Skip to content
Snippets Groups Projects
Commit bcb849b6 authored by Tooba Ali's avatar Tooba Ali
Browse files

fix marker size in benchmarks/dis/analysis/truth_reconstruction.py

parent 1bb63fb2
Branches
No related tags found
1 merge request!199Draft: Use of JUGGLER_N_EVENTS=10000
......@@ -146,7 +146,7 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (the
Y_plot[j] = ratio
if i == 0: #Theta
boolean_tilt_x = np.logical_and(X_list[j] > 0 , X_list[j] < 0.5)
boolean_tilt_y = np.logical_or(Y_plot[j] < -0.02 , Y_plot[j] > 0.02)
boolean_tilt_y = np.logical_or(Y_plot[j] < -0.002 , Y_plot[j] > 0.002)
boolean_tilt[j] = np.logical_and(boolean_tilt_x, boolean_tilt_y)
......@@ -168,12 +168,12 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (the
ax4.scatter(X_plot[3], Y_plot[3], s = ssize)
ax5.scatter(X_plot[4], Y_plot[4], s = ssize)
ax6.scatter(X_plot[5], Y_plot[5], s = ssize)
ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize, c = 'red')
ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize, c = 'red')
ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize, c = 'red')
ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize, c = 'red')
ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize, c = 'red')
ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize, c = 'red')
ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize+1, c = 'red')
ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize+1, c = 'red')
ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize+1, c = 'red')
ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize+1, c = 'red')
ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize+1, c = 'red')
ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize+1, c = 'red')
if i == 1: # for momentum
ax1.set_ylabel('rc/mc') #ratio
......@@ -255,12 +255,12 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (the
ax4.scatter(X_plot[3], Y_plot[3], s = ssize)
ax5.scatter(X_plot[4], Y_plot[4], s = ssize)
ax6.scatter(X_plot[5], Y_plot[5], s = ssize)
ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize, c = 'red')
ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize, c = 'red')
ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize, c = 'red')
ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize, c = 'red')
ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize, c = 'red')
ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize, c = 'red')
ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize+1, c = 'red')
ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize+1, c = 'red')
ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize+1, c = 'red')
ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize+1, c = 'red')
ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize+1, c = 'red')
ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize+1, c = 'red')
ax1.set_xscale('log')
ax1.set_ylabel('rc-mc')
ax3.set_ylabel('rc-mc')
......@@ -362,12 +362,12 @@ def particle_plots(boolean_particle):
ax4.scatter(-theta_rc_filtered, ratio, s = ssize)
ax5.scatter(-theta_mc_filtered, phi_mc_filtered, s = ssize)
ax6.scatter(-theta_rc_filtered, phi_rc_filtered, s = ssize)
ax1.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red')
ax2.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red')
ax3.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red')
ax4.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red')
ax5.scatter(-theta_mc_filtered_with_tilt, phi_mc_filtered_with_tilt, s = ssize, c = 'red')
ax6.scatter(-theta_rc_filtered_with_tilt, phi_rc_filtered_with_tilt, s = ssize, c = 'red')
ax1.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red')
ax2.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red')
ax3.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red')
ax4.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red')
ax5.scatter(-theta_mc_filtered_with_tilt, phi_mc_filtered_with_tilt, s = ssize+1, c = 'red')
ax6.scatter(-theta_rc_filtered_with_tilt, phi_rc_filtered_with_tilt, s = ssize+1, c = 'red')
ax1.set_ylabel('Theta rc-mc')
ax2.set_ylabel('Theta rc-mc')
ax3.set_ylabel('Theta rc-mc')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment