ) );
fTime = fTime - ( fPath / fHodoVelLight[fPIndex] );
fTOFPInfo[iphit].time = fTime;
fTOFPInfo[iphit].scin_pos_time = fTime - fHodoPosTimeOffset[fPIndex];
} // check for good pos TDC condition
// ** Repeat for pmts on 'negative' side
if ( ( ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() > fScinTdcMin ) &&
( ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() < fScinTdcMax ) &&
( fTOFPInfo[iphit].keep_neg ) ) { //
// ** Calculate time for each tube with a good tdc. 'pos' side first.
fTOFCalc[ihhit].good_tdc_neg = kTRUE;
Double_t fADCph = ((THcSignalHit*)scinNegADC->At(iphit))->GetData();
fTOFPInfo[iphit].adcPh = fADCph;
// Double_t fPath = fPlanes[ip]->GetPosRight() - fScinLongCoord;
Double_t fPath = fScinLongCoord - fPlanes[ip]->GetPosRight();
fTOFPInfo[iphit].path = fPath;
// * Convert TDC value to time, do pulse height correction, correction for
// * propogation of light thru scintillator, and offset.
Double_t fTime = ((THcSignalHit*)scinNegTDC->At(iphit))->GetData() * fScinTdcToTime;
fTime = fTime - ( fHodoNegPhcCoeff[fPIndex] *
TMath::Sqrt( TMath::Max( 0. , ( ( fADCph / fHodoNegMinPh[fPIndex] ) - 1 ) ) ) );
fTime = fTime - ( fPath / fHodoVelLight[fPIndex] );
fTOFPInfo[iphit].time = fTime;
fTOFPInfo[iphit].scin_neg_time = fTime - fHodoNegTimeOffset[fPIndex];
} // check for good neg TDC condition
// ** Calculate ave time for scin and error.
if ( fTOFCalc[ihhit].good_tdc_pos ){
if ( fTOFCalc[ihhit].good_tdc_neg ){
fTOFCalc[ihhit].scin_time = ( fTOFPInfo[iphit].scin_pos_time +
fTOFPInfo[iphit].scin_neg_time ) / 2.;
fTOFCalc[ihhit].scin_sigma = TMath::Sqrt( fHodoPosSigma[fPIndex] * fHodoPosSigma[fPIndex] +
fHodoNegSigma[fPIndex] * fHodoNegSigma[fPIndex] )/2.;
fTOFCalc[ihhit].good_scin_time = kTRUE;
fTOFCalc[ihhit].scin_time = fTOFPInfo[iphit].scin_pos_time;
fTOFCalc[ihhit].scin_sigma = fHodoPosSigma[fPIndex];
fTOFCalc[ihhit].good_scin_time = kTRUE;
if ( fTOFCalc[ihhit].good_tdc_neg ){
fTOFCalc[ihhit].scin_time = fTOFPInfo[iphit].scin_neg_time;
fTOFCalc[ihhit].scin_sigma = fHodoNegSigma[fPIndex];
fTOFCalc[ihhit].good_scin_time = kTRUE;
} // In h_tof.f this includes the following if condition for time at focal plane
// // because it is written in FORTRAN code
// c Get time at focal plane
if ( fTOFCalc[ihhit].good_scin_time ){
// scin_time_fp doesn't need to be an array
Double_t scin_time_fp = fTOFCalc[ihhit].scin_time -
( fPlanes[ip]->GetZpos() + ( paddle % 2 ) * fPlanes[ip]->GetDzpos() ) /
( 29.979 * betaP ) *
TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
fSumfpTime = fSumfpTime + scin_time_fp;
fSumPlaneTime[ip] = fSumPlaneTime[ip] + scin_time_fp;
fNPlaneTime[ip] ++;
fNScinHit[itrack] ++;
if ( ( fTOFCalc[ihhit].good_tdc_pos ) && ( fTOFCalc[ihhit].good_tdc_neg ) ){
fNPmtHit[itrack] = fNPmtHit[itrack] + 2;
fNPmtHit[itrack] = fNPmtHit[itrack] + 1;
}
fdEdX[itrack].push_back(0.0);
// --------------------------------------------------------------------------------------------
if ( fTOFCalc[ihhit].good_tdc_pos ){
if ( fTOFCalc[ihhit].good_tdc_neg ){
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Sqrt( TMath::Max( 0., ((THcSignalHit*)scinPosADC->At(iphit))->GetData() *
((THcSignalHit*)scinNegADC->At(iphit))->GetData() ) );
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Max( 0., ((THcSignalHit*)scinPosADC->At(iphit))->GetData() );
if ( fTOFCalc[ihhit].good_tdc_neg ){
fdEdX[itrack][fNScinHit[itrack]-1]=
TMath::Max( 0., ((THcSignalHit*)scinNegADC->At(iphit))->GetData() );
fdEdX[itrack][fNScinHit[itrack]-1]=0.0;
// --------------------------------------------------------------------------------------------
} // time at focal plane condition
} // on track else condition
// ** See if there are any good time measurements in the plane.
if ( fTOFCalc[ihhit].good_scin_time ){
fGoodPlaneTime[ip] = kTRUE;
// Can this be done after looping over hits and planes?
if ( fGoodPlaneTime[2] ) theTrack->SetGoodPlane3( 1 );
if ( !fGoodPlaneTime[2] ) theTrack->SetGoodPlane3( 0 );
if ( fGoodPlaneTime[3] ) theTrack->SetGoodPlane4( 1 );
if ( !fGoodPlaneTime[3] ) theTrack->SetGoodPlane4( 0 );
ihhit ++;
} // Second loop over hits of a scintillator plane ends here
} // Loop over scintillator planes ends here
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// * * Fit beta if there are enough time measurements (one upper, one lower)
// From h_tof_fit
if ( ( ( fGoodPlaneTime[0] ) || ( fGoodPlaneTime[1] ) ) &&
( ( fGoodPlaneTime[2] ) || ( fGoodPlaneTime[3] ) ) ){
Double_t fSumW, fSumT, fSumZ, fSumZZ, fSumTZ;
Double_t fScinWeight, fTmp, fT0, fTmpDenom, fPathNorm, fZPosition, fTimeDif;
fSumW = 0.; fSumT = 0.; fSumZ = 0.; fSumZZ = 0.; fSumTZ = 0.;
fScinWeight = 0.; fTmp = 0.; fT0 = 0.; fTmpDenom = 0.;
fPathNorm = 0.; fZPosition = 0.; fTimeDif = 0.;
if (!fPlanes[ip])
return -1;
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
if ( fTOFCalc[ihhit].good_scin_time ) {
fScinWeight = 1 / ( fTOFCalc[ihhit].scin_sigma * fTOFCalc[ihhit].scin_sigma );
fZPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ihhit].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
fSumW += fScinWeight;
fSumT += fScinWeight * fTOFCalc[ihhit].scin_time;
fSumZ += fScinWeight * fZPosition;
fSumZZ += fScinWeight * ( fZPosition * fZPosition );
fSumTZ += fScinWeight * fZPosition * fTOFCalc[ihhit].scin_time;
} // condition of good scin time
ihhit ++;
} // loop over hits of plane
} // loop over planes
fTmp = fSumW * fSumZZ - fSumZ * fSumZ ;
fT0 = ( fSumT * fSumZZ - fSumZ * fSumTZ ) / fTmp ;
fTmpDenom = fSumW * fSumTZ - fSumZ * fSumT;
if ( TMath::Abs( fTmpDenom ) > ( 1 / 10000000000.0 ) ) {
ihhit = 0;
for (Int_t ip = 0; ip < fNPlanes; ip++ ){ // Loop over planes
if (!fPlanes[ip])
return -1;
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){ // Loop over hits of a plane
if ( fTOFCalc[ihhit].good_scin_time ){
fZPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ihhit].hit_paddle % 2 ) *
fPlanes[ip]->GetDzpos() );
fTimeDif = ( fTOFCalc[ihhit].scin_time - fT0 );
betaChiSq += ( ( fZPosition / beta - fTimeDif ) *
( fZPosition / beta - fTimeDif ) ) /
( fTOFCalc[ihhit].scin_sigma * fTOFCalc[ihhit].scin_sigma );
} // condition for good scin time
ihhit++;
} // loop over hits of a plane
} // loop over planes
fPathNorm = TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
theTrack->GetPhi() * theTrack->GetPhi() );
beta = beta / fPathNorm;
beta = beta / 29.979; // velocity / c
} // condition for fTmpDenom
} // else condition for fTmpDenom
fTimeAtFP[itrack] = ( fSumfpTime / fNfpTime );
//
// ---------------------------------------------------------------------------
Double_t fFPTimeSum=0.0;
Int_t fNfpTimeSum=0;
if ( fNPlaneTime[ip] != 0 ){
fFPTime[ip] = ( fSumPlaneTime[ip] / fNPlaneTime[ip] );
fFPTimeSum += fSumPlaneTime[ip];
fNfpTimeSum += fNPlaneTime[ip];
fFPTime[ip] = 1000. * ( ip + 1 );
// This can't be right. Plus if there are no hits, then
// it is undefined.
theTrack->SetFPTime(fptime);
theTrack->SetBeta(beta);
theTrack->SetBetaChi2( betaChiSq );
theTrack->SetNPMT(fNPmtHit[itrack]);
theTrack->SetFPTime( fTimeAtFP[itrack]);
} // Main loop over tracks ends here.
} // If condition for at least one track
//-----------------------------------------------------------------------
//
// Trnslation of h_track_tests.f file for tracking efficiency
//
//-----------------------------------------------------------------------
//************************now look at some hodoscope tests
// *second, we move the scintillators. here we use scintillator cuts to see
// *if a track should have been found.
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
std::vector<Double_t> scin_temp;
fScinHitPaddle.push_back(scin_temp); // Create array of hits per plane
for (UInt_t ipaddle = 0; ipaddle < fNPaddle[0]; ipaddle++ ){
fScinHitPaddle[ip].push_back(0.0);
fScinHitPaddle[ip][ipaddle] = 0.0;
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
if (!fPlanes[ip])
return -1;
scinPosTDC = fPlanes[ip]->GetPosTDC();
scinNegTDC = fPlanes[ip]->GetNegTDC();
fNScinHits[ip] = fPlanes[ip]->GetNScinHits();
for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
Int_t paddlePos = ((THcSignalHit*)scinPosTDC->At(iphit))->GetPaddleNumber()-1;
Int_t paddleNeg = ((THcSignalHit*)scinPosTDC->At(iphit))->GetPaddleNumber()-1;
if ( paddlePos != paddleNeg )
return -1;
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
fScinHitPaddle[ip][paddlePos] = 1;
}
}
// *next, look for clusters of hits in a scin plane. a cluster is a group of
// *adjacent scintillator hits separated by a non-firing scintillator.
// *Wwe count the number of three adjacent scintillators too. (A signle track
// *shouldn't fire three adjacent scintillators.
for(Int_t ip = 0; ip < fNPlanes; ip++ ) {
// Planes ip = 0 = 1X
// Planes ip = 2 = 2X
if (!fPlanes[ip]) return -1;
fNClust.push_back(0);
fThreeScin.push_back(0);
}
// *look for clusters in x planes... (16 scins) !this assume both x planes have same
// *number of scintillators.
Int_t icount;
for (Int_t ip = 0; ip < 3; ip +=2 ) {
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
} // Loop over paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 2; ipaddle++ ){
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
} // Loop over X plane
// *look for clusters in y planes... (10 scins) !this assume both y planes have same
// *number of scintillators.
for (Int_t ip = 1; ip < 4; ip +=2 ) {
// Planes ip = 1 = 1Y
// Planes ip = 3 = 2Y
if (!fPlanes[ip]) return -1;
icount = 0;
if ( fScinHitPaddle[ip][0] == 1 )
icount ++;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 1; ipaddle++ ){
// !look for number of clusters of 1 or more hits
if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
icount ++;
} // Loop over Y paddles
fNClust[ip] = icount;
icount = 0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 2; ipaddle++ ){
// !look for three or more adjacent hits
if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
icount ++;
} // Second loop over Y paddles
if ( icount > 0 )
fThreeScin[ip] = 1;
}// Loop over Y planes
// *now put some "tracking" like cuts on the hslopes, based only on scins...
// *by "slope" here, I mean the difference in the position of scin hits in two
// *like-planes. For example, a track that those great straight through will
// *have a slope of zero. If it moves one scin over from s1x to s2x it has an
// *x-slope of 1... I pick the minimum slope if there are multiple scin hits.
fBestXpScin = 100.0;
fBestYpScin = 100.0;
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0]; ipaddle++ ){
for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[0]; ipaddle2++ ){
if ( ( fScinHitPaddle[0][ipaddle] == 1 ) &&
( fScinHitPaddle[2][ipaddle2] == 1 ) ){
fSlope = TMath::Abs(ipaddle - ipaddle2);
if ( fSlope < fBestXpScin ) {
fBestXpScin = fSlope;
} // Second loop over X paddles
} // First loop over X paddles
for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1]; ipaddle++ ){
for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[1]; ipaddle2++ ){
if ( ( fScinHitPaddle[1][ipaddle] == 1 ) &&
( fScinHitPaddle[3][ipaddle2] == 1 ) ){
fSlope = TMath::Abs(ipaddle - ipaddle2);
if ( fSlope < fBestYpScin ) {
fBestYpScin = fSlope;
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
} // Second loop over Y paddles
} // First loop over Y paddles
// *next we mask out the edge scintillators, and look at triggers that happened
// *at the center of the acceptance. To change which scins are in the mask
// *change the values of h*loscin and h*hiscin in htracking.param
// fGoodScinHits = 0;
for (Int_t ifidx = fxLoScin[0]; ifidx < (Int_t) fxHiScin[0]; ifidx ++ ){
fGoodScinHitsX.push_back(0);
}
// *first x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[0]-1; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){
fHitSweet1X = 1;
fSweet1XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
for (Int_t ifidx = fxHiScin[0]; ifidx < (Int_t) fNPaddle[0]; ifidx ++ ){
if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
}
// *second x plane. first see if there are hits inside the scin region
for (Int_t ifidx = fxLoScin[1]-1; ifidx < fxHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){
fHitSweet2X = 1;
fSweet2XScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fxLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
for (Int_t ifidx = fxHiScin[1]; ifidx < (Int_t) fNPaddle[2]; ifidx ++ ){
if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
}
// *first y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[0]-1; ifidx < fyHiScin[0]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){
fHitSweet1Y = 1;
fSweet1YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[0]-1; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
for (Int_t ifidx = fyHiScin[0]; ifidx < (Int_t) fNPaddle[1]; ifidx ++ ){
if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
}
// *second y plane. first see if there are hits inside the scin region
for (Int_t ifidx = fyLoScin[1]-1; ifidx < fyHiScin[1]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){
fHitSweet2Y = 1;
fSweet2YScin = ifidx + 1;
}
}
// * next make sure nothing fired outside the good region
for (Int_t ifidx = 0; ifidx < fyLoScin[1]-1; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
for (Int_t ifidx = fyHiScin[1]; ifidx < (Int_t) fNPaddle[3]; ifidx ++ ){
if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
}
fTestSum = fHitSweet1X + fHitSweet2X + fHitSweet1Y + fHitSweet2Y;
// * now define a 3/4 or 4/4 trigger of only good scintillators the value
// * is specified in htracking.param...
if ( fTestSum > fTrackEffTestNScinPlanes ){
fGoodScinHits = 1;
for (Int_t ifidx = fxLoScin[0]; ifidx < fxHiScin[0]; ifidx ++ ){
if ( fSweet1XScin == ifidx )
fGoodScinHitsX[ifidx] = 1;
}
}
// * require front/back hodoscopes be close to each other
if ( ( fGoodScinHits == 1 ) && ( fTrackEffTestNScinPlanes == 4 ) ){
if ( TMath::Abs( fSweet1XScin - fSweet2XScin ) > 3 )
fGoodScinHits = 0;
if ( TMath::Abs( fSweet1YScin - fSweet2YScin ) > 2 )
fGoodScinHits = 0;
}
if ( !fChern || !fShower ) {
return 0;
}
if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
( fChern->GetCerNPE() > fNCerNPE ) )
fScinShould = 1;
if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
( fChern->GetCerNPE() > fNCerNPE ) && ( tracks.GetLast() + 1 > 0 ) ) {
fScinDid = 1;
Gabriel Niculescu
committed
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nPlane, Int_t nPaddle ) {
// GN: Return the index of a scintillator given the plane # and the paddle #
// This assumes that both planes and
// paddles start counting from 0!
// Result also counts from 0.
return fNPlanes*nPaddle+nPlane;
Gabriel Niculescu
committed
}
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nSide, Int_t nPlane, Int_t nPaddle ) {
return nSide*fMaxHodoScin+fNPlanes*nPaddle+nPlane-1;
}
//_____________________________________________________________________________
Double_t THcHodoscope::GetPathLengthCentral() {
return fPathLengthCentral;
}
ClassImp(THcHodoscope)
////////////////////////////////////////////////////////////////////////////////