Newer
Older
for(Int_t ihit=0;ihit < theDCTrack->GetNHits();ihit++) {
AA[irayp][jrayp] += fPlaneCoeffs[planes[ihit]][raycoeffmap[irayp]]*
fPlaneCoeffs[planes[ihit]][raycoeffmap[jrayp]]/
pow(fSigma[planes[ihit]],2);
}
}
}
// Solve 4x4 equations
TVectorD dray(NUM_FPRAY);
// Should check that it is invertable
AA.Invert();
dray = AA*TT;
// cout << "DRAY: " << dray[0] << " "<< dray[1] << " "<< dray[2] << " "<< dray[3] << " " << endl;
// if(bad_determinant) {
// dray[0] = dray[1] = 10000.; dray[2] = dray[3] = 2.0;
// }
// Calculate hit coordinate for each plane for chi2 and efficiency
// calculations
// Make sure fCoords, fResiduals, and fDoubleResiduals are clear
for(Int_t iplane=0;iplane < fNPlanes; iplane++) {
Double_t coord=0.0;
for(Int_t ir=0;ir<NUM_FPRAY;ir++) {
coord += fPlaneCoeffs[iplane][raycoeffmap[ir]]*dray[ir];
// cout << "ir = " << ir << ", dray[ir] = " << dray[ir] << endl;
}
theDCTrack->SetCoord(iplane,coord);
// Compute Chi2 and residuals
chi2 = 0.0;
for(Int_t ihit=0;ihit < theDCTrack->GetNHits();ihit++) {
Double_t residual = coords[ihit] - theDCTrack->GetCoord(planes[ihit]);
theDCTrack->SetResidual(planes[ihit], residual);
// double track_coord = theDCTrack->GetCoord(planes[ihit]);
//cout<<planes[ihit]<<"\t"<<track_coord<<"\t"<<coords[ihit]<<"\t"<<residual<<endl;
chi2 += pow(residual/fSigma[planes[ihit]],2);
theDCTrack->SetVector(dray[0], dray[1], 0.0, dray[2], dray[3]);
theDCTrack->SetChisq(chi2);
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
// calculate ray without a plane in track
for(Int_t ipl_hit=0;ipl_hit < theDCTrack->GetNHits();ipl_hit++) {
if(theDCTrack->GetNFree() > 0) {
TVectorD TT(NUM_FPRAY);
TMatrixD AA(NUM_FPRAY,NUM_FPRAY);
for(Int_t irayp=0;irayp<NUM_FPRAY;irayp++) {
TT[irayp] = 0.0;
for(Int_t ihit=0;ihit < theDCTrack->GetNHits();ihit++) {
if (ihit != ipl_hit) {
TT[irayp] += (coords[ihit]*
fPlaneCoeffs[planes[ihit]][raycoeffmap[irayp]])
/pow(fSigma[planes[ihit]],2);
}
}
}
for(Int_t irayp=0;irayp<NUM_FPRAY;irayp++) {
for(Int_t jrayp=0;jrayp<NUM_FPRAY;jrayp++) {
AA[irayp][jrayp] = 0.0;
if(jrayp<irayp) { // Symmetric
AA[irayp][jrayp] = AA[jrayp][irayp];
} else {
for(Int_t ihit=0;ihit < theDCTrack->GetNHits();ihit++) {
if (ihit != ipl_hit) {
AA[irayp][jrayp] += fPlaneCoeffs[planes[ihit]][raycoeffmap[irayp]]*
fPlaneCoeffs[planes[ihit]][raycoeffmap[jrayp]]/
pow(fSigma[planes[ihit]],2);
}
}
}
}
}
//
// Solve 4x4 equations
// Should check that it is invertable
TVectorD dray(NUM_FPRAY);
AA.Invert();
dray = AA*TT;
Double_t coord=0.0;
for(Int_t ir=0;ir<NUM_FPRAY;ir++) {
coord += fPlaneCoeffs[planes[ipl_hit]][raycoeffmap[ir]]*dray[ir];
// cout << "ir = " << ir << ", dray[ir] = " << dray[ir] << endl;
}
Double_t residual = coords[ipl_hit] - coord;
theDCTrack->SetResidualExclPlane(planes[ipl_hit], residual);
}
}
// Calculate residuals for each chamber if in single stub mode
// and there was a track found in each chamber
// Specific for two chambers. Can/should it be generalized?
if(fSingleStub != 0) {
if(fNDCTracks == 2) {
THcDCTrack *theDCTrack1 = static_cast<THcDCTrack*>( fDCTracks->At(0));
THcDCTrack *theDCTrack2 = static_cast<THcDCTrack*>( fDCTracks->At(1));
// Int_t itrack=0;
THcDCHit* hit=theDCTrack1->GetHit(ihit);
Int_t plane=hit->GetPlaneNum()-1;
Int_t chamber=fNChamber[plane];
if(chamber==1) {
hit=theDCTrack2->GetHit(ihit);
plane=hit->GetPlaneNum()-1;
chamber=fNChamber[plane];
if(chamber==2) {
Double_t ray1[4];
Double_t ray2[4];
theDCTrack1->GetRay(ray1);
theDCTrack2->GetRay(ray2);
for(Int_t ihit=0;ihit < theDCTrack2->GetNHits();ihit++) {
// Calculate residual in second chamber from first chamber track
THcDCHit* hit=theDCTrack2->GetHit(ihit);
Int_t plane=hit->GetPlaneNum()-1;
Double_t pos = DpsiFun(ray1,plane);
Double_t coord;
if(fFixLR) {
if(fFixPropagationCorrection) {
coord = hit->GetPos()
+ theDCTrack2->GetHitLR(ihit)*theDCTrack2->GetHitDist(ihit);
} else {
coord = hit->GetPos()
+ theDCTrack2->GetHitLR(ihit)*hit->GetDist();
}
} else {
if(fFixPropagationCorrection) {
coord = hit->GetPos()
+ hit->GetLR()*theDCTrack2->GetHitDist(ihit);
} else {
coord = hit->GetCoord();
}
}
theDCTrack1->SetDoubleResidual(plane,coord - pos);
// hdc_dbl_res(pln) = hdc_double_residual(1,pln) for hists
}
for(Int_t ihit=0;ihit < theDCTrack1->GetNHits();ihit++) {
// Calculate residual in first chamber from second chamber track
THcDCHit* hit=theDCTrack1->GetHit(ihit);
Int_t plane=hit->GetPlaneNum()-1;
Double_t pos = DpsiFun(ray1,plane);
Double_t coord;
if(fFixLR) {
if(fFixPropagationCorrection) {
coord = hit->GetPos()
+ theDCTrack1->GetHitLR(ihit)*theDCTrack1->GetHitDist(ihit);
} else {
coord = hit->GetPos()
+ theDCTrack1->GetHitLR(ihit)*hit->GetDist();
}
} else {
if(fFixPropagationCorrection) {
coord = hit->GetPos()
+ hit->GetLR()*theDCTrack1->GetHitDist(ihit);
} else {
coord = hit->GetCoord();
}
}
theDCTrack2->SetDoubleResidual(plane,coord - pos);
// hdc_dbl_res(pln) = hdc_double_residual(1,pln) for hists
}
}
}
}
}
//
if (fdebugtrackprint) {
printf("%5s %-14s %-14s %-14s %-14s %-10s %-10s \n","Track","x_t","y_t","xp_t","yp_t","chi2","DOF");
printf("%5s %-14s %-14s %-14s %-14s %-10s %-10s \n"," ","[cm]","[cm]","[rad]","[rad]"," "," ");
for(UInt_t itr=0;itr < fNDCTracks;itr++) {
THcDCTrack *theDCTrack = static_cast<THcDCTrack*>( fDCTracks->At(itr));
printf("%-5d %14.6e %14.6e %14.6e %14.6e %10.3e %3d \n", itr+1,theDCTrack->GetX(),theDCTrack->GetY(),theDCTrack->GetXP(),theDCTrack->GetYP(),theDCTrack->GetChisq(),theDCTrack->GetNFree());
}
for(UInt_t itr=0;itr < fNDCTracks;itr++) {
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
printf("%s %5d \n","Hit info for track number = ",itr+1);
printf("%5s %-15s %-15s %-15s \n","Plane","WIRE_COORD","Fit postiion","Residual");
THcDCTrack *theDCTrack = static_cast<THcDCTrack*>( fDCTracks->At(itr));
for(Int_t ihit=0;ihit < theDCTrack->GetNHits();ihit++) {
THcDCHit* hit=theDCTrack->GetHit(ihit);
Int_t plane=hit->GetPlaneNum()-1;
Double_t coords_temp;
if(fFixLR) {
if(fFixPropagationCorrection) {
coords_temp = hit->GetPos()
+ theDCTrack->GetHitLR(ihit)*theDCTrack->GetHitDist(ihit);
} else {
coords_temp = hit->GetPos()
+ theDCTrack->GetHitLR(ihit)*hit->GetDist();
}
} else {
if(fFixPropagationCorrection) {
coords_temp = hit->GetPos()
+ hit->GetLR()*theDCTrack->GetHitDist(ihit);
} else {
coords_temp = hit->GetCoord();
}
}
printf("%-5d %15.7e %15.7e %15.7e \n",plane+1,coords_temp,theDCTrack->GetCoord(plane),theDCTrack->GetResidual(plane));
}
}
}
//
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
Double_t THcDC::DpsiFun(Double_t ray[4], Int_t plane)
{
/*
this function calculates the psi coordinate of the intersection
of a ray (defined by ray) with a hms wire chamber plane. the geometry
of the plane is contained in the coeff array calculated in the
array hplane_coeff
Note it is call by MINUIT via H_FCNCHISQ and so uses double precision
variables
the ray is defined by
x = (z-zt)*tan(xp) + xt
y = (z-zt)*tan(yp) + yt
at some fixed value of zt*
ray(1) = xt
ray(2) = yt
ray(3) = tan(xp)
ray(4) = tan(yp)
*/
Double_t infinity = 1.0E+20;
Double_t cinfinity = 1/infinity;
Double_t DpsiFun =
ray[2]*ray[1]*fPlaneCoeffs[plane][0] +
ray[3]*ray[0]*fPlaneCoeffs[plane][1] +
ray[2]*fPlaneCoeffs[plane][2] +
ray[3]*fPlaneCoeffs[plane][3] +
ray[0]*fPlaneCoeffs[plane][4] +
ray[1]*fPlaneCoeffs[plane][5];
Double_t denom = ray[2]*fPlaneCoeffs[plane][6]
+ ray[3]*fPlaneCoeffs[plane][7]
+ fPlaneCoeffs[plane][8];
if(TMath::Abs(denom) < cinfinity) {
DpsiFun = infinity;
DpsiFun = DpsiFun/denom;
}
return(DpsiFun);
//_____________________________________________________________________________
Int_t THcDC::End(THaRunBase* run)
{
// EffCalc();
MissReport(Form("%s.%s", GetApparatus()->GetName(), GetName()));
}
//_____________________________________________________________________________
void THcDC::EffInit()
{
// Create, and initialize counters used to calculate
// efficiencies. Register the counters in gHcParms so that the
// variables can be used in end of run reports.
delete [] fNChamHits; fNChamHits = new Int_t [fNChambers];
delete [] fPlaneEvents; fPlaneEvents = new Int_t [fNPlanes];
fTotEvents = 0;
for(UInt_t i=0;i<fNChambers;i++) {
fNChamHits[i] = 0;
}
for(Int_t i=0;i<fNPlanes;i++) {
}
gHcParms->Define(Form("%sdc_tot_events",fPrefix),"Total DC Events",fTotEvents);
gHcParms->Define(Form("%sdc_cham_hits[%d]",fPrefix,fNChambers),"N events with hits per chamber",*fNChamHits);
gHcParms->Define(Form("%sdc_events[%d]",fPrefix,fNPlanes),"N events with hits per plane",*fPlaneEvents);
}
//_____________________________________________________________________________
void THcDC::Eff()
{
// Accumulate statistics for efficiency calculations
fTotEvents++;
for(UInt_t i=0;i<fNChambers;i++) {
if(fChambers[i]->GetNHits()>0) fNChamHits[i]++;
}
for(Int_t i=0;i<fNPlanes;i++) {
if(fPlanes[i]->GetNHits() > 0) fPlaneEvents[i]++;
}
return;
}
ClassImp(THcDC)
////////////////////////////////////////////////////////////////////////////////