Skip to content
Snippets Groups Projects
Commit 8756afc5 authored by Stephen A. Wood's avatar Stephen A. Wood
Browse files

Wipe out most of the code that came from THaScintillator.

parent c0913578
No related branches found
No related tags found
No related merge requests found
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
// // // //
// THcHodoscope // THcHodoscope //
// // // //
// Class for a generic hodoscope consisting of multiple // // Class for a generic hodoscope consisting of multiple //
// planes with multiple paddles with phototubes on both ends. // // planes with multiple paddles with phototubes on both ends. //
// This differs from Hall A scintillator class in that it is the whole //
// hodoscope array, not just one plane. //
// // // //
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
...@@ -33,7 +35,6 @@ THcHodoscope::THcHodoscope( const char* name, const char* description, ...@@ -33,7 +35,6 @@ THcHodoscope::THcHodoscope( const char* name, const char* description,
THaNonTrackingDetector(name,description,apparatus) THaNonTrackingDetector(name,description,apparatus)
{ {
// Constructor // Constructor
fTWalkPar = 0;
fTrackProj = new TClonesArray( "THaTrackProj", 5 ); fTrackProj = new TClonesArray( "THaTrackProj", 5 );
} }
...@@ -43,29 +44,22 @@ THcHodoscope::THcHodoscope( ) : ...@@ -43,29 +44,22 @@ THcHodoscope::THcHodoscope( ) :
THaNonTrackingDetector() THaNonTrackingDetector()
{ {
// Constructor // Constructor
fTWalkPar = NULL;
fTrackProj = NULL;
fRA_c = fRA_p = fRA = fLA_c = fLA_p = fLA = NULL;
fRT_c = fRT = fLT_c = fLT = NULL;
fRGain = fLGain = fRPed = fLPed = fROff = fLOff = NULL;
fTrigOff = fTime = fdTime = fYt = fYa = NULL;
fHitPad = NULL;
} }
//_____________________________________________________________________________ //_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoscope::Init( const TDatime& date ) THaAnalysisObject::EStatus THcHodoscope::Init( const TDatime& date )
{ {
static const char* const here = "Init()"; static const char* const here = "Init()";
// Extra initialization for scintillators: set up DataDest map
if( THaNonTrackingDetector::Init( date ) ) if( THaNonTrackingDetector::Init( date ) )
return fStatus; return fStatus;
const DataDest tmp[NDEST] = { // Replace with what we need for Hall C
{ &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain }, // const DataDest tmp[NDEST] = {
{ &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain } // { &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
}; // { &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) ); // };
// memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );
// Should probably put this in ReadDatabase as we will know the // Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map // maximum number of hits after setting up the detector map
...@@ -91,279 +85,30 @@ Int_t THcHodoscope::ReadDatabase( const TDatime& date ) ...@@ -91,279 +85,30 @@ Int_t THcHodoscope::ReadDatabase( const TDatime& date )
// beginning of the analysis. // beginning of the analysis.
// 'date' contains the date/time of the run being analyzed. // 'date' contains the date/time of the run being analyzed.
static const char* const here = "ReadDatabase()"; // static const char* const here = "ReadDatabase()";
const int LEN = 200;
char buf[LEN];
Int_t nelem;
// Read data from database // Read data from database
FILE* fi = OpenFile( date ); // Pull values from the THcParmList instead of reading a database
if( !fi ) return kFileError; // file like Hall A does
while ( ReadComment( fi, buf, LEN ) ) {} // DBRequest list[] = {
fscanf ( fi, "%d", &nelem ); // Number of paddles // { "TDC_offsetsL", fLOff, kDouble, fNelem },
fgets ( buf, LEN, fi ); // { "TDC_offsetsR", fROff, kDouble, fNelem },
// { "ADC_pedsL", fLPed, kDouble, fNelem },
// Reinitialization only possible for same basic configuration // { "ADC_pedsR", fRPed, kDouble, fNelem },
if( fIsInit && nelem != fNelem ) { // { "ADC_coefL", fLGain, kDouble, fNelem },
Error( Here(here), "Cannot re-initalize with different number of paddles. " // { "ADC_coefR", fRGain, kDouble, fNelem },
"(was: %d, now: %d). Detector not re-initialized.", fNelem, nelem ); // { "TDC_res", &fTdc2T },
fclose(fi); // { "TransSpd", &fCn },
return kInitError; // { "AdcMIP", &fAdcMIP },
} // { "NTWalk", &fNTWalkPar, kInt },
fNelem = nelem; // { "Timewalk", fTWalkPar, kDouble, 2*fNelem },
// { "ReTimeOff", fTrigOff, kDouble, fNelem },
// Read detector map. Unless a model-number is given // { "AvgRes", &fResolution },
// for the detector type, this assumes that the first half of the entries // { "Atten", &fAttenuation },
// are for ADCs and the second half, for TDCs. // { 0 }
while ( ReadComment( fi, buf, LEN ) ) {} // };
int i = 0;
fDetMap->Clear();
while (1) {
int pos;
Int_t first_chan, model;
Int_t crate, slot, first, last;
fgets ( buf, LEN, fi );
sscanf( buf, "%d%d%d%d%d%n", &crate, &slot, &first, &last, &first_chan, &pos );
if( crate < 0 ) break;
model=atoi(buf+pos); // if there is no model number given, set to zero
if( fDetMap->AddModule( crate, slot, first, last, first_chan, model ) < 0 ) {
Error( Here(here), "Too many DetMap modules (maximum allowed - %d).",
THaDetMap::kDetMapSize);
fclose(fi);
return kInitError;
}
}
while ( ReadComment( fi, buf, LEN ) ) {}
Float_t x,y,z;
fscanf ( fi, "%f%f%f", &x, &y, &z ); // Detector's X,Y,Z coord
fgets ( buf, LEN, fi );
fOrigin.SetXYZ( x, y, z );
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
fscanf ( fi, "%f%f%f", fSize, fSize+1, fSize+2 ); // Sizes of det on X,Y,Z
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
Float_t angle;
fscanf ( fi, "%f", &angle ); // Rotation angle of detector
fgets ( buf, LEN, fi );
const Float_t degrad = TMath::Pi()/180.0;
tan_angle = TMath::Tan(angle*degrad);
sin_angle = TMath::Sin(angle*degrad);
cos_angle = TMath::Cos(angle*degrad);
DefineAxes(angle*degrad);
// Dimension arrays
if( !fIsInit ) {
// Calibration data
fLOff = new Double_t[ fNelem ];
fROff = new Double_t[ fNelem ];
fLPed = new Double_t[ fNelem ];
fRPed = new Double_t[ fNelem ];
fLGain = new Double_t[ fNelem ];
fRGain = new Double_t[ fNelem ];
fTrigOff = new Double_t[ fNelem ];
// Per-event data
fLT = new Double_t[ fNelem ];
fLT_c = new Double_t[ fNelem ];
fRT = new Double_t[ fNelem ];
fRT_c = new Double_t[ fNelem ];
fLA = new Double_t[ fNelem ];
fLA_p = new Double_t[ fNelem ];
fLA_c = new Double_t[ fNelem ];
fRA = new Double_t[ fNelem ];
fRA_p = new Double_t[ fNelem ];
fRA_c = new Double_t[ fNelem ];
fNTWalkPar = 2*fNelem; // 1 paramter per paddle
fTWalkPar = new Double_t[ fNTWalkPar ];
fHitPad = new Int_t[ fNelem ];
fTime = new Double_t[ fNelem ]; // analysis indexed by paddle (yes, inefficient)
fdTime = new Double_t[ fNelem ];
fAmpl = new Double_t[ fNelem ];
fYt = new Double_t[ fNelem ];
fYa = new Double_t[ fNelem ];
fIsInit = true;
}
memset(fTrigOff,0,fNelem*sizeof(fTrigOff[0]));
// Set DEFAULT values here
// TDC resolution (s/channel)
fTdc2T = 0.1e-9; // seconds/channel
fResolution = fTdc2T; // actual timing resolution
// Speed of light in the scintillator material
fCn = 1.7e+8; // meters/second
// Attenuation length
fAttenuation = 0.7; // inverse meters
// Time-walk correction parameters
fAdcMIP = 1.e10; // large number for offset, so reference is effectively disabled
// timewalk coefficients for tw = coeff*(1./sqrt(ADC-Ped)-1./sqrt(ADCMip))
for (int i=0; i<fNTWalkPar; i++) fTWalkPar[i]=0;
// trigger-timing offsets (s)
for (int i=0; i<fNelem; i++) fTrigOff[i]=0;
DBRequest list[] = {
{ "TDC_offsetsL", fLOff, kDouble, fNelem },
{ "TDC_offsetsR", fROff, kDouble, fNelem },
{ "ADC_pedsL", fLPed, kDouble, fNelem },
{ "ADC_pedsR", fRPed, kDouble, fNelem },
{ "ADC_coefL", fLGain, kDouble, fNelem },
{ "ADC_coefR", fRGain, kDouble, fNelem },
{ "TDC_res", &fTdc2T },
{ "TransSpd", &fCn },
{ "AdcMIP", &fAdcMIP },
{ "NTWalk", &fNTWalkPar, kInt },
{ "Timewalk", fTWalkPar, kDouble, 2*fNelem },
{ "ReTimeOff", fTrigOff, kDouble, fNelem },
{ "AvgRes", &fResolution },
{ "Atten", &fAttenuation },
{ 0 }
};
#if 0
if ( gHaDB && gHaDB->LoadValues(GetPrefix(),list,date) ) {
goto exit; // the new database existed -- we're finished
}
#endif
// otherwise, gHaDB is unavailable, use the old file database
// Read in the timing/adc calibration constants
// For fine-tuning of these data, we seek to a matching time stamp, or
// if no time stamp found, to a "configuration" section. Examples:
//
// [ 2002-10-10 15:30:00 ]
// #comment line goes here
// <left TDC offsets>
// <right TDC offsets>
// <left ADC peds>
// <rigth ADC peds>
// <left ADC coeff>
// <right ADC coeff>
//
// if below aren't present, 'default' values are used
// <TDC resolution: seconds/channel>
// <speed-of-light in medium m/s>
// <attenuation length m^-1>
// <ADC of MIP>
// <number of timewalk parameters>
// <timewalk paramters>
//
//
// or
//
// [ config=highmom ]
// comment line
// ...etc.
//
if( SeekDBdate( fi, date ) == 0 && fConfig.Length() > 0 &&
SeekDBconfig( fi, fConfig.Data() )) {}
while ( ReadComment( fi, buf, LEN ) ) {}
// Read calibration data
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fLOff+i); // Left Pads TDC offsets
fgets ( buf, LEN, fi ); // finish line
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fROff+i); // Right Pads TDC offsets
fgets ( buf, LEN, fi ); // finish line
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fLPed+i); // Left Pads ADC Pedest-s
fgets ( buf, LEN, fi ); // finish line, etc.
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fRPed+i); // Right Pads ADC Pedes-s
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf (fi,"%lf",fLGain+i); // Left Pads ADC Coeff-s
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf (fi,"%lf",fRGain+i); // Right Pads ADC Coeff-s
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
// Here on down, look ahead line-by-line
// stop reading if a '[' is found on a line (corresponding to the next date-tag)
// read in TDC resolution (s/channel)
if ( ! fgets(buf, LEN, fi) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fTdc2T);
fResolution = 3.*fTdc2T; // guess at timing resolution
while ( ReadComment( fi, buf, LEN ) ) {}
// Speed of light in the scintillator material
if ( !fgets(buf, LEN, fi) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fCn);
// Attenuation length (inverse meters)
while ( ReadComment( fi, buf, LEN ) ) {}
if ( !fgets ( buf, LEN, fi ) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fAttenuation);
while ( ReadComment( fi, buf, LEN ) ) {}
// Time-walk correction parameters
if ( !fgets(buf, LEN, fi) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fAdcMIP);
while ( ReadComment( fi, buf, LEN ) ) {}
// timewalk parameters
{
int cnt=0;
while ( cnt<fNTWalkPar && fgets( buf, LEN, fi ) && ! strchr(buf,'[') ) {
char *ptr = buf;
int pos=0;
while ( cnt < fNTWalkPar && sscanf(ptr,"%lf%n",&fTWalkPar[cnt],&pos)>0 ) {
ptr += pos;
cnt++;
}
}
}
while ( ReadComment( fi, buf, LEN ) ) {}
// trigger timing offsets
{
int cnt=0;
while ( cnt<fNelem && fgets( buf, LEN, fi ) && ! strchr(buf,'[') ) {
char *ptr = buf;
int pos=0;
while ( cnt < fNelem && sscanf(ptr,"%lf%n",&fTrigOff[cnt],&pos)>0 ) {
ptr += pos;
cnt++;
}
}
}
exit:
fclose(fi);
if ( fDebug > 1 ) {
cout << '\n' << GetPrefix() << " calibration parameters: " << endl;;
for ( DBRequest *li = list; li->name; li++ ) {
cout << " " << li->name;
int maxc = li->nelem;
if (maxc==0)maxc=1;
for (int i=0; i<maxc; i++) {
if (li->type==kDouble) cout << " " << ((Double_t*)li->var)[i];
if (li->type==kInt) cout << " " << ((Int_t*)li->var)[i];
}
cout << endl;
}
}
return kOK; return kOK;
} }
...@@ -377,38 +122,38 @@ Int_t THcHodoscope::DefineVariables( EMode mode ) ...@@ -377,38 +122,38 @@ Int_t THcHodoscope::DefineVariables( EMode mode )
// Register variables in global list // Register variables in global list
RVarDef vars[] = { // RVarDef vars[] = {
{ "nlthit", "Number of Left paddles TDC times", "fLTNhit" }, // { "nlthit", "Number of Left paddles TDC times", "fLTNhit" },
{ "nrthit", "Number of Right paddles TDC times", "fRTNhit" }, // { "nrthit", "Number of Right paddles TDC times", "fRTNhit" },
{ "nlahit", "Number of Left paddles ADCs amps", "fLANhit" }, // { "nlahit", "Number of Left paddles ADCs amps", "fLANhit" },
{ "nrahit", "Number of Right paddles ADCs amps", "fRANhit" }, // { "nrahit", "Number of Right paddles ADCs amps", "fRANhit" },
{ "lt", "TDC values left side", "fLT" }, // { "lt", "TDC values left side", "fLT" },
{ "lt_c", "Corrected times left side", "fLT_c" }, // { "lt_c", "Corrected times left side", "fLT_c" },
{ "rt", "TDC values right side", "fRT" }, // { "rt", "TDC values right side", "fRT" },
{ "rt_c", "Corrected times right side", "fRT_c" }, // { "rt_c", "Corrected times right side", "fRT_c" },
{ "la", "ADC values left side", "fLA" }, // { "la", "ADC values left side", "fLA" },
{ "la_p", "Corrected ADC values left side", "fLA_p" }, // { "la_p", "Corrected ADC values left side", "fLA_p" },
{ "la_c", "Corrected ADC values left side", "fLA_c" }, // { "la_c", "Corrected ADC values left side", "fLA_c" },
{ "ra", "ADC values right side", "fRA" }, // { "ra", "ADC values right side", "fRA" },
{ "ra_p", "Corrected ADC values right side", "fRA_p" }, // { "ra_p", "Corrected ADC values right side", "fRA_p" },
{ "ra_c", "Corrected ADC values right side", "fRA_c" }, // { "ra_c", "Corrected ADC values right side", "fRA_c" },
{ "nthit", "Number of paddles with l&r TDCs", "fNhit" }, // { "nthit", "Number of paddles with l&r TDCs", "fNhit" },
{ "t_pads", "Paddles with l&r coincidence TDCs", "fHitPad" }, // { "t_pads", "Paddles with l&r coincidence TDCs", "fHitPad" },
{ "y_t", "y-position from timing (m)", "fYt" }, // { "y_t", "y-position from timing (m)", "fYt" },
{ "y_adc", "y-position from amplitudes (m)", "fYa" }, // { "y_adc", "y-position from amplitudes (m)", "fYa" },
{ "time", "Time of hit at plane (s)", "fTime" }, // { "time", "Time of hit at plane (s)", "fTime" },
{ "dtime", "Est. uncertainty of time (s)", "fdTime" }, // { "dtime", "Est. uncertainty of time (s)", "fdTime" },
{ "dedx", "dEdX-like deposited in paddle", "fAmpl" }, // { "dedx", "dEdX-like deposited in paddle", "fAmpl" },
{ "troff", "Trigger offset for paddles", "fTrigOff"}, // { "troff", "Trigger offset for paddles", "fTrigOff"},
{ "trn", "Number of tracks for hits", "GetNTracks()" }, // { "trn", "Number of tracks for hits", "GetNTracks()" },
{ "trx", "x-position of track in det plane", "fTrackProj.THaTrackProj.fX" }, // { "trx", "x-position of track in det plane", "fTrackProj.THaTrackProj.fX" },
{ "try", "y-position of track in det plane", "fTrackProj.THaTrackProj.fY" }, // { "try", "y-position of track in det plane", "fTrackProj.THaTrackProj.fY" },
{ "trpath", "TRCS pathlen of track to det plane","fTrackProj.THaTrackProj.fPathl" }, // { "trpath", "TRCS pathlen of track to det plane","fTrackProj.THaTrackProj.fPathl" },
{ "trdx", "track deviation in x-position (m)", "fTrackProj.THaTrackProj.fdX" }, // { "trdx", "track deviation in x-position (m)", "fTrackProj.THaTrackProj.fdX" },
{ "trpad", "paddle-hit associated with track", "fTrackProj.THaTrackProj.fChannel" }, // { "trpad", "paddle-hit associated with track", "fTrackProj.THaTrackProj.fChannel" },
{ 0 } // { 0 }
}; // };
return DefineVarsFromList( vars, mode ); // return DefineVarsFromList( vars, mode );
} }
//_____________________________________________________________________________ //_____________________________________________________________________________
...@@ -431,31 +176,31 @@ void THcHodoscope::DeleteArrays() ...@@ -431,31 +176,31 @@ void THcHodoscope::DeleteArrays()
{ {
// Delete member arrays. Used by destructor. // Delete member arrays. Used by destructor.
delete [] fRA_c; fRA_c = NULL; // delete [] fRA_c; fRA_c = NULL;
delete [] fRA_p; fRA_p = NULL; // delete [] fRA_p; fRA_p = NULL;
delete [] fRA; fRA = NULL; // delete [] fRA; fRA = NULL;
delete [] fLA_c; fLA_c = NULL; // delete [] fLA_c; fLA_c = NULL;
delete [] fLA_p; fLA_p = NULL; // delete [] fLA_p; fLA_p = NULL;
delete [] fLA; fLA = NULL; // delete [] fLA; fLA = NULL;
delete [] fRT_c; fRT_c = NULL; // delete [] fRT_c; fRT_c = NULL;
delete [] fRT; fRT = NULL; // delete [] fRT; fRT = NULL;
delete [] fLT_c; fLT_c = NULL; // delete [] fLT_c; fLT_c = NULL;
delete [] fLT; fLT = NULL; // delete [] fLT; fLT = NULL;
delete [] fRGain; fRGain = NULL; // delete [] fRGain; fRGain = NULL;
delete [] fLGain; fLGain = NULL; // delete [] fLGain; fLGain = NULL;
delete [] fRPed; fRPed = NULL; // delete [] fRPed; fRPed = NULL;
delete [] fLPed; fLPed = NULL; // delete [] fLPed; fLPed = NULL;
delete [] fROff; fROff = NULL; // delete [] fROff; fROff = NULL;
delete [] fLOff; fLOff = NULL; // delete [] fLOff; fLOff = NULL;
delete [] fTWalkPar; fTWalkPar = NULL; // delete [] fTWalkPar; fTWalkPar = NULL;
delete [] fTrigOff; fTrigOff = NULL; // delete [] fTrigOff; fTrigOff = NULL;
delete [] fHitPad; fHitPad = NULL; // delete [] fHitPad; fHitPad = NULL;
delete [] fTime; fTime = NULL; // delete [] fTime; fTime = NULL;
delete [] fdTime; fdTime = NULL; // delete [] fdTime; fdTime = NULL;
delete [] fYt; fYt = NULL; // delete [] fYt; fYt = NULL;
delete [] fYa; fYa = NULL; // delete [] fYa; fYa = NULL;
} }
//_____________________________________________________________________________ //_____________________________________________________________________________
...@@ -464,29 +209,6 @@ void THcHodoscope::ClearEvent() ...@@ -464,29 +209,6 @@ void THcHodoscope::ClearEvent()
{ {
// Reset per-event data. // Reset per-event data.
const int lf = fNelem*sizeof(Double_t);
fLTNhit = 0; // Number of Left paddles TDC times
memset( fLT, 0, lf ); // Left paddles TDCs
memset( fLT_c, 0, lf ); // Left paddles corrected times
fRTNhit = 0; // Number of Right paddles TDC times
memset( fRT, 0, lf ); // Right paddles TDCs
memset( fRT_c, 0, lf ); // Right paddles corrected times
fLANhit = 0; // Number of Left paddles ADC amps
memset( fLA, 0, lf ); // Left paddles ADCs
memset( fLA_p, 0, lf ); // Left paddles ADC minus pedestal
memset( fLA_c, 0, lf ); // Left paddles corrected ADCs
fRANhit = 0; // Number of Right paddles ADC smps
memset( fRA, 0, lf ); // Right paddles ADCs
memset( fRA_p, 0, lf ); // Right paddles ADC minus pedestal
memset( fRA_c, 0, lf ); // Right paddles corrected ADCs
fNhit = 0;
memset( fHitPad, 0, fNelem*sizeof(fHitPad[0]) );
memset( fTime, 0, lf );
memset( fdTime, 0, lf );
memset( fYt, 0, lf );
memset( fYa, 0, lf );
fTrackProj->Clear(); fTrackProj->Clear();
} }
...@@ -494,7 +216,7 @@ void THcHodoscope::ClearEvent() ...@@ -494,7 +216,7 @@ void THcHodoscope::ClearEvent()
Int_t THcHodoscope::Decode( const THaEvData& evdata ) Int_t THcHodoscope::Decode( const THaEvData& evdata )
{ {
// Get the hitlist (fRawHitList) for this event // Get the Hall C style hitlist (fRawHitList) for this event
Int_t nhits = THcHitList::DecodeToHitList(evdata); Int_t nhits = THcHitList::DecodeToHitList(evdata);
return nhits; return nhits;
...@@ -503,69 +225,14 @@ Int_t THcHodoscope::Decode( const THaEvData& evdata ) ...@@ -503,69 +225,14 @@ Int_t THcHodoscope::Decode( const THaEvData& evdata )
//_____________________________________________________________________________ //_____________________________________________________________________________
Int_t THcHodoscope::ApplyCorrections( void ) Int_t THcHodoscope::ApplyCorrections( void )
{ {
// Apply the ADC/TDC corrections to get the 'REAL' relevant return(0);
// TDC and ADC values. No tracking needs to have been done yet.
//
// Permits the dividing up of the decoding step (events could come from
// a different source) to the applying of corrections. For ease when
// trying to optimize calibrations
//
Int_t nlt=0, nrt=0, nla=0, nra=0;
for (Int_t i=0; i<fNelem; i++) {
if (fLA[i] != 0.) {
fLA_p[i] = fLA[i] - fLPed[i];
fLA_c[i] = fLA_p[i]*fLGain[i];
nla++;
}
if (fRA[i] != 0.) {
fRA_p[i] = fRA[i] - fRPed[i];
fRA_c[i] = fRA_p[i]*fRGain[i];
nra++;
}
if (fLT[i] != 0.) {
fLT_c[i] = (fLT[i] - fLOff[i])*fTdc2T - TimeWalkCorrection(i,kLeft);
nlt++;
}
if (fRT[i] != 0.) {
fRT_c[i] = (fRT[i] - fROff[i])*fTdc2T - TimeWalkCorrection(i,kRight);
nrt++;
}
}
// returns FALSE (0) if all matches up
return !(fLTNhit==nlt && fLANhit==nla && fRTNhit==nrt && fRANhit==nra );
} }
//_____________________________________________________________________________ //_____________________________________________________________________________
Double_t THcHodoscope::TimeWalkCorrection(const Int_t& paddle, Double_t THcHodoscope::TimeWalkCorrection(const Int_t& paddle,
const ESide side) const ESide side)
{ {
// Calculate the time-walk correction. The timewalk might be return(0.0);
// dependent upon the specific PMT, so information about exactly
// which PMT fired is required.
Double_t adc=0;
if (side == kLeft)
adc = fLA_p[paddle];
else
adc = fRA_p[paddle];
if (fNTWalkPar<=0 || !fTWalkPar) return 0.; // uninitialized return safe 0
// get the ADC value above the pedestal
if ( adc <=0. ) return 0.;
// we have an arbitrary timing offset, and will declare here that
// for a MIP ( peak ~2000 ADC channels ) the timewalk correction is 0
Double_t ref = fAdcMIP;
Double_t tw(0), tw_ref(0.);
int npar = fNTWalkPar/(2*fNelem);
Double_t *par = &(fTWalkPar[npar*(side*fNelem+paddle)]);
tw = par[0]*pow(adc,-.5);
tw_ref = par[0]*pow(ref,-.5);
return tw-tw_ref;
} }
//_____________________________________________________________________________ //_____________________________________________________________________________
...@@ -577,30 +244,10 @@ Int_t THcHodoscope::CoarseProcess( TClonesArray& /* tracks */ ) ...@@ -577,30 +244,10 @@ Int_t THcHodoscope::CoarseProcess( TClonesArray& /* tracks */ )
// //
// Apply corrections and reconstruct the complete hits. // Apply corrections and reconstruct the complete hits.
// //
static const Double_t sqrt2 = TMath::Sqrt(2.); // static const Double_t sqrt2 = TMath::Sqrt(2.);
ApplyCorrections(); ApplyCorrections();
// count the number of paddles with complete TDC hits
// Fill in information available from timing
fNhit = 0;
for (int i=0; i<fNelem; i++) {
if (fLT[i]>0 && fRT[i]>0) {
fHitPad[fNhit++] = i;
fTime[i] = .5*(fLT_c[i]+fRT_c[i])-fSize[1]/fCn;
fdTime[i] = fResolution/sqrt2;
fYt[i] = .5*fCn*(fRT_c[i]-fLT_c[i]);
}
// rough calculation of position from ADC reading
if (fLA_c[i]>0&&fRA_c[i]>0) {
fYa[i] = TMath::Log(fLA_c[i]/fRA_c[i])/(2.*fAttenuation);
// rough dE/dX-like quantity, not correcting for track angle
fAmpl[i] = TMath::Sqrt(fLA_c[i]*fRA_c[i]*TMath::Exp(fAttenuation*2*fSize[1]))
/ fSize[2];
}
}
return 0; return 0;
} }
...@@ -616,44 +263,6 @@ Int_t THcHodoscope::FineProcess( TClonesArray& tracks ) ...@@ -616,44 +263,6 @@ Int_t THcHodoscope::FineProcess( TClonesArray& tracks )
// plane in the detector coordinate system. For this, parameters of track // plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::FineTrack() are used. // reconstructed in THaVDC::FineTrack() are used.
int n_track = tracks.GetLast()+1; // Number of reconstructed tracks
Double_t dpadx = (2.*fSize[0])/(fNelem); // width of a paddle
// center of paddle '0'
Double_t padx0 = -dpadx*(fNelem-1)*.5;
for ( int i=0; i<n_track; i++ ) {
THaTrack* theTrack = static_cast<THaTrack*>( tracks[i] );
Double_t pathl=kBig, xc=kBig, yc=kBig, dx=kBig;
Int_t pad=-1;
if ( ! CalcTrackIntercept(theTrack, pathl, xc, yc) ) { // failed to hit
new ( (*fTrackProj)[i] )
THaTrackProj(xc,yc,pathl,dx,pad,this);
continue;
}
// xc, yc are the positions of the track intercept
// _RELATIVE TO THE DETECTOR PLANE's_ origin.
//
// look through set of complete hits for closest match
// loop through due to possible poor matches
dx = kBig;
for ( Int_t j=0; j<fNhit; j++ ) {
Double_t dx2 = ( padx0 + fHitPad[j]*dpadx) - xc;
if (TMath::Abs(dx2) < TMath::Abs(dx) ) {
pad = fHitPad[j];
dx = dx2;
}
else if (pad>=0) break; // stop after finding closest in X
}
// record information, found or not
new ( (*fTrackProj)[i] )
THaTrackProj(xc,yc,pathl,dx,pad,this);
}
return 0; return 0;
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment