Newer
Older
\brief Class for accumulating statistics for and calculating hodoscope efficiencies.
#include "THaEvData.h"
#include "THaCutList.h"
#include "VarDef.h"
#include "VarType.h"
#include "TClonesArray.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include "THcHodoEff.h"
#include "THaApparatus.h"
#include "THcHodoHit.h"
#include "THcGlobals.h"
#include "THcParmList.h"
using namespace std;
//_____________________________________________________________________________
THcHodoEff::THcHodoEff (const char *name, const char* description,
const char* hodname) :
hcana::ConfigLogging<THaPhysicsModule>(name, description), fName(hodname), fHod(NULL), fNevt(0)
{
}
//_____________________________________________________________________________
THcHodoEff::~THcHodoEff()
{
// Destructor
delete [] fPlanes; fPlanes = 0;
delete [] fPosZ; fPosZ = 0;
delete [] fSpacing; fSpacing = 0;
delete [] fCenterFirst; fCenterFirst = 0;
delete [] fNCounters; fNCounters = 0;
delete [] fHodoSlop; fHodoSlop = 0;
delete [] fStatTrkSum; fStatTrkSum = 0;
delete [] fStatAndSum; fStatAndSum = 0;
delete [] fStatAndEff; fStatAndEff = 0;
delete [] fHodoPosEffi; fHodoPosEffi = 0;
delete [] fHodoNegEffi; fHodoNegEffi = 0;
delete [] fHodoOrEffi; fHodoOrEffi = 0;
delete [] fHodoAndEffi; fHodoAndEffi = 0;
delete [] fStatTrk; fStatTrk = 0;
delete [] fHitPlane; fHitPlane = 0;
RemoveVariables();
}
//_____________________________________________________________________________
void THcHodoEff::Reset( Option_t* opt )
// Clear event-by-event data
{
Clear(opt);
}
//_____________________________________________________________________________
Int_t THcHodoEff::Begin( THaRunBase* )
{
// Start of analysis
if (!IsOK() ) return -1;
// Book any special histograms here
fNevt = 0;
// Clear all the accumulators here
for(Int_t ip=0;ip<fNPlanes;ip++) {
fHitPlane[ip] = 0;
for(Int_t ic=0;ic<fNCounters[ip];ic++) {
fStatPosHit[ip][ic] = 0;
fStatNegHit[ip][ic] = 0;
fStatAndHit[ip][ic] = 0;
fStatOrHit[ip][ic] = 0;
fBothGood[ip][ic] = 0;
fPosGood[ip][ic] = 0;
fNegGood[ip][ic] = 0;
for(Int_t idel=0;idel<20;idel++) {
fStatTrkDel[ip][ic][idel] = 0;
fStatAndHitDel[ip][ic][idel] = 0;
}
}
}
return 0;
}
//_____________________________________________________________________________
Int_t THcHodoEff::End( THaRunBase* )
{
// End of analysis
for(Int_t ip=0;ip<fNPlanes;ip++) {
fStatAndEff[ip]=0;
for(Int_t ic=0;ic<fNCounters[ip];ic++) {
fStatTrkSum[ip]+=fStatTrk[fHod->GetScinIndex(ip,ic)];
fStatAndSum[ip]+=fHodoAndEffi[fHod->GetScinIndex(ip,ic)];
}
if (fStatTrkSum[ip] !=0) fStatAndEff[ip]=float(fStatAndSum[ip])/float(fStatTrkSum[ip]);
}
Double_t p1=fStatAndEff[0];
Double_t p2=fStatAndEff[1];
Double_t p3=fStatAndEff[2];
Double_t p4=fStatAndEff[3];
// probability that ONLY the listed planes had triggers
Double_t p1234= p1*p2*p3*p4;
Double_t p123 = p1*p2*p3*(1.-p4);
Double_t p124 = p1*p2*(1.-p3)*p4;
Double_t p134 = p1*(1.-p2)*p3*p4;
Double_t p234 = (1.-p1)*p2*p3*p4;
fHodoEff_s1 = 1. - ((1.-p1)*(1.-p2));
fHodoEff_s2 = 1. - ((1.-p3)*(1.-p4));
fHodoEff_tof=fHodoEff_s1 * fHodoEff_s2;
fHodoEff_3_of_4=p1234+p123+p124+p134+p234;
fHodoEff_4_of_4=p1234;
return 0;
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoEff::Init( const TDatime& run_time )
{
// Initialize THcHodoEff physics module
// const char* const here = "Init";
// Standard initialization. Calls ReadDatabase(), ReadRunDatabase(),
// and DefineVariables() (see THaAnalysisObject::Init)
fHod = dynamic_cast<THcHodoscope*>
( FindModule( fName.Data(), "THcHodoscope"));
fSpectro = static_cast<THaSpectrometer*>(fHod->GetApparatus());
if( THaPhysicsModule::Init( run_time ) != kOK )
return fStatus;
//cout << "THcHodoEff::Init nplanes=" << fHod->GetNPlanes() << endl;
//cout << "THcHodoEff::Init Apparatus = " << fHod->GetName() <<
// " " <<
// (fHod->GetApparatus())->GetName() << endl;
_logger->info("THcHodoEff::Init nplanes={}", fHod->GetNPlanes());
_logger->info("THcHodoEff::Init Apparatus = {} {}", fHod->GetName(), (fHod->GetApparatus())->GetName());
return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcHodoEff::ReadDatabase( const TDatime& date )
{
// Read database. Gets variable needed for efficiency calculation
// Get # of planes and their z positions here.
fNPlanes = fHod->GetNPlanes();
fPlanes = new THcScintillatorPlane* [fNPlanes];
fPosZ = new Double_t[fNPlanes];
fSpacing = new Double_t[fNPlanes];
fCenterFirst = new Double_t[fNPlanes];
fNCounters = new Int_t[fNPlanes];
fHodoSlop = new Double_t[fNPlanes];
fStatTrkSum = new Int_t[fNPlanes];
fStatAndSum = new Int_t[fNPlanes];
fStatAndEff = new Double_t[fNPlanes];
Int_t maxcountersperplane=0;
fStatTrkSum[ip]=0.;
fStatAndSum[ip]=0.;
fStatAndEff[ip]=0.;
fPlanes[ip] = fHod->GetPlane(ip);
fPosZ[ip] = fPlanes[ip]->GetZpos() + 0.5*fPlanes[ip]->GetDzpos();
fSpacing[ip] = fPlanes[ip]->GetSpacing();
fCenterFirst[ip] = fPlanes[ip]->GetPosCenter(0) + fPlanes[ip]->GetPosOffset();
fNCounters[ip] = fPlanes[ip]->GetNelem();
maxcountersperplane = TMath::Max(maxcountersperplane,fNCounters[ip]);
Int_t totalpaddles = fNPlanes*maxcountersperplane;
fHodoPosEffi = new Int_t[totalpaddles];
fHodoNegEffi = new Int_t[totalpaddles];
fHodoOrEffi = new Int_t[totalpaddles];
fHodoAndEffi = new Int_t[totalpaddles];
fStatTrk = new Int_t[totalpaddles];
char prefix[2];
prefix[0] = tolower((fHod->GetApparatus())->GetName()[0]);
prefix[1] = '\0';
DBRequest list[]={
{"stat_slop", &fStatSlop, kDouble},
{"stat_maxchisq",&fMaxChisq, kDouble},
{"HodoEff_CalEnergy_Cut",&fHodoEff_CalEnergy_Cut, kDouble,0,1},
{"hodo_slop", fHodoSlop, kDouble, (UInt_t)fNPlanes},
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
//cout << "\n\nTHcHodoEff::ReadDatabase nplanes=" << fHod->GetNPlanes() << endl;
_logger->info("THcHodoEff::ReadDatabase nplanes={}", fHod->GetNPlanes());
// Setup statistics arrays
// Better method to put this in?
// These all need to be cleared in Begin
fHitPlane = new Int_t[fNPlanes];
fStatTrkDel.resize(fNPlanes);
fStatAndHitDel.resize(fNPlanes);
fStatPosHit.resize(fNPlanes);
fStatNegHit.resize(fNPlanes);
fStatAndHit.resize(fNPlanes);
fStatOrHit.resize(fNPlanes);
fBothGood.resize(fNPlanes);
fPosGood.resize(fNPlanes);
fNegGood.resize(fNPlanes);
for(Int_t ip=0;ip<fNPlanes;ip++) {
//cout << "Plane = " << ip + 1 << " counters = " << fNCounters[ip] << endl;
_logger->info("Plane = {} counters = {} ", ip + 1, fNCounters[ip]);
fStatTrkDel[ip].resize(fNCounters[ip]);
fStatAndHitDel[ip].resize(fNCounters[ip]);
fStatPosHit[ip].resize(fNCounters[ip]);
fStatNegHit[ip].resize(fNCounters[ip]);
fStatAndHit[ip].resize(fNCounters[ip]);
fStatOrHit[ip].resize(fNCounters[ip]);
fBothGood[ip].resize(fNCounters[ip]);
fPosGood[ip].resize(fNCounters[ip]);
fNegGood[ip].resize(fNCounters[ip]);
for(Int_t ic=0;ic<fNCounters[ip];ic++) {
fStatTrkDel[ip][ic].resize(20); // Max this settable
fStatAndHitDel[ip][ic].resize(20); // Max this settable
fHodoPosEffi[fHod->GetScinIndex(ip,ic)] = 0;
fHodoNegEffi[fHod->GetScinIndex(ip,ic)] = 0;
fHodoOrEffi[fHod->GetScinIndex(ip,ic)] = 0;
fHodoAndEffi[fHod->GetScinIndex(ip,ic)] = 0;
fStatTrk[fHod->GetScinIndex(ip,ic)] = 0;
}
// Int_t fHodPaddles = fNCounters[0];
// gHcParms->Define(Form("%shodo_pos_hits[%d][%d]",fPrefix,fNPlanes,fHodPaddles),
// "Golden track's pos pmt hit",*&fStatPosHit);
gHcParms->Define(Form("%shodo_pos_eff[%d]", prefix,totalpaddles), "Hodo positive effi",*fHodoPosEffi);
gHcParms->Define(Form("%shodo_neg_eff[%d]", prefix,totalpaddles), "Hodo negative effi",*fHodoNegEffi);
gHcParms->Define(Form("%shodo_or_eff[%d]", prefix,totalpaddles), "Hodo or effi", *fHodoOrEffi);
gHcParms->Define(Form("%shodo_and_eff[%d]", prefix,totalpaddles), "Hodo and effi", *fHodoAndEffi);
gHcParms->Define(Form("%shodo_plane_AND_eff[%d]",prefix,fNPlanes), "Hodo plane AND eff", *fStatAndEff);
gHcParms->Define(Form("%shodo_gold_hits[%d]",prefix,totalpaddles), "Hodo golden hits", *fStatTrk);
gHcParms->Define(Form("%shodo_s1XY_eff",prefix), "Efficiency for S1XY",fHodoEff_s1);
gHcParms->Define(Form("%shodo_s2XY_eff",prefix), "Efficiency for S2XY",fHodoEff_s2);
gHcParms->Define(Form("%shodo_stof_eff",prefix), "Efficiency for STOF",fHodoEff_tof);
gHcParms->Define(Form("%shodo_3_of_4_eff",prefix), "Efficiency for 3 of 4",fHodoEff_3_of_4);
gHcParms->Define(Form("%shodo_4_of_4_eff",prefix), "Efficiency for 4 of 4",fHodoEff_4_of_4);
return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoEff::DefineVariables( EMode mode )
{
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// fEffiTest = 0;
// gHcParms->Define(Form("hodoeffi"),"Testing effi",fEffiTest);
const RVarDef vars[] = {
// Move these into THcHallCSpectrometer using track fTracks
// {"effitestvar", "efficiency test var", "fEffiTest"},
// {"goldhodposhit", "pos pmt hit in hodo", "fStatPosHit"},
{ 0 }
};
return DefineVarsFromList( vars, mode );
// return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoEff::Process( const THaEvData& evdata )
{
// Accumulate statistics for efficiency
// const char* const here = "Process";
if( !IsOK() ) return -1;
// Project the golden track to each
// plane. Need to get track at Focal Plane, not tgt.
//
// Assumes that planes are X, Y, X, Y
THaTrack* theTrack = fSpectro->GetGoldenTrack();
// Since fSpectro knows the index of the golden track, we can
// get other information about the track from fSpectro.
// Need to remove the specialized stuff from fGoldenTrack
if(!theTrack) return 0;
Int_t trackIndex = theTrack->GetTrkNum()-1;
// May make these member variables
Double_t hitPos[fNPlanes];
Double_t hitDistance[fNPlanes];
Int_t hitCounter[fNPlanes];
Int_t checkHit[fNPlanes];
// Bool_t goodTdcBothSides[fNPlanes];
// Bool_t goodTdcOneSide[fNPlanes];
for(Int_t ip=0;ip<fNPlanes;ip++) {
// Should really have plane object self identify as X or Y
if(ip%2 == 0) { // X Plane
hitPos[ip] = theTrack->GetX() + theTrack->GetTheta()*fPosZ[ip];
TMath::Min(
TMath::Nint((hitPos[ip]-fCenterFirst[ip])/
fSpacing[ip]+1),fNCounters[ip] ),1);
hitDistance[ip] = hitPos[ip] - (fSpacing[ip]*(hitCounter[ip]-1) +
fCenterFirst[ip]);
} else { // Y Plane
hitPos[ip] = theTrack->GetY() + theTrack->GetPhi()*fPosZ[ip];
hitCounter[ip] = TMath::Max(
TMath::Min(
TMath::Nint((fCenterFirst[ip]-hitPos[ip])/
fSpacing[ip]+1), fNCounters[ip] ),1);
hitDistance[ip] = hitPos[ip] -(fCenterFirst[ip] -
}
// Fill dpos histograms and set checkHit for each plane.
// dpos stuff not implemented
// Why do dpos stuff here, does any other part need the dpos historgrams
// Look to VDCEff code to see how to create and fill histograms
for(Int_t ip=0;ip<fNPlanes;ip++) {
Int_t hitcounter=hitCounter[ip];
// goodTdcBothSides[ip] = kFALSE;
// goodTdcOneSide[ip] = kFALSE;
checkHit[ip] = 2;
Int_t nphits=fPlanes[ip]->GetNScinHits();
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for(Int_t ihit=0;ihit<nphits;ihit++) {
THcHodoHit* hit=(THcHodoHit*) hodoHits->At(ihit);
Int_t counter = hit->GetPaddleNumber();
if(counter == hitcounter) {
checkHit[ip] = 0;
} else {
if(TMath::Abs(counter-hitcounter) == 1 && checkHit[ip] != 0) {
checkHit[ip] = 1;
}
}
}
}
// Record position differences between track and center of scin
// and increment 'should have hit' counters
for(Int_t ip=0;ip<fNPlanes;ip++) {
// Int_t hitcounter = hitCounter[ip];
Double_t dist = hitDistance[ip];
if(TMath::Abs(dist) <= fStatSlop &&
theTrack->GetChi2()/theTrack->GetNDoF() <= fMaxChisq &&
fStatTrk[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
// Double_t delta = theTrack->GetDp();
// Int_t idel = TMath::Floor(delta+10.0);
// Should
// if(idel >=0 && idel < 20) {
// fStatTrkDel[ip][hitcounter][idel]++;
// }
// lookat[ip] = TRUE;
}
fHitPlane[ip] = 0;
// Is there a hit on or adjacent to paddle that track
// passes through?
// May collapse this loop into last
// record the hits as a "didhit" if track is near center of
// scintillator, the chisqared of the track is good and it is the
// first "didhit" in that plane.
for(Int_t ip=0;ip<fNPlanes;ip++) {
Int_t hitcounter = hitCounter[ip];
if (hitcounter>=fNCounters[ip]) hitcounter=fNCounters[ip]-1;
if (hitcounter<0) hitcounter=0;
Double_t dist = hitDistance[ip];
Int_t nphits=fPlanes[ip]->GetNScinHits();
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for(Int_t ihit=0;ihit<nphits;ihit++) {
THcHodoHit* hit=(THcHodoHit*) hodoHits->At(ihit);
Int_t counter = hit->GetPaddleNumber();
// Finds first best hit
Bool_t onTrack, goodScinTime, goodTdcNeg, goodTdcPos;
fHod->GetFlags(trackIndex,ip,ihit,
onTrack, goodScinTime, goodTdcNeg, goodTdcPos);
if(TMath::Abs(dist) <= fStatSlop &&
TMath::Abs(hitcounter-counter) <= checkHit[ip] &&
fHitPlane[ip] == 0 &&
theTrack->GetChi2()/theTrack->GetNDoF() <= fMaxChisq &&
fHitPlane[ip]++;
// Need to find out hgood_tdc_pos(igoldentrack,ihit) and neg
if(goodTdcPos) {
if(goodTdcNeg) { // Both fired
fStatPosHit[ip][hitcounter]++;
fStatNegHit[ip][hitcounter]++;
fStatAndHit[ip][hitcounter]++;
fStatOrHit[ip][hitcounter]++;
fHodoPosEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoNegEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoAndEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoOrEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
// Double_t delta = theTrack->GetDp();
// Int_t idel = TMath::Floor(delta+10.0);
// if(idel >=0 && idel < 20) {
// fStatAndHitDel[ip][hitcounter][idel]++;
// }
} else {
fStatPosHit[ip][hitcounter]++;
fStatOrHit[ip][hitcounter]++;
fHodoPosEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoOrEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fStatNegHit[ip][hitcounter]++;
fStatOrHit[ip][hitcounter]++;
fHodoNegEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoOrEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
// Increment pos/neg/both fired. Track independent, so
// no chisquared cut, but note that only scintillators on the
// track are examined.
if(goodTdcPos) {
if(goodTdcNeg) {
fBothGood[ip][hitcounter]++;
} else {
fPosGood[ip][hitcounter]++;
}
} else if (goodTdcNeg) {
fNegGood[ip][hitcounter]++;
}
// Determine if one or both PMTs had a good tdc
// if(goodTdcPos && goodTdcNeg) {
// goodTdcBothSides[ip] = kTRUE;
// }
// if(goodTdcPos || goodTdcNeg) {
// goodTdcOneSide[ip] = kTRUE;
// }
/*
For each plane, see of other 3 fired. This means that they were enough
to form a 3/4 trigger, and so the fraction of times this plane fired is
the plane trigger efficiency. NOTE: we only require a TDC hit, not a
TDC hit within the SCIN 3/4 trigger window, so high rates will make
this seem better than it is. Also, make sure we're not near the edge
of the hodoscope (at the last plane), using the same hhodo_slop param.
as for h_tof.f
NOTE ALSO: to make this check simpler, we are assuming that all planes
have identical active areas. y_scin = y_cent + y_offset, so shift track
position by offset for comparing to edges.
*/
// Need to add calculation and cuts on
// xatback and yatback in order to set the
// htrig_hododidflag, htrig_hodoshouldflag and otherthreehit flags
//
}
}
return 0;
}
//_____________________________________________________________________________
ClassImp(THcHodoEff)
////////////////////////////////////////////////////////////////////////////////