Newer
Older
///////////////////////////////////////////////////////////////////////////////
// //
// THcDC //
// //
// Class for a generic hodoscope consisting of multiple //
// planes with multiple paddles with phototubes on both ends. //
// This differs from Hall A scintillator class in that it is the whole //
// hodoscope array, not just one plane. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "THcDC.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "THcDetectorMap.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"
#include "TVectorD.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
//_____________________________________________________________________________
THcDC::THcDC(
const char* name, const char* description,
THaApparatus* apparatus ) :
THaTrackingDetector(name,description,apparatus)
{
// Constructor
// fTrackProj = new TClonesArray( "THaTrackProj", 5 );
fNPlanes = 0; // No planes until we make them
fXCenter = NULL;
fYCenter = NULL;
fMinHits = NULL;
fMaxHits = NULL;
fMinCombos = NULL;
fSpace_Point_Criterion2 = NULL;
fTdcWinMin = NULL;
fTdcWinMax = NULL;
fCentralTime = NULL;
fNWires = NULL;
fNChamber = NULL;
fWireOrder = NULL;
fDriftTimeSign = NULL;
fZPos = NULL;
fAlphaAngle = NULL;
fBetaAngle = NULL;
fGammaAngle = NULL;
fPitch = NULL;
fCentralWire = NULL;
fPlaneTimeZero = NULL;
fSigma = NULL;
}
//_____________________________________________________________________________
void THcDC::Setup(const char* name, const char* description)
{
static const char* const here = "Setup";
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
char prefix[2];
char parname[100];
THaApparatus *app = GetApparatus();
if(app) {
cout << app->GetName() << endl;
} else {
cout << "No apparatus found" << endl;
}
prefix[0]=tolower(app->GetName()[0]);
prefix[1]='\0';
string planenamelist;
DBRequest list[]={
{"dc_num_planes",&fNPlanes, kInt},
{"dc_num_chambers",&fNChambers, kInt},
{"dc_tdc_time_per_channel",&fNSperChan, kDouble},
{"dc_wire_velocity",&fWireVelocity,kDouble},
{"dc_plane_names",&planenamelist, kString},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
cout << planenamelist << endl;
cout << "Drift Chambers: " << fNPlanes << " planes in " << fNChambers << " chambers" << endl;
vector<string> plane_names = vsplit(planenamelist);
if(plane_names.size() != (UInt_t) fNPlanes) {
cout << "ERROR: Number of planes " << fNPlanes << " doesn't agree with number of plane names " << plane_names.size() << endl;
// Should quit. Is there an official way to quit?
}
fPlaneNames = new char* [fNPlanes];
for(Int_t i=0;i<fNPlanes;i++) {
fPlaneNames[i] = new char[plane_names[i].length()];
strcpy(fPlaneNames[i], plane_names[i].c_str());
}
char *desc = new char[strlen(description)+100];
fPlanes.clear();
for(Int_t i=0;i<fNPlanes;i++) {
strcpy(desc, description);
strcat(desc, " Plane ");
strcat(desc, fPlaneNames[i]);
THcDriftChamberPlane* newplane = new THcDriftChamberPlane(fPlaneNames[i], desc, i+1, this);
if( !newplane or newplane->IsZombie() ) {
Error( Here(here), "Error creating Drift Chamber plane %s. Call expert.", name);
MakeZombie();
return;
}
fPlanes.push_back(newplane);
newplane->SetDebug(fDebug);
cout << "Created Drift Chamber Plane " << fPlaneNames[i] << ", " << desc << endl;
}
fChambers.clear();
for(Int_t i=0;i<fNChambers;i++) {
sprintf(desc,"%s Chamber %d",description, i+1);
// Should construct a better chamber name
THcDriftChamber* newchamber = new THcDriftChamber(desc, desc, i+1, this);
fChambers.push_back(newchamber);
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
cout << "Created Drift Chamber " << i+1 << ", " << desc << endl;
}
}
//_____________________________________________________________________________
THcDC::THcDC( ) :
THaTrackingDetector()
{
// Constructor
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcDC::Init( const TDatime& date )
{
static const char* const here = "Init()";
Setup(GetName(), GetTitle()); // Create the subdetectors here
// Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map
THcHitList::InitHitList(fDetMap, "THcRawDCHit", 1000);
EStatus status;
// This triggers call of ReadDatabase and DefineVariables
if( (status = THaTrackingDetector::Init( date )) )
return fStatus=status;
// Initialize planes and add them to chambers
for(Int_t ip=0;ip<fNPlanes;ip++) {
if((status = fPlanes[ip]->Init( date ))) {
return fStatus=status;
} else {
Int_t chamber=fNChamber[ip];
fChambers[chamber-1]->AddPlane(fPlanes[ip]);
}
}
// Initialize chambers
for(Int_t ic=0;ic<fNChambers;ic++) {
if((status = fChambers[ic]->Init ( date ))) {
return fStatus=status;
}
}
// Retrieve the fiting coefficients
fPlaneCoeffs = new Double_t* [fNPlanes];
for(Int_t ip=0; ip<fNPlanes;ip++) {
fPlaneCoeffs[ip] = fPlanes[ip]->GetPlaneCoef();
}
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Replace with what we need for Hall C
// const DataDest tmp[NDEST] = {
// { &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
// { &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
// };
// memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );
// Will need to determine which apparatus it belongs to and use the
// appropriate detector ID in the FillMap call
char EngineDID[4];
EngineDID[0] = toupper(GetApparatus()->GetName()[0]);
EngineDID[1] = 'D';
EngineDID[2] = 'C';
EngineDID[3] = '\0';
if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) {
Error( Here(here), "Error filling detectormap for %s.",
EngineDID);
return kInitError;
}
return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcDC::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
// static const char* const here = "ReadDatabase()";
char prefix[2];
char parname[100];
// Read data from database
// Pull values from the THcParmList instead of reading a database
// file like Hall A does.
// We will probably want to add some kind of method to gHcParms to allow
// bulk retrieval of parameters of interest.
// Will need to determine which spectrometer in order to construct
// the parameter names (e.g. hscin_1x_nr vs. sscin_1x_nr)
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
delete [] fXCenter; fXCenter = new Double_t [fNChambers];
delete [] fYCenter; fYCenter = new Double_t [fNChambers];
delete [] fMinHits; fMinHits = new Int_t [fNChambers];
delete [] fMaxHits; fMaxHits = new Int_t [fNChambers];
delete [] fMinCombos; fMinCombos = new Int_t [fNChambers];
delete [] fSpace_Point_Criterion2; fSpace_Point_Criterion2 = new Double_t [fNChambers];
delete [] fTdcWinMin; fTdcWinMin = new Int_t [fNPlanes];
delete [] fTdcWinMax; fTdcWinMax = new Int_t [fNPlanes];
delete [] fCentralTime; fCentralTime = new Int_t [fNPlanes];
delete [] fNWires; fNWires = new Int_t [fNPlanes];
delete [] fNChamber; fNChamber = new Int_t [fNPlanes]; // Which chamber is this plane
delete [] fWireOrder; fWireOrder = new Int_t [fNPlanes]; // Wire readout order
delete [] fDriftTimeSign; fDriftTimeSign = new Int_t [fNPlanes];
delete [] fZPos; fZPos = new Double_t [fNPlanes];
delete [] fAlphaAngle; fAlphaAngle = new Double_t [fNPlanes];
delete [] fBetaAngle; fBetaAngle = new Double_t [fNPlanes];
delete [] fGammaAngle; fGammaAngle = new Double_t [fNPlanes];
delete [] fPitch; fPitch = new Double_t [fNPlanes];
delete [] fCentralWire; fCentralWire = new Double_t [fNPlanes];
delete [] fPlaneTimeZero; fPlaneTimeZero = new Double_t [fNPlanes];
delete [] fSigma; fSigma = new Double_t [fNPlanes];
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
DBRequest list[]={
{"dc_tdc_time_per_channel",&fNSperChan, kDouble},
{"dc_wire_velocity",&fWireVelocity,kDouble},
{"dc_xcenter", fXCenter, kDouble, fNChambers},
{"dc_ycenter", fYCenter, kDouble, fNChambers},
{"min_hit", fMinHits, kInt, fNChambers},
{"max_pr_hits", fMaxHits, kInt, fNChambers},
{"min_combos", fMinCombos, kInt, fNChambers},
{"space_point_criterion", fSpace_Point_Criterion2, kDouble, fNChambers},
{"dc_tdc_min_win", fTdcWinMin, kInt, fNPlanes},
{"dc_tdc_max_win", fTdcWinMax, kInt, fNPlanes},
{"dc_central_time", fCentralTime, kInt, fNPlanes},
{"dc_nrwire", fNWires, kInt, fNPlanes},
{"dc_chamber_planes", fNChamber, kInt, fNPlanes},
{"dc_wire_counting", fWireOrder, kInt, fNPlanes},
{"dc_drifttime_sign", fDriftTimeSign, kInt, fNPlanes},
{"dc_zpos", fZPos, kDouble, fNPlanes},
{"dc_alpha_angle", fAlphaAngle, kDouble, fNPlanes},
{"dc_beta_angle", fBetaAngle, kDouble, fNPlanes},
{"dc_gamma_angle", fGammaAngle, kDouble, fNPlanes},
{"dc_pitch", fPitch, kDouble, fNPlanes},
{"dc_central_wire", fCentralWire, kDouble, fNPlanes},
{"dc_plane_time_zero", fPlaneTimeZero, kDouble, fNPlanes},
{"dc_sigma", fSigma, kDouble, fNPlanes},
{"single_stub",&fSingleStub, kInt},
{"ntracks_max_fp", &fNTracksMaxFP, kInt},
{"xt_track_criterion", &fXtTrCriterion, kDouble},
{"yt_track_criterion", &fYtTrCriterion, kDouble},
{"xpt_track_criterion", &fXptTrCriterion, kDouble},
{"ypt_track_criterion", &fYptTrCriterion, kDouble},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
if(fNTracksMaxFP <= 0) fNTracksMaxFP = 10;
// if(fNTracksMaxFP > HNRACKS_MAX) fNTracksMaxFP = NHTRACKS_MAX;
if (fDebugDC) cout << "Plane counts:";
if (fDebugDC) cout << " " << fNWires[i];
if (fDebugDC) cout << endl;
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t THcDC::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
RVarDef vars[] = {
{ "nhit", "Number of DC hits", "fNhits" },
{ 0 }
};
return DefineVarsFromList( vars, mode );
}
//_____________________________________________________________________________
THcDC::~THcDC()
{
// Destructor. Remove variables from global list.
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
// Delete the plane objects
for (vector<THcDriftChamberPlane*>::iterator ip = fPlanes.begin();
ip != fPlanes.end(); ip++) delete *ip;
// Delete the chamber objects
for (vector<THcDriftChamber*>::iterator ip = fChambers.begin();
ip != fChambers.end(); ip++) delete *ip;
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
void THcDC::DeleteArrays()
{
// Delete member arrays. Used by destructor.
delete [] fXCenter; fXCenter = NULL;
delete [] fYCenter; fYCenter = NULL;
delete [] fMinHits; fMinHits = NULL;
delete [] fMaxHits; fMaxHits = NULL;
delete [] fMinCombos; fMinCombos = NULL;
delete [] fSpace_Point_Criterion2; fSpace_Point_Criterion2 = NULL;
delete [] fTdcWinMin; fTdcWinMin = NULL;
delete [] fTdcWinMax; fTdcWinMax = NULL;
delete [] fCentralTime; fCentralTime = NULL;
delete [] fNWires; fNWires = NULL;
delete [] fNChamber; fNChamber = NULL;
delete [] fWireOrder; fWireOrder = NULL;
delete [] fDriftTimeSign; fDriftTimeSign = NULL;
delete [] fZPos; fZPos = NULL;
delete [] fAlphaAngle; fAlphaAngle = NULL;
delete [] fBetaAngle; fBetaAngle = NULL;
delete [] fGammaAngle; fGammaAngle = NULL;
delete [] fPitch; fPitch = NULL;
delete [] fCentralWire; fCentralWire = NULL;
delete [] fPlaneTimeZero; fPlaneTimeZero = NULL;
delete [] fSigma; fSigma = NULL;
}
//_____________________________________________________________________________
inline
void THcDC::ClearEvent()
{
// Reset per-event data.
fNhits = 0;
for(Int_t i=0;i<fNChambers;i++) {
fChambers[i]->Clear();
}
// fTrackProj->Clear();
}
//_____________________________________________________________________________
Int_t THcDC::Decode( const THaEvData& evdata )
{
ClearEvent();
Int_t num_event = evdata.GetEvNum();
if (fDebugDC) cout << " event num = " << num_event << endl;
// Get the Hall C style hitlist (fRawHitList) for this event
fNhits = THcHitList::DecodeToHitList(evdata);
// Let each plane get its hits
Int_t nexthit = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
nexthit = fPlanes[ip]->ProcessHits(fRawHitList, nexthit);
}
// Let each chamber get its hits
for(Int_t ic=0;ic<fNChambers;ic++) {
fChambers[ic]->ProcessHits();
}
#if 0
// fRawHitList is TClones array of THcRawDCHit objects
for(Int_t ihit = 0; ihit < fNRawHits ; ihit++) {
THcRawDCHit* hit = (THcRawDCHit *) fRawHitList->At(ihit);
// if (fDebugDC) cout << ihit << " : " << hit->fPlane << ":" << hit->fCounter << " : "
// << endl;
for(Int_t imhit = 0; imhit < hit->fNHits; imhit++) {
// if (fDebugDC) cout << " " << imhit << " " << hit->fTDC[imhit]
// if (fDebugDC) cout << endl;
#endif
return fNhits;
}
//_____________________________________________________________________________
Int_t THcDC::ApplyCorrections( void )
{
return(0);
}
//_____________________________________________________________________________
Int_t THcDC::CoarseTrack( TClonesArray& /* tracks */ )
{
// Calculation of coordinates of particle track cross point with scint
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::CoarseTrack() are used.
//
// Apply corrections and reconstruct the complete hits.
//
// static const Double_t sqrt2 = TMath::Sqrt(2.);
for(Int_t i=0;i<fNChambers;i++) {
fChambers[i]->FindSpacePoints();
Stephen A. Wood
committed
fChambers[i]->CorrectHitTimes();
fChambers[i]->LeftRight();
// Now link the stubs between chambers
LinkStubs();
if(ntracks_fp > 0) TrackFit();
// Check for internal TrackFit errors
// Histogram the focal plane tracks
// Histograms made in h_fill_dc_fp_hist
// The following are one hist per track
// x_fp
// y_fp
// xp_fp
// yp_fp
// log chi2
// reduced chi2
// For each plane:
// double residual
// single residual
// Will need to make a track class that has all these things. Need to
// move the structure out of THcDC into it's own class which should probably
// inherit from a podd track class
ApplyCorrections();
return 0;
}
//_____________________________________________________________________________
Int_t THcDC::FineTrack( TClonesArray& tracks )
{
// Reconstruct coordinates of particle track cross point with scintillator
// plane, and copy the data into the following local data structure:
//
// Units of measurements are meters.
// Calculation of coordinates of particle track cross point with scint
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::FineTrack() are used.
return 0;
}
void THcDC::LinkStubs()
{
// The logic is
// 0) Put all space points in a single list
// 1) loop over all space points as seeds isp1
// 2) Check if this space point is all ready in a track
// 3) loop over all succeeding space pointss isp2
// 4) check if there is a track-criterion match
// either add to existing track
// or if there is another point in same chamber
// make a copy containing isp2 rather than
// other point in same chamber
// 5) If hsingle_stub is set, make a track of all single
// stubs.
std::vector<THcSpacePoint*> fSp;
Int_t fNSp=0;
fSp.clear();
fSp.reserve(10);
// Make a vector of pointers to the SpacePoints
if (fDebugDC) cout << "Linking " << fChambers[0]->GetNSpacePoints()
<< " and " << fChambers[1]->GetNSpacePoints() << " stubs" << endl;
for(Int_t ich=0;ich<fNChambers;ich++) {
Int_t nchamber=fChambers[ich]->GetChamberNum();
TClonesArray* spacepointarray = fChambers[ich]->GetSpacePointsP();
for(Int_t isp=0;isp<fChambers[ich]->GetNSpacePoints();isp++) {
if (fDebugDC) cout << " Chamber = " << nchamber << " number of space pts = " << fNSp << endl;
fSp.push_back(static_cast<THcSpacePoint*>(spacepointarray->At(isp)));
fSp[fNSp]->fNChamber = nchamber;
fNSp++;
}
}
ntracks_fp=0; // Number of Focal Plane tracks found
Double_t stubminx = 999999;
Double_t stubminy = 999999;
Double_t stubminxp = 999999;
Double_t stubminyp = 999999;
Int_t stub_tracks[MAXTRACKS];
if (fDebugDC) cout << " single stub , fsnp" << fSingleStub << fNSp << endl;
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
if(!fSingleStub) {
for(Int_t isp1=0;isp1<fNSp-1;isp1++) {
Int_t sptracks=0;
// Now make sure this sp is not already used in a sp.
// Could this be done by having a sp point to the track it is in?
Int_t tryflag=1;
for(Int_t itrack=0;itrack<ntracks_fp;itrack++) {
for(Int_t isp=0;isp<fTrackSP[itrack].nSP;isp++) {
if(fTrackSP[itrack].spID[isp] == isp1) {
tryflag=0;
}
}
}
if(tryflag) { // SP not already part of a track
Int_t newtrack=1;
for(Int_t isp2=isp1+1;isp2<fNSp;isp2++) {
if(fSp[isp1]->fNChamber!=fSp[isp2]->fNChamber) {
Double_t *spstub1=fSp[isp1]->GetStubP();
Double_t *spstub2=fSp[isp2]->GetStubP();
Double_t dposx = spstub1[0] - spstub2[0];
Double_t dposy = spstub1[1] - spstub2[1];
Double_t dposxp = spstub1[2] - spstub2[2];
Double_t dposyp = spstub1[3] - spstub2[3];
// What is the point of saving these stubmin values. They
// Don't seem to be used anywhere except that they can be
// printed out if hbypass_track_eff_files is zero.
if(TMath::Abs(dposx)<TMath::Abs(stubminx)) stubminx = dposx;
if(TMath::Abs(dposy)<TMath::Abs(stubminy)) stubminy = dposy;
if(TMath::Abs(dposxp)<TMath::Abs(stubminxp)) stubminxp = dposxp;
if(TMath::Abs(dposyp)<TMath::Abs(stubminyp)) stubminyp = dposyp;
// if hbypass_track_eff_files == 0 then
// Print out each stubminX that is less that its criterion
if((TMath::Abs(dposx) < fXtTrCriterion)
&& (TMath::Abs(dposy) < fYtTrCriterion)
&& (TMath::Abs(dposxp) < fXptTrCriterion)
&& (TMath::Abs(dposyp) < fYptTrCriterion)) {
if(newtrack) {
if (fDebugDC) cout << " new track" << endl;
assert(sptracks==0);
//stubtest=1; Used in h_track_tests.f
// Make a new track if there are not to many
if(ntracks_fp < MAXTRACKS) {
sptracks=0; // Number of tracks with this seed
stub_tracks[sptracks++] = ntracks_fp;
fTrackSP[ntracks_fp].nSP=2;
fTrackSP[ntracks_fp].spID[0] = isp1;
fTrackSP[ntracks_fp].spID[1] = isp2;
// Now save the X, Y and XP for the two stubs
// in arrays hx_sp1, hy_sp1, hy_sp1, ... hxp_sp2
// Why not also YP?
// Skip for here. May be a diagnostic thing
newtrack = 0; // Make no more tracks in this loop
// (But could replace a SP?)
ntracks_fp++;
} else {
if (fDebugDC) cout << "EPIC FAIL 1: Too many tracks found in THcDC::LinkStubs" << endl;
ntracks_fp=0;
// Do something here to fail this event
return;
}
} else {
if (fDebugDC) cout << " check if another space point in same chamber" << endl;
// Check if there is another space point in the same chamber
for(Int_t itrack=0;itrack<sptracks;itrack++) {
Int_t track=stub_tracks[itrack];
Int_t spoint=0;
Int_t duppoint=0;
for(Int_t isp=0;isp<fTrackSP[track].nSP;isp++) {
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
if(fSp[isp2]->fNChamber ==
fSp[fTrackSP[track].spID[isp]]->fNChamber) {
spoint=isp;
}
if(isp2==fTrackSP[track].spID[isp]) {
duppoint=1;
}
} // End loop over sp in tracks with isp1
// If there is no other space point in this chamber
// add this space point to current track(2)
if(!duppoint) {
if(!spoint) {
fTrackSP[track].spID[fTrackSP[track].nSP++] = isp2;
} else {
// If there is another point in the same chamber
// in this track create a new track with all the
// same space points except spoint
if(ntracks_fp < MAXTRACKS) {
stub_tracks[sptracks++] = ntracks_fp;
fTrackSP[ntracks_fp].nSP=fTrackSP[track].nSP;
for(Int_t isp=0;isp<fTrackSP[track].nSP;isp++) {
if(isp!=spoint) {
fTrackSP[ntracks_fp].spID[isp] = fTrackSP[track].spID[isp];
} else {
fTrackSP[ntracks_fp].spID[isp] = isp2;
} // End check for dup on copy
} // End copy of track
} else {
if (fDebugDC) cout << "EPIC FAIL 2: Too many tracks found in THcDC::LinkStubs" << endl;
ntracks_fp=0;
// Do something here to fail this event
return; // Max # of allowed tracks
}
} // end if on same chamber
} // end if on duplicate point
} // end for over tracks with isp1
}
}
} // end test on same chamber
} // end isp2 loop over new space points
} // end test on tryflag
} // end isp1 outer loop over space points
} else { // Make track out of each single space point
for(Int_t isp=0;isp<fNSp;isp++) {
if(ntracks_fp<MAXTRACKS) {
fTrackSP[ntracks_fp].nSP=1;
fTrackSP[ntracks_fp].spID[0]=isp;
ntracks_fp++;
} else {
if (fDebugDC) cout << "EPIC FAIL 3: Too many tracks found in THcDC::LinkStubs" << endl;
ntracks_fp=0;
// Do something here to fail this event
return; // Max # of allowed tracks
}
}
}
// Add the list of hits on the track to the track.
for(Int_t itrack=0;itrack<ntracks_fp;itrack++) {
fTrackSP[itrack].fNHits=0;
fTrackSP[itrack].fHits.clear();
for(Int_t isp=0;isp<fNSp;isp++) {
for(Int_t ihit=0;ihit<fSp[isp]->GetNHits();ihit++) {
fTrackSP[itrack].fHits.push_back(fSp[isp]->GetHit(ihit));
fTrackSP[itrack].fNHits++;
}
}
}
///
///
if (fDebugDC) cout << "Found " << ntracks_fp << " tracks"<<endl;
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Primary track fitting routine
void THcDC::TrackFit()
{
// Number of ray parameters in focal plane.
const Int_t raycoeffmap[]={4,5,2,3};
// Initialize residuals
// Need to make these member variables so they can be histogrammed
// Probably an array of vectors.
Double_t double_resolution[fNPlanes][ntracks_fp];
Double_t single_resolution[fNPlanes][ntracks_fp];
Double_t double_res[fNPlanes]; // For the good track
for(Int_t ip=0;ip<fNPlanes;ip++) {
double_res[ip] = 1000.0;
for(Int_t itrack=0;itrack<ntracks_fp;itrack++) {
double_resolution[ip][itrack] = 1000.0;
single_resolution[ip][itrack] = 1000.0;
}
}
Double_t dummychi2 = 1.0E4;
for(Int_t itrack=0;itrack<ntracks_fp;itrack++) {
// Double_t chi2 = dummychi2;
// Int_t htrack_fit_num = itrack;
fTrackSP[itrack].fNfree = fTrackSP[itrack].fNHits - NUM_FPRAY;
if(fTrackSP[itrack].fNfree > 0) {
TVectorD TT(NUM_FPRAY);
TMatrixD AA(NUM_FPRAY,NUM_FPRAY);
for(Int_t irayp=0;irayp<NUM_FPRAY;irayp++) {
TT[irayp] = 0.0;
for(Int_t ihit=0;ihit < fTrackSP[itrack].fNHits;ihit++) {
THcDCHit* hit=fTrackSP[itrack].fHits[ihit];
TT[irayp] += (hit->GetCoord()*
fPlaneCoeffs[plane][raycoeffmap[irayp]])
/pow(fSigma[plane],2);
}
}
for(Int_t irayp=0;irayp<NUM_FPRAY;irayp++) {
for(Int_t jrayp=0;jrayp<NUM_FPRAY;jrayp++) {
AA[irayp][jrayp] = 0.0;
if(jrayp<irayp) { // Symmetric
AA[irayp][jrayp] = AA[jrayp][irayp];
} else {
for(Int_t ihit=0;ihit < fTrackSP[itrack].fNHits;ihit++) {
THcDCHit* hit=fTrackSP[itrack].fHits[ihit];
AA[irayp][jrayp] += fPlaneCoeffs[plane][raycoeffmap[irayp]]*
fPlaneCoeffs[plane][raycoeffmap[jrayp]]/
pow(fSigma[plane],2);
}
}
}
}
// Solve 4x4 equations
TVectorD dray(NUM_FPRAY);
// Should check that it is invertable
AA.Invert();
dray = AA*TT;
// cout << "DRAY: " << dray[0] << " "<< dray[1] << " "<< dray[2] << " "<< dray[3] << " " << endl;
// if(bad_determinant) {
// dray[0] = dray[1] = 10000.; dray[2] = dray[3] = 2.0;
// }
// Calculate hit coordinate for each plane for chi2 and efficiency
// calculations
fTrackSP[itrack].fCoords.clear();
fTrackSP[itrack].fResiduals.clear();
fTrackSP[itrack].fDoubleResiduals.clear();
for(Int_t iplane=0;iplane < fNPlanes; iplane++) {
fTrackSP[itrack].fCoords.push_back(0.0);
fTrackSP[itrack].fResiduals.push_back(1000.0);
fTrackSP[itrack].fDoubleResiduals.push_back(1000.0);
for(Int_t ir=0;ir<NUM_FPRAY;ir++) {
fTrackSP[itrack].fCoords[iplane] += fPlaneCoeffs[iplane][raycoeffmap[ir]]*dray[ir];
}
}
// Compute Chi2 and residuals
chi2 = 0.0;
fTrackSP[itrack].fResiduals.clear();
for(Int_t ihit=0;ihit < fTrackSP[itrack].fNHits;ihit++) {
THcDCHit* hit=fTrackSP[itrack].fHits[ihit];
Int_t plane=hit->GetPlaneNum()-1;
Double_t residual = hit->GetCoord() - fTrackSP[itrack].fCoords[plane];
fTrackSP[itrack].fResiduals[plane] = residual;
chi2 += pow(residual/fSigma[plane],2);
}
if (fDebugDC) {
cout << "Residuals:" << endl;
for(Int_t ihit=0;ihit < fTrackSP[itrack].fNHits;ihit++) {
THcDCHit* hit=fTrackSP[itrack].fHits[ihit];
Int_t plane=hit->GetPlaneNum()-1;
cout << " " << plane << ": " << fTrackSP[itrack].fResiduals[ihit] << endl;
}
fTrackSP[itrack].x_fp = dray[0];
fTrackSP[itrack].y_fp = dray[1];
fTrackSP[itrack].z_fp = 0.0;
fTrackSP[itrack].xp_fp = dray[2];
fTrackSP[itrack].xp_fp = dray[3];
}
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
// Calculate residuals for each chamber if in single stub mode
// and there was a track found in each chamber
// Specific for two chambers. Can/should it be generalized?
if(fSingleStub != 0) {
if(ntracks_fp == 2) {
Int_t itrack=0;
Int_t ihit=0;
THcDCHit* hit=fTrackSP[itrack].fHits[ihit];
Int_t plane=hit->GetPlaneNum()-1;
Int_t chamber=fNChamber[plane];
if(chamber==1) {
itrack=1;
hit=fTrackSP[itrack].fHits[ihit];
plane=hit->GetPlaneNum()-1;
chamber=fNChamber[plane];
if(chamber==2) {
Double_t ray1[4];
Double_t ray2[4];
ray1[0] = fTrackSP[0].x_fp;
ray1[1] = fTrackSP[0].y_fp;
ray1[2] = fTrackSP[0].xp_fp;
ray1[3] = fTrackSP[0].yp_fp;
ray2[0] = fTrackSP[1].x_fp;
ray2[1] = fTrackSP[1].y_fp;
ray2[2] = fTrackSP[1].xp_fp;
ray2[3] = fTrackSP[1].yp_fp;
itrack = 1;
// Loop over hits in second chamber
for(Int_t ihit=0;ihit < fTrackSP[itrack].fNHits;ihit++) {
// Calculate residual in second chamber from first chamber track
THcDCHit* hit=fTrackSP[itrack].fHits[ihit];
Int_t plane=hit->GetPlaneNum()-1;
Double_t pos = DpsiFun(ray1,plane);
fTrackSP[itrack-1].fDoubleResiduals[plane] = hit->GetCoord() - pos;
// hdc_dbl_res(pln) = hdc_double_residual(1,pln) for hists
}
itrack=0;
// Loop over hits in first chamber
for(Int_t ihit=0;ihit < fTrackSP[itrack].fNHits;ihit++) {
// Calculate residual in first chamber from second chamber track
THcDCHit* hit=fTrackSP[itrack].fHits[ihit];
Int_t plane=hit->GetPlaneNum()-1;
Double_t pos = DpsiFun(ray1,plane);
fTrackSP[itrack+1].fDoubleResiduals[plane] = hit->GetCoord() - pos;
// hdc_dbl_res(pln) = hdc_double_residual(1,pln) for hists
}
}
}
}
}
// print tracks if hdebugtrackprint is on
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
Double_t THcDC::DpsiFun(Double_t ray[4], Int_t plane)
{
/*
this function calculates the psi coordinate of the intersection
of a ray (defined by ray) with a hms wire chamber plane. the geometry
of the plane is contained in the coeff array calculated in the
array hplane_coeff
Note it is call by MINUIT via H_FCNCHISQ and so uses double precision
variables
the ray is defined by
x = (z-zt)*tan(xp) + xt
y = (z-zt)*tan(yp) + yt
at some fixed value of zt*
ray(1) = xt
ray(2) = yt
ray(3) = tan(xp)
ray(4) = tan(yp)
*/
Double_t infinity = 1.0E+20;
Double_t cinfinity = 1/infinity;
Double_t DpsiFun =
ray[2]*ray[1]*fPlaneCoeffs[plane][0] +
ray[3]*ray[0]*fPlaneCoeffs[plane][1] +
ray[2]*fPlaneCoeffs[plane][2] +
ray[3]*fPlaneCoeffs[plane][3] +
ray[0]*fPlaneCoeffs[plane][4] +
ray[1]*fPlaneCoeffs[plane][5];
Double_t denom = ray[2]*fPlaneCoeffs[plane][6]
+ ray[3]*fPlaneCoeffs[plane][7]
+ fPlaneCoeffs[plane][8];
if(TMath::Abs(denom) < cinfinity) {
DpsiFun = infinity;
} else {
DpsiFun = DpsiFun/denom;
}
return(DpsiFun);
}
ClassImp(THcDC)
////////////////////////////////////////////////////////////////////////////////