diff --git a/benchmarks/dis/analysis/truth_reconstruction.py b/benchmarks/dis/analysis/truth_reconstruction.py index add840de4dc4071e0cf3d16921c00dcc78ca0a48..221d7315c005a3f4cf63031bc398cdeb4dee5050 100644 --- a/benchmarks/dis/analysis/truth_reconstruction.py +++ b/benchmarks/dis/analysis/truth_reconstruction.py @@ -146,7 +146,7 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (the Y_plot[j] = ratio if i == 0: #Theta boolean_tilt_x = np.logical_and(X_list[j] > 0 , X_list[j] < 0.5) - boolean_tilt_y = np.logical_or(Y_plot[j] < -0.02 , Y_plot[j] > 0.02) + boolean_tilt_y = np.logical_or(Y_plot[j] < -0.002 , Y_plot[j] > 0.002) boolean_tilt[j] = np.logical_and(boolean_tilt_x, boolean_tilt_y) @@ -168,12 +168,12 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (the ax4.scatter(X_plot[3], Y_plot[3], s = ssize) ax5.scatter(X_plot[4], Y_plot[4], s = ssize) ax6.scatter(X_plot[5], Y_plot[5], s = ssize) - ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize, c = 'red') - ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize, c = 'red') - ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize, c = 'red') - ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize, c = 'red') - ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize, c = 'red') - ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize, c = 'red') + ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize+1, c = 'red') + ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize+1, c = 'red') + ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize+1, c = 'red') + ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize+1, c = 'red') + ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize+1, c = 'red') + ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize+1, c = 'red') if i == 1: # for momentum ax1.set_ylabel('rc/mc') #ratio @@ -255,12 +255,12 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (the ax4.scatter(X_plot[3], Y_plot[3], s = ssize) ax5.scatter(X_plot[4], Y_plot[4], s = ssize) ax6.scatter(X_plot[5], Y_plot[5], s = ssize) - ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize, c = 'red') - ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize, c = 'red') - ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize, c = 'red') - ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize, c = 'red') - ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize, c = 'red') - ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize, c = 'red') + ax1.scatter(X_plot[0][boolean_tilt[0]], Y_plot[0][boolean_tilt[0]], s = ssize+1, c = 'red') + ax2.scatter(X_plot[1][boolean_tilt[1]], Y_plot[1][boolean_tilt[1]], s = ssize+1, c = 'red') + ax3.scatter(X_plot[2][boolean_tilt[2]], Y_plot[2][boolean_tilt[2]], s = ssize+1, c = 'red') + ax4.scatter(X_plot[3][boolean_tilt[3]], Y_plot[3][boolean_tilt[3]], s = ssize+1, c = 'red') + ax5.scatter(X_plot[4][boolean_tilt[4]], Y_plot[4][boolean_tilt[4]], s = ssize+1, c = 'red') + ax6.scatter(X_plot[5][boolean_tilt[5]], Y_plot[5][boolean_tilt[5]], s = ssize+1, c = 'red') ax1.set_xscale('log') ax1.set_ylabel('rc-mc') ax3.set_ylabel('rc-mc') @@ -362,12 +362,12 @@ def particle_plots(boolean_particle): ax4.scatter(-theta_rc_filtered, ratio, s = ssize) ax5.scatter(-theta_mc_filtered, phi_mc_filtered, s = ssize) ax6.scatter(-theta_rc_filtered, phi_rc_filtered, s = ssize) - ax1.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red') - ax2.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red') - ax3.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red') - ax4.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize, c = 'red') - ax5.scatter(-theta_mc_filtered_with_tilt, phi_mc_filtered_with_tilt, s = ssize, c = 'red') - ax6.scatter(-theta_rc_filtered_with_tilt, phi_rc_filtered_with_tilt, s = ssize, c = 'red') + ax1.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red') + ax2.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red') + ax3.scatter(-theta_mc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red') + ax4.scatter(-theta_rc_filtered_with_tilt, ratio_tilt, s = ssize+1, c = 'red') + ax5.scatter(-theta_mc_filtered_with_tilt, phi_mc_filtered_with_tilt, s = ssize+1, c = 'red') + ax6.scatter(-theta_rc_filtered_with_tilt, phi_rc_filtered_with_tilt, s = ssize+1, c = 'red') ax1.set_ylabel('Theta rc-mc') ax2.set_ylabel('Theta rc-mc') ax3.set_ylabel('Theta rc-mc') @@ -418,4 +418,4 @@ else: particle_plots(boolean_particle) plt.suptitle('%s in %s %s events\n DETECTOR_CONFIG: %s'%(particle_name,config,Nevents,Dconfig)) - plt.savefig(os.path.join(r_path, '%s_%s.png' % (particle_name_n[particle_name],config))) \ No newline at end of file + plt.savefig(os.path.join(r_path, '%s_%s.png' % (particle_name_n[particle_name],config)))