Newer
Older
if (fdebuglinkstubs)
cout << "EPIC FAIL 3: Too many tracks found in THcDC::LinkStubs" << endl;
fNDCTracks = 0;
// Do something here to fail this event
return; // Max # of allowed tracks
}
}
}
///
if (fdebuglinkstubs) {
cout << " Number of tracks from link stubs = " << fNDCTracks << endl;
printf("%s %s \n", "Track", "Plane Wire ");
for (UInt_t itrack = 0; itrack < fNDCTracks; itrack++) {
THcDCTrack* tempTrack = (THcDCTrack*)(fDCTracks->At(itrack));
printf("%-5d ", itrack + 1);
for (Int_t ihit = 0; ihit < tempTrack->GetNHits(); ihit++) {
THcDCHit* hit = (THcDCHit*)(tempTrack->GetHit(ihit));
printf("%3d %3d", hit->GetPlaneNum(), hit->GetWireNum());
//_____________________________________________________________________________
/**
Primary track fitting routine
*/
// Number of ray parameters in focal plane.
Double_t dummychi2 = 1.0E4;
for (UInt_t itrack = 0; itrack < fNDCTracks; itrack++) {
// Double_t chi2 = dummychi2;
// Int_t htrack_fit_num = itrack;
THcDCTrack* theDCTrack = static_cast<THcDCTrack*>(fDCTracks->At(itrack));
Double_t coords[theDCTrack->GetNHits()];
Int_t planes[theDCTrack->GetNHits()];
for (Int_t ihit = 0; ihit < theDCTrack->GetNHits(); ihit++) {
THcDCHit* hit = theDCTrack->GetHit(ihit);
planes[ihit] = hit->GetPlaneNum() - 1;
if (fFixLR) {
if (fFixPropagationCorrection) {
coords[ihit] = hit->GetPos() + theDCTrack->GetHitLR(ihit) * theDCTrack->GetHitDist(ihit);
} else {
coords[ihit] = hit->GetPos() + theDCTrack->GetHitLR(ihit) * hit->GetDist();
}
} else {
if (fFixPropagationCorrection) {
coords[ihit] = hit->GetPos() + hit->GetLR() * theDCTrack->GetHitDist(ihit);
} else {
coords[ihit] = hit->GetCoord();
}
}
theDCTrack->SetNFree(theDCTrack->GetNHits() - NUM_FPRAY);
TVectorD TT(NUM_FPRAY);
TMatrixD AA(NUM_FPRAY, NUM_FPRAY);
for (Int_t irayp = 0; irayp < NUM_FPRAY; irayp++) {
TT[irayp] = 0.0;
for (Int_t ihit = 0; ihit < theDCTrack->GetNHits(); ihit++) {
THcDCHit* hit = theDCTrack->GetHit(ihit);
TT[irayp] += (coords[ihit] * fPlaneCoeffs[planes[ihit]][raycoeffmap[irayp]]) /
pow(hit->GetWireSigma(), 2);
// if (hit->GetPlaneNum()==5)
// {
// // cout << "Plane: " << hit->GetPlaneNum() << endl;
// //cout << "Wire: " <<hit->GetWireNum() << endl;
// //cout << "Sigma: " << hit->GetWireSigma() << endl;
// }
} // end hit loop
for (Int_t irayp = 0; irayp < NUM_FPRAY; irayp++) {
for (Int_t jrayp = 0; jrayp < NUM_FPRAY; jrayp++) {
AA[irayp][jrayp] = 0.0;
if (jrayp < irayp) { // Symmetric
AA[irayp][jrayp] = AA[jrayp][irayp];
} else {
for (Int_t ihit = 0; ihit < theDCTrack->GetNHits(); ihit++) {
THcDCHit* hit = theDCTrack->GetHit(ihit);
AA[irayp][jrayp] += fPlaneCoeffs[planes[ihit]][raycoeffmap[irayp]] *
fPlaneCoeffs[planes[ihit]][raycoeffmap[jrayp]] /
pow(hit->GetWireSigma(), 2);
} // end ihit loop
}
}
// Solve 4x4 equations
TVectorD dray(NUM_FPRAY);
// Should check that it is invertable
AA.Invert();
dray = AA * TT;
// cout << "DRAY: " << dray[0] << " "<< dray[1] << " "<< dray[2] << " "<< dray[3] << " "
// << endl; if(bad_determinant) {
// dray[0] = dray[1] = 10000.; dray[2] = dray[3] = 2.0;
// }
// Calculate hit coordinate for each plane for chi2 and efficiency
// calculations
// Make sure fCoords, fResiduals, and fDoubleResiduals are clear
for (Int_t iplane = 0; iplane < fNPlanes; iplane++) {
Double_t coord = 0.0;
for (Int_t ir = 0; ir < NUM_FPRAY; ir++) {
coord += fPlaneCoeffs[iplane][raycoeffmap[ir]] * dray[ir];
// cout << "ir = " << ir << ", dray[ir] = " << dray[ir] << endl;
}
theDCTrack->SetCoord(iplane, coord);
// Compute Chi2 and residuals
chi2 = 0.0;
for (Int_t ihit = 0; ihit < theDCTrack->GetNHits(); ihit++) {
Double_t residual = coords[ihit] - theDCTrack->GetCoord(planes[ihit]);
theDCTrack->SetResidual(planes[ihit], residual);
// double track_coord = theDCTrack->GetCoord(planes[ihit]);
// cout<<planes[ihit]<<"\t"<<track_coord<<"\t"<<coords[ihit]<<"\t"<<residual<<endl;
chi2 += pow(residual / hit->GetWireSigma(), 2);
theDCTrack->SetVector(dray[0], dray[1], 0.0, dray[2], dray[3]);
theDCTrack->SetChisq(chi2);
// calculate ray without a plane in track
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
for (Int_t ipl_hit = 0; ipl_hit < theDCTrack->GetNHits(); ipl_hit++) {
if (theDCTrack->GetNFree() > 0) {
TVectorD TT(NUM_FPRAY);
TMatrixD AA(NUM_FPRAY, NUM_FPRAY);
for (Int_t irayp = 0; irayp < NUM_FPRAY; irayp++) {
TT[irayp] = 0.0;
for (Int_t ihit = 0; ihit < theDCTrack->GetNHits(); ihit++) {
THcDCHit* hit = theDCTrack->GetHit(ihit);
if (ihit != ipl_hit) {
TT[irayp] += (coords[ihit] * fPlaneCoeffs[planes[ihit]][raycoeffmap[irayp]]) /
pow(hit->GetWireSigma(), 2);
}
}
}
for (Int_t irayp = 0; irayp < NUM_FPRAY; irayp++) {
for (Int_t jrayp = 0; jrayp < NUM_FPRAY; jrayp++) {
AA[irayp][jrayp] = 0.0;
if (jrayp < irayp) { // Symmetric
AA[irayp][jrayp] = AA[jrayp][irayp];
} else {
for (Int_t ihit = 0; ihit < theDCTrack->GetNHits(); ihit++) {
THcDCHit* hit = theDCTrack->GetHit(ihit);
if (ihit != ipl_hit) {
AA[irayp][jrayp] += fPlaneCoeffs[planes[ihit]][raycoeffmap[irayp]] *
fPlaneCoeffs[planes[ihit]][raycoeffmap[jrayp]] /
pow(hit->GetWireSigma(), 2);
}
}
}
}
}
//
// Solve 4x4 equations
// Should check that it is invertable
TVectorD dray(NUM_FPRAY);
AA.Invert();
dray = AA * TT;
Double_t coord = 0.0;
for (Int_t ir = 0; ir < NUM_FPRAY; ir++) {
coord += fPlaneCoeffs[planes[ipl_hit]][raycoeffmap[ir]] * dray[ir];
// cout << "ir = " << ir << ", dray[ir] = " << dray[ir] << endl;
}
Double_t residual = coords[ipl_hit] - coord;
theDCTrack->SetResidualExclPlane(planes[ipl_hit], residual);
// Calculate residuals for each chamber if in single stub mode
// and there was a track found in each chamber
// Specific for two chambers. Can/should it be generalized?
if (fSingleStub != 0) {
if (fNDCTracks == 2) {
THcDCTrack* theDCTrack1 = static_cast<THcDCTrack*>(fDCTracks->At(0));
THcDCTrack* theDCTrack2 = static_cast<THcDCTrack*>(fDCTracks->At(1));
// Int_t itrack=0;
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
Int_t ihit = 0;
THcDCHit* hit = theDCTrack1->GetHit(ihit);
Int_t plane = hit->GetPlaneNum() - 1;
Int_t chamber = fNChamber[plane];
if (chamber == 1) {
// itrack=1;
hit = theDCTrack2->GetHit(ihit);
plane = hit->GetPlaneNum() - 1;
chamber = fNChamber[plane];
if (chamber == 2) {
Double_t ray1[4];
Double_t ray2[4];
theDCTrack1->GetRay(ray1);
theDCTrack2->GetRay(ray2);
// itrack = 1;
// Loop over hits in second chamber
for (Int_t ihit = 0; ihit < theDCTrack2->GetNHits(); ihit++) {
// Calculate residual in second chamber from first chamber track
THcDCHit* hit = theDCTrack2->GetHit(ihit);
Int_t plane = hit->GetPlaneNum() - 1;
Double_t pos = DpsiFun(ray1, plane);
Double_t coord;
if (fFixLR) {
if (fFixPropagationCorrection) {
coord = hit->GetPos() + theDCTrack2->GetHitLR(ihit) * theDCTrack2->GetHitDist(ihit);
} else {
coord = hit->GetPos() + theDCTrack2->GetHitLR(ihit) * hit->GetDist();
}
} else {
if (fFixPropagationCorrection) {
coord = hit->GetPos() + hit->GetLR() * theDCTrack2->GetHitDist(ihit);
} else {
coord = hit->GetCoord();
}
}
theDCTrack1->SetDoubleResidual(plane, coord - pos);
// hdc_dbl_res(pln) = hdc_double_residual(1,pln) for hists
}
// itrack=0;
// Loop over hits in first chamber
for (Int_t ihit = 0; ihit < theDCTrack1->GetNHits(); ihit++) {
// Calculate residual in first chamber from second chamber track
THcDCHit* hit = theDCTrack1->GetHit(ihit);
Int_t plane = hit->GetPlaneNum() - 1;
Double_t pos = DpsiFun(ray1, plane);
Double_t coord;
if (fFixLR) {
if (fFixPropagationCorrection) {
coord = hit->GetPos() + theDCTrack1->GetHitLR(ihit) * theDCTrack1->GetHitDist(ihit);
} else {
coord = hit->GetPos() + theDCTrack1->GetHitLR(ihit) * hit->GetDist();
}
} else {
if (fFixPropagationCorrection) {
coord = hit->GetPos() + hit->GetLR() * theDCTrack1->GetHitDist(ihit);
} else {
coord = hit->GetCoord();
}
}
theDCTrack2->SetDoubleResidual(plane, coord - pos);
// hdc_dbl_res(pln) = hdc_double_residual(1,pln) for hists
}
}
printf("%5s %-14s %-14s %-14s %-14s %-10s %-10s \n", "Track", "x_t", "y_t", "xp_t", "yp_t",
"chi2", "DOF");
printf("%5s %-14s %-14s %-14s %-14s %-10s %-10s \n", " ", "[cm]", "[cm]", "[rad]", "[rad]",
" ", " ");
for (UInt_t itr = 0; itr < fNDCTracks; itr++) {
THcDCTrack* theDCTrack = static_cast<THcDCTrack*>(fDCTracks->At(itr));
printf("%-5d %14.6e %14.6e %14.6e %14.6e %10.3e %3d \n", itr + 1, theDCTrack->GetX(),
theDCTrack->GetY(), theDCTrack->GetXP(), theDCTrack->GetYP(), theDCTrack->GetChisq(),
theDCTrack->GetNFree());
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
for (UInt_t itr = 0; itr < fNDCTracks; itr++) {
printf("%s %5d \n", "Hit info for track number = ", itr + 1);
printf("%5s %-15s %-15s %-15s \n", "Plane", "WIRE_COORD", "Fit postiion", "Residual");
THcDCTrack* theDCTrack = static_cast<THcDCTrack*>(fDCTracks->At(itr));
for (Int_t ihit = 0; ihit < theDCTrack->GetNHits(); ihit++) {
THcDCHit* hit = theDCTrack->GetHit(ihit);
Int_t plane = hit->GetPlaneNum() - 1;
Double_t coords_temp;
if (fFixLR) {
if (fFixPropagationCorrection) {
coords_temp = hit->GetPos() + theDCTrack->GetHitLR(ihit) * theDCTrack->GetHitDist(ihit);
} else {
coords_temp = hit->GetPos() + theDCTrack->GetHitLR(ihit) * hit->GetDist();
}
} else {
if (fFixPropagationCorrection) {
coords_temp = hit->GetPos() + hit->GetLR() * theDCTrack->GetHitDist(ihit);
} else {
coords_temp = hit->GetCoord();
}
}
printf("%-5d %15.7e %15.7e %15.7e \n", plane + 1, coords_temp, theDCTrack->GetCoord(plane),
theDCTrack->GetResidual(plane));
Double_t THcDC::DpsiFun(Double_t ray[4], Int_t plane) {
this function calculates the psi coordinate of the intersection
of a ray (defined by ray) with a hms wire chamber plane. the geometry
of the plane is contained in the coeff array calculated in the
array hplane_coeff
Note it is call by MINUIT via H_FCNCHISQ and so uses double precision
variables
the ray is defined by
x = (z-zt)*tan(xp) + xt
y = (z-zt)*tan(yp) + yt
at some fixed value of zt*
ray(1) = xt
ray(2) = yt
ray(3) = tan(xp)
ray(4) = tan(yp)
*/
Double_t infinity = 1.0E+20;
Double_t cinfinity = 1 / infinity;
Double_t DpsiFun = ray[2] * ray[1] * fPlaneCoeffs[plane][0] +
ray[3] * ray[0] * fPlaneCoeffs[plane][1] + ray[2] * fPlaneCoeffs[plane][2] +
ray[3] * fPlaneCoeffs[plane][3] + ray[0] * fPlaneCoeffs[plane][4] +
ray[1] * fPlaneCoeffs[plane][5];
Double_t denom =
ray[2] * fPlaneCoeffs[plane][6] + ray[3] * fPlaneCoeffs[plane][7] + fPlaneCoeffs[plane][8];
if (TMath::Abs(denom) < cinfinity) {
//_____________________________________________________________________________
// EffCalc();
MissReport(Form("%s.%s", GetApparatus()->GetName(), GetName()));
}
//_____________________________________________________________________________
/**
Create, and initialize counters used to calculate
efficiencies. Register the counters in gHcParms so that the
variables can be used in end of run reports.
*/
delete[] fNChamHits;
fNChamHits = new Int_t[fNChambers];
delete[] fPlaneEvents;
fPlaneEvents = new Int_t[fNPlanes];
fTotEvents = 0;
fNChamHits[i] = 0;
}
gHcParms->Define(Form("%sdc_tot_events", fPrefix), "Total DC Events", fTotEvents);
gHcParms->Define(Form("%sdc_cham_hits[%d]", fPrefix, fNChambers),
"N events with hits per chamber", *fNChamHits);
gHcParms->Define(Form("%sdc_events[%d]", fPrefix, fNPlanes), "N events with hits per plane",
*fPlaneEvents);
}
//_____________________________________________________________________________
/**
Accumulate statistics for efficiency calculations
*/
fTotEvents++;
for (UInt_t i = 0; i < fNChambers; i++) {
if (fChambers[i]->GetNHits() > 0)
fNChamHits[i]++;
for (Int_t i = 0; i < fNPlanes; i++) {
if (fPlanes[i]->GetNHits() > 0)
fPlaneEvents[i]++;
}
return;
}
////////////////////////////////////////////////////////////////////////////////