Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
///////////////////////////////////////////////////////////////////////////////
// //
// THcDC //
// //
// Class for a generic hodoscope consisting of multiple //
// planes with multiple paddles with phototubes on both ends. //
// This differs from Hall A scintillator class in that it is the whole //
// hodoscope array, not just one plane. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "THcDC.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "THcDetectorMap.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
//_____________________________________________________________________________
THcDC::THcDC(
const char* name, const char* description,
THaApparatus* apparatus ) :
THaTrackingDetector(name,description,apparatus)
{
// Constructor
// fTrackProj = new TClonesArray( "THaTrackProj", 5 );
fNPlanes = 0; // No planes until we make them
fXCenter = NULL;
fYCenter = NULL;
fMinHits = NULL;
fMaxHits = NULL;
fMinCombos = NULL;
fSpace_Point_Criterion2 = NULL;
fTdcWinMin = NULL;
fTdcWinMax = NULL;
fCentralTime = NULL;
fNWires = NULL;
fNChamber = NULL;
fWireOrder = NULL;
fDriftTimeSign = NULL;
fZPos = NULL;
fAlphaAngle = NULL;
fBetaAngle = NULL;
fGammaAngle = NULL;
fPitch = NULL;
fCentralWire = NULL;
fPlaneTimeZero = NULL;
fSigma = NULL;
}
//_____________________________________________________________________________
void THcDC::Setup(const char* name, const char* description)
{
static const char* const here = "Setup";
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
char prefix[2];
char parname[100];
THaApparatus *app = GetApparatus();
if(app) {
cout << app->GetName() << endl;
} else {
cout << "No apparatus found" << endl;
}
prefix[0]=tolower(app->GetName()[0]);
prefix[1]='\0';
string planenamelist;
DBRequest list[]={
{"dc_num_planes",&fNPlanes, kInt},
{"dc_num_chambers",&fNChambers, kInt},
{"dc_tdc_time_per_channel",&fNSperChan, kDouble},
{"dc_wire_velocity",&fWireVelocity,kDouble},
{"dc_plane_names",&planenamelist, kString},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
cout << planenamelist << endl;
cout << "Drift Chambers: " << fNPlanes << " planes in " << fNChambers << " chambers" << endl;
vector<string> plane_names = vsplit(planenamelist);
if(plane_names.size() != (UInt_t) fNPlanes) {
cout << "ERROR: Number of planes " << fNPlanes << " doesn't agree with number of plane names " << plane_names.size() << endl;
// Should quit. Is there an official way to quit?
}
fPlaneNames = new char* [fNPlanes];
for(Int_t i=0;i<fNPlanes;i++) {
fPlaneNames[i] = new char[plane_names[i].length()];
strcpy(fPlaneNames[i], plane_names[i].c_str());
}
char *desc = new char[strlen(description)+100];
fPlanes.clear();
for(Int_t i=0;i<fNPlanes;i++) {
strcpy(desc, description);
strcat(desc, " Plane ");
strcat(desc, fPlaneNames[i]);
THcDriftChamberPlane* newplane = new THcDriftChamberPlane(fPlaneNames[i], desc, i+1, this);
if( !newplane or newplane->IsZombie() ) {
Error( Here(here), "Error creating Drift Chamber plane %s. Call expert.", name);
MakeZombie();
return;
}
fPlanes.push_back(newplane);
newplane->SetDebug(fDebug);
cout << "Created Drift Chamber Plane " << fPlaneNames[i] << ", " << desc << endl;
}
fChambers.clear();
for(Int_t i=0;i<fNChambers;i++) {
sprintf(desc,"%s Chamber %d",description, i+1);
// Should construct a better chamber name
THcDriftChamber* newchamber = new THcDriftChamber(desc, desc, i+1, this);
fChambers.push_back(newchamber);
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
cout << "Created Drift Chamber " << i+1 << ", " << desc << endl;
}
}
//_____________________________________________________________________________
THcDC::THcDC( ) :
THaTrackingDetector()
{
// Constructor
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcDC::Init( const TDatime& date )
{
static const char* const here = "Init()";
Setup(GetName(), GetTitle()); // Create the subdetectors here
// Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map
THcHitList::InitHitList(fDetMap, "THcRawDCHit", 1000);
EStatus status;
// This triggers call of ReadDatabase and DefineVariables
if( (status = THaTrackingDetector::Init( date )) )
return fStatus=status;
// Initialize planes and add them to chambers
for(Int_t ip=0;ip<fNPlanes;ip++) {
if((status = fPlanes[ip]->Init( date ))) {
return fStatus=status;
} else {
Int_t chamber=fNChamber[ip];
fChambers[chamber-1]->AddPlane(fPlanes[ip]);
}
}
// Initialize chambers
for(Int_t ic=0;ic<fNChambers;ic++) {
if((status = fChambers[ic]->Init ( date ))) {
return fStatus=status;
}
}
// Replace with what we need for Hall C
// const DataDest tmp[NDEST] = {
// { &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
// { &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
// };
// memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );
// Will need to determine which apparatus it belongs to and use the
// appropriate detector ID in the FillMap call
char EngineDID[4];
EngineDID[0] = toupper(GetApparatus()->GetName()[0]);
EngineDID[1] = 'D';
EngineDID[2] = 'C';
EngineDID[3] = '\0';
if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) {
Error( Here(here), "Error filling detectormap for %s.",
EngineDID);
return kInitError;
}
return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcDC::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
// static const char* const here = "ReadDatabase()";
char prefix[2];
char parname[100];
// Read data from database
// Pull values from the THcParmList instead of reading a database
// file like Hall A does.
// We will probably want to add some kind of method to gHcParms to allow
// bulk retrieval of parameters of interest.
// Will need to determine which spectrometer in order to construct
// the parameter names (e.g. hscin_1x_nr vs. sscin_1x_nr)
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
delete [] fXCenter; fXCenter = new Double_t [fNChambers];
delete [] fYCenter; fYCenter = new Double_t [fNChambers];
delete [] fMinHits; fMinHits = new Int_t [fNChambers];
delete [] fMaxHits; fMaxHits = new Int_t [fNChambers];
delete [] fMinCombos; fMinCombos = new Int_t [fNChambers];
delete [] fSpace_Point_Criterion2; fSpace_Point_Criterion2 = new Double_t [fNChambers];
delete [] fTdcWinMin; fTdcWinMin = new Int_t [fNPlanes];
delete [] fTdcWinMax; fTdcWinMax = new Int_t [fNPlanes];
delete [] fCentralTime; fCentralTime = new Int_t [fNPlanes];
delete [] fNWires; fNWires = new Int_t [fNPlanes];
delete [] fNChamber; fNChamber = new Int_t [fNPlanes]; // Which chamber is this plane
delete [] fWireOrder; fWireOrder = new Int_t [fNPlanes]; // Wire readout order
delete [] fDriftTimeSign; fDriftTimeSign = new Int_t [fNPlanes];
delete [] fZPos; fZPos = new Double_t [fNPlanes];
delete [] fAlphaAngle; fAlphaAngle = new Double_t [fNPlanes];
delete [] fBetaAngle; fBetaAngle = new Double_t [fNPlanes];
delete [] fGammaAngle; fGammaAngle = new Double_t [fNPlanes];
delete [] fPitch; fPitch = new Double_t [fNPlanes];
delete [] fCentralWire; fCentralWire = new Double_t [fNPlanes];
delete [] fPlaneTimeZero; fPlaneTimeZero = new Double_t [fNPlanes];
delete [] fSigma; fSigma = new Double_t [fNPlanes];
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
DBRequest list[]={
{"dc_tdc_time_per_channel",&fNSperChan, kDouble},
{"dc_wire_velocity",&fWireVelocity,kDouble},
{"dc_xcenter", fXCenter, kDouble, fNChambers},
{"dc_ycenter", fYCenter, kDouble, fNChambers},
{"min_hit", fMinHits, kInt, fNChambers},
{"max_pr_hits", fMaxHits, kInt, fNChambers},
{"min_combos", fMinCombos, kInt, fNChambers},
{"space_point_criterion", fSpace_Point_Criterion2, kDouble, fNChambers},
{"dc_tdc_min_win", fTdcWinMin, kInt, fNPlanes},
{"dc_tdc_max_win", fTdcWinMax, kInt, fNPlanes},
{"dc_central_time", fCentralTime, kInt, fNPlanes},
{"dc_nrwire", fNWires, kInt, fNPlanes},
{"dc_chamber_planes", fNChamber, kInt, fNPlanes},
{"dc_wire_counting", fWireOrder, kInt, fNPlanes},
{"dc_drifttime_sign", fDriftTimeSign, kInt, fNPlanes},
{"dc_zpos", fZPos, kDouble, fNPlanes},
{"dc_alpha_angle", fAlphaAngle, kDouble, fNPlanes},
{"dc_beta_angle", fBetaAngle, kDouble, fNPlanes},
{"dc_gamma_angle", fGammaAngle, kDouble, fNPlanes},
{"dc_pitch", fPitch, kDouble, fNPlanes},
{"dc_central_wire", fCentralWire, kDouble, fNPlanes},
{"dc_plane_time_zero", fPlaneTimeZero, kDouble, fNPlanes},
{"dc_sigma", fSigma, kDouble, fNPlanes},
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
cout << "Plane counts:";
for(Int_t i=0;i<fNPlanes;i++) {
cout << " " << fNWires[i];
}
cout << endl;
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t THcDC::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
RVarDef vars[] = {
{ "nhit", "Number of DC hits", "fNhits" },
{ 0 }
};
return DefineVarsFromList( vars, mode );
}
//_____________________________________________________________________________
THcDC::~THcDC()
{
// Destructor. Remove variables from global list.
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
// Delete the plane objects
for (vector<THcDriftChamberPlane*>::iterator ip = fPlanes.begin();
ip != fPlanes.end(); ip++) delete *ip;
// Delete the chamber objects
for (vector<THcDriftChamber*>::iterator ip = fChambers.begin();
ip != fChambers.end(); ip++) delete *ip;
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
void THcDC::DeleteArrays()
{
// Delete member arrays. Used by destructor.
delete [] fXCenter; fXCenter = NULL;
delete [] fYCenter; fYCenter = NULL;
delete [] fMinHits; fMinHits = NULL;
delete [] fMaxHits; fMaxHits = NULL;
delete [] fMinCombos; fMinCombos = NULL;
delete [] fSpace_Point_Criterion2; fSpace_Point_Criterion2 = NULL;
delete [] fTdcWinMin; fTdcWinMin = NULL;
delete [] fTdcWinMax; fTdcWinMax = NULL;
delete [] fCentralTime; fCentralTime = NULL;
delete [] fNWires; fNWires = NULL;
delete [] fNChamber; fNChamber = NULL;
delete [] fWireOrder; fWireOrder = NULL;
delete [] fDriftTimeSign; fDriftTimeSign = NULL;
delete [] fZPos; fZPos = NULL;
delete [] fAlphaAngle; fAlphaAngle = NULL;
delete [] fBetaAngle; fBetaAngle = NULL;
delete [] fGammaAngle; fGammaAngle = NULL;
delete [] fPitch; fPitch = NULL;
delete [] fCentralWire; fCentralWire = NULL;
delete [] fPlaneTimeZero; fPlaneTimeZero = NULL;
delete [] fSigma; fSigma = NULL;
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
}
//_____________________________________________________________________________
inline
void THcDC::ClearEvent()
{
// Reset per-event data.
fNhits = 0;
for(Int_t i=0;i<fNChambers;i++) {
fChambers[i]->Clear();
}
// fTrackProj->Clear();
}
//_____________________________________________________________________________
Int_t THcDC::Decode( const THaEvData& evdata )
{
ClearEvent();
// Get the Hall C style hitlist (fRawHitList) for this event
fNhits = THcHitList::DecodeToHitList(evdata);
// Let each plane get its hits
Int_t nexthit = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
nexthit = fPlanes[ip]->ProcessHits(fRawHitList, nexthit);
}
// Let each chamber get its hits
for(Int_t ic=0;ic<fNChambers;ic++) {
fChambers[ic]->ProcessHits();
}
#if 0
// fRawHitList is TClones array of THcRawDCHit objects
for(Int_t ihit = 0; ihit < fNRawHits ; ihit++) {
THcRawDCHit* hit = (THcRawDCHit *) fRawHitList->At(ihit);
// cout << ihit << " : " << hit->fPlane << ":" << hit->fCounter << " : "
// << endl;
for(Int_t imhit = 0; imhit < hit->fNHits; imhit++) {
// cout << " " << imhit << " " << hit->fTDC[imhit]
// << endl;
}
}
// cout << endl;
#endif
return fNhits;
}
//_____________________________________________________________________________
Int_t THcDC::ApplyCorrections( void )
{
return(0);
}
//_____________________________________________________________________________
Int_t THcDC::CoarseTrack( TClonesArray& /* tracks */ )
{
// Calculation of coordinates of particle track cross point with scint
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::CoarseTrack() are used.
//
// Apply corrections and reconstruct the complete hits.
//
// static const Double_t sqrt2 = TMath::Sqrt(2.);
for(Int_t i=0;i<fNChambers;i++) {
fChambers[i]->FindSpacePoints();
Stephen A. Wood
committed
fChambers[i]->CorrectHitTimes();
}
ApplyCorrections();
return 0;
}
//_____________________________________________________________________________
Int_t THcDC::FineTrack( TClonesArray& tracks )
{
// Reconstruct coordinates of particle track cross point with scintillator
// plane, and copy the data into the following local data structure:
//
// Units of measurements are meters.
// Calculation of coordinates of particle track cross point with scint
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::FineTrack() are used.
return 0;
}
ClassImp(THcDC)
////////////////////////////////////////////////////////////////////////////////