Newer
Older
///////////////////////////////////////////////////////////////////////////////
// //
// THcHodoEff //
// //
// Class for accumulating statistics for and calculating hodoscope //
// efficiencies. //
// //
// Moddled after VDCeff //
// For now trying to emulate work done in h_scin_eff/h_scin_eff_shutdown //
///////////////////////////////////////////////////////////////////////////////
#include "THaEvData.h"
#include "THaCutList.h"
#include "VarDef.h"
#include "VarType.h"
#include "TClonesArray.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include "THcHodoEff.h"
#include "THaApparatus.h"
#include "THcHodoHit.h"
#include "THcGlobals.h"
#include "THcParmList.h"
using namespace std;
//_____________________________________________________________________________
THcHodoEff::THcHodoEff (const char *name, const char* description,
const char* hodname) :
THaPhysicsModule(name, description), fName(hodname), fHod(NULL), fNevt(0)
{
}
//_____________________________________________________________________________
THcHodoEff::~THcHodoEff()
{
// Destructor
RemoveVariables();
}
//_____________________________________________________________________________
void THcHodoEff::Reset( Option_t* opt )
// Clear event-by-event data
{
Clear(opt);
}
//_____________________________________________________________________________
Int_t THcHodoEff::Begin( THaRunBase* )
{
// Start of analysis
if (!IsOK() ) return -1;
// Book any special histograms here
fNevt = 0;
// Clear all the accumulators here
for(Int_t ip=0;ip<fNPlanes;ip++) {
fHitPlane[ip] = 0;
for(Int_t ic=0;ic<fNCounters[ip];ic++) {
fStatPosHit[ip][ic] = 0;
fStatNegHit[ip][ic] = 0;
fStatAndHit[ip][ic] = 0;
fStatOrHit[ip][ic] = 0;
fBothGood[ip][ic] = 0;
fPosGood[ip][ic] = 0;
fNegGood[ip][ic] = 0;
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
for(Int_t idel=0;idel<20;idel++) {
fStatTrkDel[ip][ic][idel] = 0;
fStatAndHitDel[ip][ic][idel] = 0;
}
}
}
return 0;
}
//_____________________________________________________________________________
Int_t THcHodoEff::End( THaRunBase* )
{
// End of analysis
return 0;
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoEff::Init( const TDatime& run_time )
{
// Initialize THcHodoEff physics module
// const char* const here = "Init";
// Standard initialization. Calls ReadDatabase(), ReadRunDatabase(),
// and DefineVariables() (see THaAnalysisObject::Init)
fHod = dynamic_cast<THcHodoscope*>
( FindModule( fName.Data(), "THcHodoscope"));
fSpectro = static_cast<THaSpectrometer*>(fHod->GetApparatus());
if( THaPhysicsModule::Init( run_time ) != kOK )
return fStatus;
cout << "THcHodoEff::Init nplanes=" << fHod->GetNPlanes() << endl;
cout << "THcHodoEff::Init Apparatus = " << fHod->GetName() <<
" " <<
(fHod->GetApparatus())->GetName() << endl;
return fStatus = kOK;
}
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
//_____________________________________________________________________________
Int_t THcHodoEff::ReadDatabase( const TDatime& date )
{
// Read database. Gets variable needed for efficiency calculation
// Get # of planes and their z positions here.
fNPlanes = fHod->GetNPlanes();
fPlanes = new THcScintillatorPlane* [fNPlanes];
fPosZ = new Double_t[fNPlanes];
fSpacing = new Double_t[fNPlanes];
fCenterFirst = new Double_t[fNPlanes];
fNCounters = new Int_t[fNPlanes];
fHodoSlop = new Double_t[fNPlanes];
fHodoPosEffi = new Int_t[100];
fHodoNegEffi = new Int_t[100];
fHodoOrEffi = new Int_t[100];
fHodoAndEffi = new Int_t[100];
fStatTrk = new Int_t[100];
for(Int_t ip=0;ip<fNPlanes;ip++) {
fPlanes[ip] = fHod->GetPlane(ip);
fPosZ[ip] = fPlanes[ip]->GetZpos() + 0.5*fPlanes[ip]->GetDzpos();
fSpacing[ip] = fPlanes[ip]->GetSpacing();
fCenterFirst[ip] = fPlanes[ip]->GetPosCenter(0) + fPlanes[ip]->GetPosOffset();
fNCounters[ip] = fPlanes[ip]->GetNelem();
}
char prefix[2];
prefix[0] = tolower((fHod->GetApparatus())->GetName()[0]);
prefix[1] = '\0';
DBRequest list[]={
{"stat_slop", &fStatSlop, kDouble},
{"stat_maxchisq",&fMaxChisq, kDouble},
{"hodo_slop", fHodoSlop, kDouble, fNPlanes},
{0}
};
// fMaxShTrk = 0.05; // For cut on fraction of momentum seen in shower
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
cout << "\n\nTHcHodoEff::ReadDatabase nplanes=" << fHod->GetNPlanes() << endl;
// Setup statistics arrays
// Better method to put this in?
// These all need to be cleared in Begin
fHitPlane = new Int_t[fNPlanes];
fStatTrkDel.resize(fNPlanes);
fStatAndHitDel.resize(fNPlanes);
fStatPosHit.resize(fNPlanes);
fStatNegHit.resize(fNPlanes);
fStatAndHit.resize(fNPlanes);
fStatOrHit.resize(fNPlanes);
fBothGood.resize(fNPlanes);
fPosGood.resize(fNPlanes);
fNegGood.resize(fNPlanes);
for(Int_t ip=0;ip<fNPlanes;ip++) {
cout << "Plane = " << ip + 1 << " counters = " << fNCounters[ip] << endl;
fStatTrkDel[ip].resize(fNCounters[ip]);
fStatAndHitDel[ip].resize(fNCounters[ip]);
fStatPosHit[ip].resize(fNCounters[ip]);
fStatNegHit[ip].resize(fNCounters[ip]);
fStatAndHit[ip].resize(fNCounters[ip]);
fStatOrHit[ip].resize(fNCounters[ip]);
fBothGood[ip].resize(fNCounters[ip]);
fPosGood[ip].resize(fNCounters[ip]);
fNegGood[ip].resize(fNCounters[ip]);
for(Int_t ic=0;ic<fNCounters[ip];ic++) {
fStatTrkDel[ip][ic].resize(20); // Max this settable
fStatAndHitDel[ip][ic].resize(20); // Max this settable
fHodoPosEffi[fHod->GetScinIndex(ip,ic)] = 0;
fHodoNegEffi[fHod->GetScinIndex(ip,ic)] = 0;
fHodoOrEffi[fHod->GetScinIndex(ip,ic)] = 0;
fHodoAndEffi[fHod->GetScinIndex(ip,ic)] = 0;
fStatTrk[fHod->GetScinIndex(ip,ic)] = 0;
}
}
// Int_t fHodPaddles = fNCounters[0];
// gHcParms->Define(Form("%shodo_pos_hits[%d][%d]",fPrefix,fNPlanes,fHodPaddles),
// "Golden track's pos pmt hit",*&fStatPosHit);
Int_t fTotalPaddles = 100;
gHcParms->Define(Form("%shodo_pos_eff[%d]", prefix,fTotalPaddles), "Hodo positive effi",*fHodoPosEffi);
gHcParms->Define(Form("%shodo_neg_eff[%d]", prefix,fTotalPaddles), "Hodo negative effi",*fHodoNegEffi);
gHcParms->Define(Form("%shodo_or_eff[%d]", prefix,fTotalPaddles), "Hodo or effi", *fHodoOrEffi);
gHcParms->Define(Form("%shodo_and_eff[%d]", prefix,fTotalPaddles), "Hodo and effi", *fHodoAndEffi);
gHcParms->Define(Form("%shodo_gold_hits[%d]",prefix,fTotalPaddles), "Hodo golden hits", *fStatTrk);
return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoEff::DefineVariables( EMode mode )
{
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
fEffiTest = 0;
gHcParms->Define(Form("hodoeffi"),"Testing effi",fEffiTest);
const RVarDef vars[] = {
// Move these into THcHallCSpectrometer using track fTracks
// {"effitestvar", "efficiency test var", "fEffiTest"},
// {"goldhodposhit", "pos pmt hit in hodo", "fStatPosHit"},
{ 0 }
};
return DefineVarsFromList( vars, mode );
// return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoEff::Process( const THaEvData& evdata )
{
// Accumulate statistics for efficiency
// const char* const here = "Process";
if( !IsOK() ) return -1;
// Project the golden track to each
// plane. Need to get track at Focal Plane, not tgt.
//
// Assumes that planes are X, Y, X, Y
THaTrack* theTrack = fSpectro->GetGoldenTrack();
// Since fSpectro knows the index of the golden track, we can
// get other information about the track from fSpectro.
// Need to remove the specialized stuff from fGoldenTrack
if(!theTrack) return 0;
Int_t trackIndex = theTrack->GetTrkNum()-1;
// May make these member variables
Double_t hitPos[fNPlanes];
Double_t hitDistance[fNPlanes];
Int_t hitCounter[fNPlanes];
Int_t checkHit[fNPlanes];
Bool_t goodTdcBothSides[fNPlanes];
Bool_t goodTdcOneSide[fNPlanes];
for(Int_t ip=0;ip<fNPlanes;ip++) {
// Should really have plane object self identify as X or Y
if(ip%2 == 0) { // X Plane
hitPos[ip] = theTrack->GetX() + theTrack->GetTheta()*fPosZ[ip];
hitCounter[ip] = TMath::Max(
TMath::Min(
TMath::Nint((hitPos[ip]-fCenterFirst[ip])/
fSpacing[ip]+1),
TMath::Nint( fNCounters[ip] )),1);
hitDistance[ip] = hitPos[ip] - (fSpacing[ip]*(hitCounter[ip]-1) +
fCenterFirst[ip]);
} else { // Y Plane
hitPos[ip] = theTrack->GetY() + theTrack->GetPhi()*fPosZ[ip];
hitCounter[ip] = TMath::Max(
TMath::Min(
TMath::Nint((fCenterFirst[ip]-hitPos[ip])/
fSpacing[ip]+1),
TMath::Nint( fNCounters[ip] )),1);
hitDistance[ip] = hitPos[ip] -(fCenterFirst[ip] -
fSpacing[ip]*(hitCounter[ip]-1));
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
}
// Fill dpos histograms and set checkHit for each plane.
// dpos stuff not implemented
// Why do dpos stuff here, does any other part need the dpos historgrams
// Look to VDCEff code to see how to create and fill histograms
for(Int_t ip=0;ip<fNPlanes;ip++) {
Int_t hitcounter=hitCounter[ip];
goodTdcBothSides[ip] = kFALSE;
goodTdcOneSide[ip] = kFALSE;
checkHit[ip] = 2;
Int_t nphits=fPlanes[ip]->GetNScinHits();
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for(Int_t ihit=0;ihit<nphits;ihit++) {
THcHodoHit* hit=(THcHodoHit*) hodoHits->At(ihit);
Int_t counter = hit->GetPaddleNumber();
if(counter == hitcounter) {
checkHit[ip] = 0;
} else {
if(TMath::Abs(counter-hitcounter) == 1 && checkHit[ip] != 0) {
checkHit[ip] = 1;
}
}
}
}
// Record position differences between track and center of scin
// and increment 'should have hit' counters
for(Int_t ip=0;ip<fNPlanes;ip++) {
Int_t hitcounter = hitCounter[ip];
Double_t dist = hitDistance[ip];
if(TMath::Abs(dist) <= fStatSlop &&
theTrack->GetChi2()/theTrack->GetNDoF() <= fMaxChisq &&
theTrack->GetEnergy() >= 0.05 )
{
fStatTrk[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
Double_t delta = theTrack->GetDp();
Int_t idel = TMath::Floor(delta+10.0);
// Should
// if(idel >=0 && idel < 20) {
// fStatTrkDel[ip][hitcounter][idel]++;
// }
// lookat[ip] = TRUE;
}
fHitPlane[ip] = 0;
// Is there a hit on or adjacent to paddle that track
// passes through?
// May collapse this loop into last
// record the hits as a "didhit" if track is near center of
// scintillator, the chisqared of the track is good and it is the
// first "didhit" in that plane.
for(Int_t ip=0;ip<fNPlanes;ip++) {
Int_t hitcounter = hitCounter[ip];
Double_t dist = hitDistance[ip];
Int_t nphits=fPlanes[ip]->GetNScinHits();
TClonesArray* hodoHits = fPlanes[ip]->GetHits();
for(Int_t ihit=0;ihit<nphits;ihit++) {
THcHodoHit* hit=(THcHodoHit*) hodoHits->At(ihit);
Int_t counter = hit->GetPaddleNumber();
// Finds first best hit
Bool_t onTrack, goodScinTime, goodTdcNeg, goodTdcPos;
fHod->GetFlags(trackIndex,ip,ihit,
onTrack, goodScinTime, goodTdcNeg, goodTdcPos);
if(TMath::Abs(dist) <= fStatSlop &&
TMath::Abs(hitcounter-counter) <= checkHit[ip] &&
fHitPlane[ip] == 0 &&
theTrack->GetChi2()/theTrack->GetNDoF() <= fMaxChisq &&
theTrack->GetEnergy() >= 0.05 ) {
fHitPlane[ip]++;
// Need to find out hgood_tdc_pos(igoldentrack,ihit) and neg
if(goodTdcPos) {
if(goodTdcNeg) { // Both fired
fStatPosHit[ip][hitcounter]++;
fStatNegHit[ip][hitcounter]++;
fStatAndHit[ip][hitcounter]++;
fStatOrHit[ip][hitcounter]++;
fHodoPosEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoNegEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoAndEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoOrEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
Double_t delta = theTrack->GetDp();
// Int_t idel = TMath::Floor(delta+10.0);
// if(idel >=0 && idel < 20) {
// fStatAndHitDel[ip][hitcounter][idel]++;
// }
} else {
fStatPosHit[ip][hitcounter]++;
fStatOrHit[ip][hitcounter]++;
fHodoPosEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoOrEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fStatNegHit[ip][hitcounter]++;
fStatOrHit[ip][hitcounter]++;
fHodoNegEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
fHodoOrEffi[fHod->GetScinIndex(ip,hitCounter[ip]-1)]++;
// Increment pos/neg/both fired. Track independent, so
// no chisquared cut, but note that only scintillators on the
// track are examined.
if(goodTdcPos) {
if(goodTdcNeg) {
fBothGood[ip][hitcounter]++;
} else {
fPosGood[ip][hitcounter]++;
}
} else if (goodTdcNeg) {
fNegGood[ip][hitcounter]++;
}
// Determine if one or both PMTs had a good tdc
if(goodTdcPos && goodTdcNeg) {
goodTdcBothSides[ip] = kTRUE;
}
if(goodTdcPos || goodTdcNeg) {
goodTdcOneSide[ip] = kTRUE;
/*
For each plane, see of other 3 fired. This means that they were enough
to form a 3/4 trigger, and so the fraction of times this plane fired is
the plane trigger efficiency. NOTE: we only require a TDC hit, not a
TDC hit within the SCIN 3/4 trigger window, so high rates will make
this seem better than it is. Also, make sure we're not near the edge
of the hodoscope (at the last plane), using the same hhodo_slop param.
as for h_tof.f
NOTE ALSO: to make this check simpler, we are assuming that all planes
have identical active areas. y_scin = y_cent + y_offset, so shift track
position by offset for comparing to edges.
*/
// Need to add calculation and cuts on
// xatback and yatback in order to set the
// htrig_hododidflag, htrig_hodoshouldflag and otherthreehit flags
//
++fNevt;
}
}
return 0;
}
//_____________________________________________________________________________
ClassImp(THcHodoEff)
////////////////////////////////////////////////////////////////////////////////