Skip to content
Snippets Groups Projects
  • Cdaq Account's avatar
    201bcda2
    Modified hodoscope and scintillatorplane code for hodo calibration · 201bcda2
    Cdaq Account authored
    Temporarily set THcHodoscope.cxx so that only the first three planes are used to calculate the focal
    plane time and beta.
    In THcHodoscope , Modified format for writing out the dump file used in hodo calibration.
    Add cosmicflag to THcScintillatorPLane so the corrected time is done right for cosmics.
    Modified hc_hodo_calib/tofcal.f so that it uses detector 10 as the reference
    and that it writes out better defualts for parameters in there are not enough events for a PMT.
    201bcda2
    History
    Modified hodoscope and scintillatorplane code for hodo calibration
    Cdaq Account authored
    Temporarily set THcHodoscope.cxx so that only the first three planes are used to calculate the focal
    plane time and beta.
    In THcHodoscope , Modified format for writing out the dump file used in hodo calibration.
    Add cosmicflag to THcScintillatorPLane so the corrected time is done right for cosmics.
    Modified hc_hodo_calib/tofcal.f so that it uses detector 10 as the reference
    and that it writes out better defualts for parameters in there are not enough events for a PMT.
THcHodoscope.cxx 56.79 KiB
/** \class THcHodoscope
    \ingroup Detectors

Class for a generic hodoscope consisting of multiple
planes with multiple paddles with phototubes on both ends.
This differs from Hall A scintillator class in that it is the whole
hodoscope array, not just one plane.

*/

#include "THcSignalHit.h"
#include "THcShower.h"
#include "THcCherenkov.h"
#include "THcHallCSpectrometer.h"

#include "THcHitList.h"
#include "THcRawShowerHit.h"
#include "TClass.h"
#include "math.h"
#include "THaSubDetector.h"

#include "THcHodoscope.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "THcDetectorMap.h"
#include "THaGlobals.h"
#include "THaCutList.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"

#include "THaTrackProj.h"
#include <vector>

#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <fstream>

using namespace std;
using std::vector;

//_____________________________________________________________________________
THcHodoscope::THcHodoscope( const char* name, const char* description,
				  THaApparatus* apparatus ) :
  THaNonTrackingDetector(name,description,apparatus)
{
  // Constructor

  //fTrackProj = new TClonesArray( "THaTrackProj", 5 );
  // Construct the planes
  fNPlanes = 0;			// No planes until we make them
  fStartTime=-1e5;
  fGoodStartTime=kFALSE;
}

//_____________________________________________________________________________
THcHodoscope::THcHodoscope( ) :
  THaNonTrackingDetector()
{
  // Constructor
}

//_____________________________________________________________________________
void THcHodoscope::Setup(const char* name, const char* description)
{

  //  static const char* const here = "Setup()";
  //  static const char* const message =
  //    "Must construct %s detector with valid name! Object construction failed.";

  cout << "In THcHodoscope::Setup()" << endl;
  // Base class constructor failed?
  if( IsZombie()) return;

  fDebug   = 1;  // Keep this at one while we're working on the code

  char prefix[2];

  prefix[0]=tolower(GetApparatus()->GetName()[0]);
  prefix[1]='\0';

  TString temp(prefix[0]);
  fSHMS=kFALSE;
  if (temp == "p" ) fSHMS=kTRUE;
  cout << " fSHMS = " << fSHMS << endl;
  string planenamelist;
  DBRequest listextra[]={
    {"hodo_num_planes", &fNPlanes, kInt},
    {"hodo_plane_names",&planenamelist, kString},
    {0}
  };
  //fNPlanes = 4; 		// Default if not defined
  gHcParms->LoadParmValues((DBRequest*)&listextra,prefix);

  cout << "Plane Name List : " << planenamelist << endl;

  vector<string> plane_names = vsplit(planenamelist);
  // Plane names
  if(plane_names.size() != (UInt_t) fNPlanes) {
    cout << "ERROR: Number of planes " << fNPlanes << " doesn't agree with number of plane names " << plane_names.size() << endl;
    // Should quit.  Is there an official way to quit?
  }
  fPlaneNames = new char* [fNPlanes];
  for(Int_t i=0;i<fNPlanes;i++) {
    fPlaneNames[i] = new char[plane_names[i].length()+1];
    strcpy(fPlaneNames[i], plane_names[i].c_str());
  }

  // Probably shouldn't assume that description is defined
  char* desc = new char[strlen(description)+100];
  fPlanes = new THcScintillatorPlane* [fNPlanes];
  for(Int_t i=0;i < fNPlanes;i++) {
    strcpy(desc, description);
    strcat(desc, " Plane ");
    strcat(desc, fPlaneNames[i]);
    fPlanes[i] = new THcScintillatorPlane(fPlaneNames[i], desc, i+1, this); // Number planes starting from zero!!
    cout << "Created Scintillator Plane " << fPlaneNames[i] << ", " << desc << endl;
  }

  // --------------- To get energy from THcShower ----------------------
  const char* shower_detector_name = "cal";
  //  THaApparatus* app;
  THcHallCSpectrometer *app = dynamic_cast<THcHallCSpectrometer*>(GetApparatus());
  THaDetector* det = app->GetDetector( shower_detector_name );

  if( dynamic_cast<THcShower*>(det) ) {
    fShower = dynamic_cast<THcShower*>(det);
  }
  else if( !dynamic_cast<THcShower*>(det) ) {
    cout << "Warining: calorimeter analysis module "
	 << shower_detector_name << " not loaded for spectrometer "
	 << prefix << endl;
    fShower = NULL;
  }

  // --------------- To get energy from THcShower ----------------------

  // --------------- To get NPEs from THcCherenkov -------------------
  const char* chern_detector_name = "cer";
  THaDetector* detc = app->GetDetector( chern_detector_name );

  if( dynamic_cast<THcCherenkov*>(detc) ) {
    fChern = dynamic_cast<THcCherenkov*>(detc);
  }
  else if( !dynamic_cast<THcCherenkov*>(detc) ) {
    cout << "Warining: Cherenkov detector analysis module "
	 << chern_detector_name << " not loaded for spectrometer "
	 << prefix << endl;

    fChern = NULL;
  }

  // --------------- To get NPEs from THcCherenkov -------------------

  fScinShould = 0;
  fScinDid = 0;
  gHcParms->Define(Form("%shodo_did",prefix),"Total hodo tracks",fScinDid);
  gHcParms->Define(Form("%shodo_should",prefix),"Total hodo triggers",fScinShould);

  // Save the nominal particle mass
  fPartMass = app->GetParticleMass();
  fBetaNominal = app->GetBetaAtPcentral();

  delete [] desc;
}

//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoscope::Init( const TDatime& date )
{
  cout << "In THcHodoscope::Init()" << endl;
  Setup(GetName(), GetTitle());

  char EngineDID[] = "xSCIN";
  EngineDID[0] = toupper(GetApparatus()->GetName()[0]);
  if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) {
    static const char* const here = "Init()";
    Error( Here(here), "Error filling detectormap for %s.", EngineDID );
    return kInitError;
  }

  // Should probably put this in ReadDatabase as we will know the
  // maximum number of hits after setting up the detector map
  // But it needs to happen before the sub detectors are initialized
  // so that they can get the pointer to the hitlist.

  InitHitList(fDetMap, "THcRawHodoHit", fDetMap->GetTotNumChan()+1);

  EStatus status;
  // This triggers call of ReadDatabase and DefineVariables
  if( (status = THaNonTrackingDetector::Init( date )) )
    return fStatus=status;

  for(Int_t ip=0;ip<fNPlanes;ip++) {
    if((status = fPlanes[ip]->Init( date ))) {
      return fStatus=status;
    }
  }

  // Replace with what we need for Hall C
  //  const DataDest tmp[NDEST] = {
  //    { &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
  //    { &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
  //  };
  //  memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );

  fNScinHits     = new Int_t [fNPlanes];
  fGoodPlaneTime = new Bool_t [fNPlanes];
  fNPlaneTime    = new Int_t [fNPlanes];
  fSumPlaneTime  = new Double_t [fNPlanes];

  //  Double_t  fHitCnt4 = 0., fHitCnt3 = 0.;

  // Int_t m = 0;
  // fScinHit = new Double_t*[fNPlanes];
  // for ( m = 0; m < fNPlanes; m++ ){
  //   fScinHit[m] = new Double_t[fNPaddle[0]];
  // }

  for (int ip=0; ip<fNPlanes; ++ip) {
    fScinHitPaddle.push_back(std::vector<Int_t>(fNPaddle[ip], 0));
  }

  return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcHodoscope::ReadDatabase( const TDatime& date )
{

  // Read this detector's parameters from the database file 'fi'.
  // This function is called by THaDetectorBase::Init() once at the
  // beginning of the analysis.
  // 'date' contains the date/time of the run being analyzed.

  //  static const char* const here = "ReadDatabase()";
  char prefix[2];
  char parname[100];

  // Read data from database
  // Pull values from the THcParmList instead of reading a database
  // file like Hall A does.

  // Will need to determine which spectrometer in order to construct
  // the parameter names (e.g. hscin_1x_nr vs. sscin_1x_nr)

  prefix[0]=tolower(GetApparatus()->GetName()[0]);
  //
  prefix[1]='\0';
  strcpy(parname,prefix);
  strcat(parname,"scin_");
  //  Int_t plen=strlen(parname);
  cout << " readdatabse hodo fnplanes = " << fNPlanes << endl;

  fBetaP = 0.;
  fBetaNoTrk = 0.;
  fBetaNoTrkChiSq = 0.;

  fNPaddle = new UInt_t [fNPlanes];
  fFPTime = new Double_t [fNPlanes];
  fPlaneCenter = new Double_t[fNPlanes];
  fPlaneSpacing = new Double_t[fNPlanes];

  prefix[0]=tolower(GetApparatus()->GetName()[0]);
  //
  prefix[1]='\0';

  for(Int_t i=0;i<fNPlanes;i++) {

    DBRequest list[]={
      {Form("scin_%s_nr",fPlaneNames[i]), &fNPaddle[i], kInt},
      {0}
    };
    gHcParms->LoadParmValues((DBRequest*)&list,prefix);
  }

  // GN added
  // reading variables from *hodo.param
  fMaxScinPerPlane=fNPaddle[0];
  for (Int_t i=1;i<fNPlanes;i++) {
    fMaxScinPerPlane=(fMaxScinPerPlane > fNPaddle[i])? fMaxScinPerPlane : fNPaddle[i];
  }
// need this for "padded arrays" i.e. 4x16 lists of parameters (GN)
  fMaxHodoScin=fMaxScinPerPlane*fNPlanes;
  if (fDebug>=1)  cout <<"fMaxScinPerPlane = "<<fMaxScinPerPlane<<" fMaxHodoScin = "<<fMaxHodoScin<<endl;

   fHodoVelLight=new Double_t [fMaxHodoScin];
 fHodoPosSigma=new Double_t [fMaxHodoScin];
  fHodoNegSigma=new Double_t [fMaxHodoScin];
  fHodoPosMinPh=new Double_t [fMaxHodoScin];
  fHodoNegMinPh=new Double_t [fMaxHodoScin];
  fHodoPosPhcCoeff=new Double_t [fMaxHodoScin];
  fHodoNegPhcCoeff=new Double_t [fMaxHodoScin];
  fHodoPosTimeOffset=new Double_t [fMaxHodoScin];
  fHodoNegTimeOffset=new Double_t [fMaxHodoScin];
  fHodoPosPedLimit=new Int_t [fMaxHodoScin];
  fHodoNegPedLimit=new Int_t [fMaxHodoScin];
  fHodoPosInvAdcOffset=new Double_t [fMaxHodoScin];
  fHodoNegInvAdcOffset=new Double_t [fMaxHodoScin];
  fHodoPosInvAdcLinear=new Double_t [fMaxHodoScin];
  fHodoNegInvAdcLinear=new Double_t [fMaxHodoScin];
  fHodoPosInvAdcAdc=new Double_t [fMaxHodoScin];
  fHodoNegInvAdcAdc=new Double_t [fMaxHodoScin];

  fNHodoscopes = 2;
  fxLoScin = new Int_t [fNHodoscopes];
  fxHiScin = new Int_t [fNHodoscopes];
  fyLoScin = new Int_t [fNHodoscopes];
  fyHiScin = new Int_t [fNHodoscopes];
  fHodoSlop = new Double_t [fNPlanes];
   fTdcOffset = new Int_t [fNPlanes];
  for(Int_t ip=0;ip<fNPlanes;ip++) { // Set a large default window
   fTdcOffset[ip] = 0 ;
  }

  DBRequest list[]={
    {"cosmicflag",                       &fCosmicFlag,            kInt,            0,  1},
    {"start_time_center",                &fStartTimeCenter,                      kDouble},
    {"start_time_slop",                  &fStartTimeSlop,                        kDouble},
    {"scin_tdc_to_time",                 &fScinTdcToTime,                        kDouble},
    {"scin_tdc_min",                     &fScinTdcMin,                           kDouble},
    {"scin_tdc_max",                     &fScinTdcMax,                           kDouble},
    {"tof_tolerance",                    &fTofTolerance,          kDouble,         0,  1},
    {"pathlength_central",               &fPathLengthCentral,                    kDouble},
    {"hodo_pos_sigma",                   &fHodoPosSigma[0],       kDouble,  fMaxHodoScin},
    {"hodo_neg_sigma",                   &fHodoNegSigma[0],       kDouble,  fMaxHodoScin},
    {"hodo_pos_ped_limit",               &fHodoPosPedLimit[0],    kInt,     fMaxHodoScin},
    {"hodo_neg_ped_limit",               &fHodoNegPedLimit[0],    kInt,     fMaxHodoScin},
    {"tofusinginvadc",                   &fTofUsingInvAdc,        kInt,            0,  1},
    {"xloscin",                          &fxLoScin[0],            kInt,     (UInt_t) fNHodoscopes},
    {"xhiscin",                          &fxHiScin[0],            kInt,     (UInt_t) fNHodoscopes},
    {"yloscin",                          &fyLoScin[0],            kInt,     (UInt_t) fNHodoscopes},
    {"yhiscin",                          &fyHiScin[0],            kInt,     (UInt_t) fNHodoscopes},
    {"track_eff_test_num_scin_planes",   &fTrackEffTestNScinPlanes,                 kInt},
    {"cer_npe",                          &fNCerNPE,               kDouble,         0,  1},
    {"normalized_energy_tot",            &fNormETot,              kDouble,         0,  1},
    {"hodo_slop",                        fHodoSlop,               kDouble,  (UInt_t) fNPlanes},
    {"debugprintscinraw",                &fdebugprintscinraw,               kInt,  0,1},
    {"hodo_tdc_offset",                  fTdcOffset,              kInt,     (UInt_t) fNPlanes, 1},
    {"dumptof",                          &fDumpTOF,               kInt,    0, 1},
    {"dumptof_filename",                 &fTOFDumpFile,           kString, 0, 1},
    {0}
  };
  // Defaults if not defined in parameter file

  fdebugprintscinraw=0;
  fDumpTOF = 0;
  fTOFDumpFile="";
  fTofUsingInvAdc = 1;
  fTofTolerance = 3.0;
  fNCerNPE = 2.0;
  fNormETot = 0.7;
  fCosmicFlag=0;
  // Gets added to each reference time corrected raw TDC value
  // to make sure valid range is all positive.

  gHcParms->LoadParmValues((DBRequest*)&list,prefix);
  if (fCosmicFlag==1) cout << " setup for cosmics in TOF"<< endl;
  cout << " cosmic flag = " << fCosmicFlag << endl;
  if(fDumpTOF) {
      fDumpOut.open(fTOFDumpFile.c_str());
   if(fDumpOut.is_open()) {
     //fDumpOut << "Hodoscope Time of Flight calibration data" << endl;
    } else {
      fDumpTOF = 0;
      cout << "WARNING: Unable to open TOF Dump file " << fTOFDumpFile << endl;
      cout << "Data for TOF calibration not being written." << endl;
    }
  }

  cout << " x1 lo = " << fxLoScin[0]
       << " x2 lo = " << fxLoScin[1]
       << " x1 hi = " << fxHiScin[0]
       << " x2 hi = " << fxHiScin[1]
       << endl;

  cout << " y1 lo = " << fyLoScin[0]
       << " y2 lo = " << fyLoScin[1]
       << " y1 hi = " << fyHiScin[0]
       << " y2 hi = " << fyHiScin[1]
       << endl;

  cout << "Hdososcope planes hits for trigger = " << fTrackEffTestNScinPlanes
       << " normalized energy min = " << fNormETot
       << " number of photo electrons = " << fNCerNPE
       << endl;

  if (fTofUsingInvAdc) {
    DBRequest list2[]={
    {"hodo_vel_light",                   &fHodoVelLight[0],       kDouble,  fMaxHodoScin},
      {"hodo_pos_invadc_offset",&fHodoPosInvAdcOffset[0],kDouble,fMaxHodoScin},
      {"hodo_neg_invadc_offset",&fHodoNegInvAdcOffset[0],kDouble,fMaxHodoScin},
      {"hodo_pos_invadc_linear",&fHodoPosInvAdcLinear[0],kDouble,fMaxHodoScin},
      {"hodo_neg_invadc_linear",&fHodoNegInvAdcLinear[0],kDouble,fMaxHodoScin},
      {"hodo_pos_invadc_adc",&fHodoPosInvAdcAdc[0],kDouble,fMaxHodoScin},
      {"hodo_neg_invadc_adc",&fHodoNegInvAdcAdc[0],kDouble,fMaxHodoScin},
      {0}
    };
    gHcParms->LoadParmValues((DBRequest*)&list2,prefix);
  };
  if (!fTofUsingInvAdc) {
    DBRequest list3[]={
    {"hodo_vel_light",                   &fHodoVelLight[0],       kDouble,  fMaxHodoScin},
    {"hodo_pos_minph",                   &fHodoPosMinPh[0],       kDouble,  fMaxHodoScin},
    {"hodo_neg_minph",                   &fHodoNegMinPh[0],       kDouble,  fMaxHodoScin},
    {"hodo_pos_phc_coeff",               &fHodoPosPhcCoeff[0],    kDouble,  fMaxHodoScin},
    {"hodo_neg_phc_coeff",               &fHodoNegPhcCoeff[0],    kDouble,  fMaxHodoScin},
    {"hodo_pos_time_offset",             &fHodoPosTimeOffset[0],  kDouble,  fMaxHodoScin},
    {"hodo_neg_time_offset",             &fHodoNegTimeOffset[0],  kDouble,  fMaxHodoScin},
      {0}
    };
    gHcParms->LoadParmValues((DBRequest*)&list3,prefix);
  };
  if (fDebug >=1) {
    cout <<"******* Testing Hodoscope Parameter Reading ***\n";
    cout<<"StarTimeCenter = "<<fStartTimeCenter<<endl;
    cout<<"StartTimeSlop = "<<fStartTimeSlop<<endl;
    cout <<"ScintTdcToTime = "<<fScinTdcToTime<<endl;
    cout <<"TdcMin = "<<fScinTdcMin<<" TdcMax = "<<fScinTdcMax<<endl;
    cout <<"TofTolerance = "<<fTofTolerance<<endl;
    cout <<"*** VelLight ***\n";
    for (Int_t i1=0;i1<fNPlanes;i1++) {
      cout<<"Plane "<<i1<<endl;
      for (UInt_t i2=0;i2<fMaxScinPerPlane;i2++) {
	cout<<fHodoVelLight[GetScinIndex(i1,i2)]<<" ";
      }
      cout <<endl;
    }
    cout <<endl<<endl;
    // check fHodoPosPhcCoeff
    /*
    cout <<"fHodoPosPhcCoeff = ";
    for (int i1=0;i1<fMaxHodoScin;i1++) {
      cout<<this->GetHodoPosPhcCoeff(i1)<<" ";
    }
    cout<<endl;
    */
  }
  //
  if ((fTofTolerance > 0.5) && (fTofTolerance < 10000.)) {
    cout << "USING "<<fTofTolerance<<" NSEC WINDOW FOR FP NO_TRACK CALCULATIONS.\n";
  }
  else {
    fTofTolerance= 3.0;
    cout << "*** USING DEFAULT 3 NSEC WINDOW FOR FP NO_TRACK CALCULATIONS!! ***\n";
  }
  fIsInit = true;
  return kOK;
}

//_____________________________________________________________________________
Int_t THcHodoscope::DefineVariables( EMode mode )
{
  // Initialize global variables and lookup table for decoder
  cout << "THcHodoscope::DefineVariables called " << GetName() << endl;
  if( mode == kDefine && fIsSetup ) return kOK;
  fIsSetup = ( mode == kDefine );

  // Register variables in global list

  RVarDef vars[] = {
    // Move these into THcHallCSpectrometer using track fTracks
    {"betap",             "betaP",                "fBetaP"},
    {"betanotrack",       "Beta from scintillator hits",                "fBetaNoTrk"},
    {"betachisqnotrack",  "Chi square of beta from scintillator hits",  "fBetaNoTrkChiSq"},
    {"fpHitsTime",        "Time at focal plane from all hits",            "fFPTimeAll"},
    {"starttime",         "Hodoscope Start Time",                         "fStartTime"},
    {"goodstarttime",     "Hodoscope Good Start Time (logical flag)",                    "fGoodStartTime"},
    {"goodscinhit",       "Hit in fid area",                              "fGoodScinHits"},
    //    {"goodscinhitx",    "Hit in fid x range",                     "fGoodScinHitsX"},
    {"scinshould",        "Total scin Hits in fid area",                  "fScinShould"},
    {"scindid",           "Total scin Hits in fid area with a track",     "fScinDid"},
    { 0 }
  };
  return DefineVarsFromList( vars, mode );
  //  return kOK;
}

//_____________________________________________________________________________
THcHodoscope::~THcHodoscope()
{
  // Destructor. Remove variables from global list.
  delete [] fFPTime;
  delete [] fPlaneCenter;
  delete [] fPlaneSpacing;

  if( fIsSetup )
    RemoveVariables();
  if( fIsInit )
    DeleteArrays();
  if (fTrackProj) {
    fTrackProj->Clear();
    delete fTrackProj; fTrackProj = 0;
  }
}

//_____________________________________________________________________________
void THcHodoscope::DeleteArrays()
{
  // Delete member arrays. Used by destructor.
  // Int_t k;
  // for( k = 0; k < fNPlanes; k++){
  //   delete [] fScinHit[k];
  // }
  // delete [] fScinHit;

  delete [] fxLoScin;             fxLoScin = NULL;
  delete [] fxHiScin;             fxHiScin = NULL;
  delete [] fHodoSlop;            fHodoSlop = NULL;

  delete [] fNPaddle;             fNPaddle = NULL;
  delete [] fHodoVelLight;        fHodoVelLight = NULL;
  delete [] fHodoPosSigma;        fHodoPosSigma = NULL;
  delete [] fHodoNegSigma;        fHodoNegSigma = NULL;
  delete [] fHodoPosMinPh;        fHodoPosMinPh = NULL;
  delete [] fHodoNegMinPh;        fHodoNegMinPh = NULL;
  delete [] fHodoPosPhcCoeff;     fHodoPosPhcCoeff = NULL;
  delete [] fHodoNegPhcCoeff;     fHodoNegPhcCoeff = NULL;
  delete [] fHodoPosTimeOffset;   fHodoPosTimeOffset = NULL;
  delete [] fHodoNegTimeOffset;   fHodoNegTimeOffset = NULL;
  delete [] fHodoPosPedLimit;     fHodoPosPedLimit = NULL;
  delete [] fHodoNegPedLimit;     fHodoNegPedLimit = NULL;
  delete [] fHodoPosInvAdcOffset; fHodoPosInvAdcOffset = NULL;
  delete [] fHodoNegInvAdcOffset; fHodoNegInvAdcOffset = NULL;
  delete [] fHodoPosInvAdcLinear; fHodoPosInvAdcLinear = NULL;
  delete [] fHodoNegInvAdcLinear; fHodoNegInvAdcLinear = NULL;
  delete [] fHodoPosInvAdcAdc;    fHodoPosInvAdcAdc = NULL;
  delete [] fGoodPlaneTime;       fGoodPlaneTime = NULL;
  delete [] fNPlaneTime;          fNPlaneTime = NULL;
  delete [] fSumPlaneTime;        fSumPlaneTime = NULL;
  delete [] fNScinHits;           fNScinHits = NULL;
  delete [] fTdcOffset;           fTdcOffset = NULL;

}

//_____________________________________________________________________________
inline
void THcHodoscope::ClearEvent()
{
  /*! \brief Clears variables
   *
   *  Called by  THcHodoscope::Decode
   *
   */

  fBetaP = 0.;
  fBetaNoTrk = 0.0;
  fBetaNoTrkChiSq = 0.0;
  fStartTime  = 0.0;
  fFPTimeAll= -1000.;
  fGoodStartTime = kFALSE;
  fGoodScinHits = 0;
  fScinShould = 0;
  fScinDid = 0;

  for(Int_t ip=0;ip<fNPlanes;ip++) {
    fPlanes[ip]->Clear();
    fFPTime[ip]=0.;
    fPlaneCenter[ip]=0.;
    fPlaneSpacing[ip]=0.;
    for(UInt_t iPaddle=0;iPaddle<fNPaddle[ip]; ++iPaddle) {
      fScinHitPaddle[ip][iPaddle]=0;
    }
  }
  fdEdX.clear();
  fNScinHit.clear();
  fNClust.clear();
  fThreeScin.clear();
  fGoodScinHitsX.clear();
}

//_____________________________________________________________________________
Int_t THcHodoscope::Decode( const THaEvData& evdata )
{
  /*! \brief Decodes raw data and processes raw data into hits for each instance of  THcScintillatorPlane
   *
   *  - Calls THcHodoscope::ClearEvent
   *  - Reads raw data using THcHitList::DecodeToHitList
   *  - If one wants to subtract pedestals (assumed to be a set of data at beginning of run)
   *    + Must define "Pedestal_event" cut in the cuts definition file
   *    + For each "Pedestal_event" calls THcScintillatorPlane::AccumulatePedestals and returns
   *    + After First event which is not a  "Pedestal_event" calls THcScintillatorPlane::CalculatePedestals
   *  - For each scintillator plane THcScintillatorPlane::ProcessHits
   *  - Calls THcHodoscope::EstimateFocalPlaneTime
   *
   *
   */
  ClearEvent();
  // Get the Hall C style hitlist (fRawHitList) for this event
  fNHits = DecodeToHitList(evdata);

  //
  // GN: print event number so we can cross-check with engine
  // if (evdata.GetEvNum()>1000)
  //   cout <<"\nhcana_event " << evdata.GetEvNum()<<endl;

  fCheckEvent = evdata.GetEvNum();
  fEventType =  evdata.GetEvType();

  if(gHaCuts->Result("Pedestal_event")) {
    Int_t nexthit = 0;
    for(Int_t ip=0;ip<fNPlanes;ip++) {

      nexthit = fPlanes[ip]->AccumulatePedestals(fRawHitList, nexthit);
    }
    fAnalyzePedestals = 1;	// Analyze pedestals first normal events
    return(0);
  }
  if(fAnalyzePedestals) {
    for(Int_t ip=0;ip<fNPlanes;ip++) {

      fPlanes[ip]->CalculatePedestals();
    }
    fAnalyzePedestals = 0;	// Don't analyze pedestals next event
  }

  // Let each plane get its hits
  Int_t nexthit = 0;

  fNfptimes=0;
  for(Int_t ip=0;ip<fNPlanes;ip++) {
    fPlaneCenter[ip] = fPlanes[ip]->GetPosCenter(0) + fPlanes[ip]->GetPosOffset();
    fPlaneSpacing[ip] = fPlanes[ip]->GetSpacing();

    //    nexthit = fPlanes[ip]->ProcessHits(fRawHitList, nexthit);
    // GN: select only events that have reasonable TDC values to start with
    // as per the Engine h_strip_scin.f
    nexthit = fPlanes[ip]->ProcessHits(fRawHitList,nexthit);
  }
  EstimateFocalPlaneTime();

  if (fdebugprintscinraw == 1) {
    cout << " Event number = " << evdata.GetEvNum()<<endl;
  for(UInt_t ihit = 0; ihit < fNRawHits ; ihit++) {
//    THcRawHodoHit* hit = (THcRawHodoHit *) fRawHitList->At(ihit);
//    cout << ihit << " : " << hit->fPlane << ":" << hit->fCounter << " : "
//	 << hit->fADC_pos << " " << hit->fADC_neg << " "  <<  hit->fTDC_pos
//	 << " " <<  hit->fTDC_neg << endl;
  }
  cout << endl;
  }


  return fNHits;
}

//_____________________________________________________________________________
void THcHodoscope::EstimateFocalPlaneTime( void )
{
  /*! \brief Calculates the Drift Chamber start time and fBetaNoTrk (velocity determined without track info)
   *
   *  - Called by  THcHodoscope::Decode
   *  - selects good scintillator paddle hits
   *     + loops through hits in each scintillator plane and fills histogram array, "timehist", with corrected times for positive
   *        and negative ends of each paddle
   *     + Determines the peak of "timehist"
   *
   */

  Int_t timehist[200];
  for (Int_t i=0;i<200;i++) {
    timehist[i] = 0;
  }
  Int_t ihit=0;
  Int_t nscinhits=0;		// Total # hits with at least one good tdc
  for(Int_t ip=0;ip<fNPlanes;ip++) {
    Int_t nphits=fPlanes[ip]->GetNScinHits();
    nscinhits += nphits;
    TClonesArray* hodoHits = fPlanes[ip]->GetHits();
    for(Int_t i=0;i<nphits;i++) {
      THcHodoHit *hit = (THcHodoHit*)hodoHits->At(i);
      if(hit->GetHasCorrectedTimes()) {
	Double_t postime=hit->GetPosTOFCorrectedTime();
	Double_t negtime=hit->GetNegTOFCorrectedTime();
	for (Int_t k=0;k<200;k++) {
	  Double_t tmin=0.5*(k+1);
	  if ((postime> tmin) && (postime < tmin+fTofTolerance)) {
	    timehist[k]++;
	  }
	  if ((negtime> tmin) && (negtime < tmin+fTofTolerance)) {
	    timehist[k]++;
	  }
	}
      }
    }
  }

  // Find the bin with most hits
  Int_t binmax=0;
  Int_t maxhit=0;
  for(Int_t i=0;i<200;i++) {
    if(timehist[i]>maxhit) {
      binmax = i+1;
      maxhit = timehist[i];
    }
  }
  ihit = 0;
  Double_t fpTimeSum = 0.0;
  fNfptimes=0;
  Int_t  Ngood_hits_plane=0;
  Double_t Plane_fptime_sum=0.0;

  Bool_t goodplanetime[fNPlanes];
  Bool_t twogoodtimes[nscinhits];
  Int_t temp_planes=fNPlanes;
  if (fSHMS) temp_planes=3;
  for(Int_t ip=0;ip<temp_planes;ip++) {
    goodplanetime[ip] = kFALSE;
    Int_t nphits=fPlanes[ip]->GetNScinHits();
    TClonesArray* hodoHits = fPlanes[ip]->GetHits();
    Ngood_hits_plane=0;
    Plane_fptime_sum=0.0;
    for(Int_t i=0;i<nphits;i++) {
      THcHodoHit *hit = (THcHodoHit*)hodoHits->At(i);
      twogoodtimes[ihit] = kFALSE;
      if(hit->GetHasCorrectedTimes()) {
      Double_t tmin = 0.5*binmax;
      Double_t postime=hit->GetPosTOFCorrectedTime();
      Double_t negtime=hit->GetNegTOFCorrectedTime();
      if ((postime>tmin) && (postime<tmin+fTofTolerance) &&
	  (negtime>tmin) && (negtime<tmin+fTofTolerance)) {
	hit->SetTwoGoodTimes(kTRUE);
	twogoodtimes[ihit] = kTRUE;	// Both tubes fired
        Int_t index=hit->GetPaddleNumber()-1;	 //
        Double_t fptime;
        if(fCosmicFlag==1) {
	   fptime = hit->GetScinCorrectedTime()
	  + (fPlanes[ip]->GetZpos()+(index%2)*fPlanes[ip]->GetDzpos())
	  / (29.979 * fBetaNominal);
	}else{
	   fptime = hit->GetScinCorrectedTime()
	  - (fPlanes[ip]->GetZpos()+(index%2)*fPlanes[ip]->GetDzpos())
	  / (29.979 * fBetaNominal);
	}
	if(TMath::Abs(fptime-fStartTimeCenter)<=fStartTimeSlop) {
          Ngood_hits_plane++;
	  Plane_fptime_sum+=fptime;
	  fpTimeSum += fptime;
	  fNfptimes++;
	  goodplanetime[ip] = kTRUE;
	}
      } else {
	hit->SetTwoGoodTimes(kFALSE);
      }
      }
    }
    ihit++;
      fPlanes[ip]->SetFpTime(Plane_fptime_sum/float(Ngood_hits_plane));
      fPlanes[ip]->SetNGoodHits(Ngood_hits_plane);
  }

  if(fNfptimes>0) {
    fStartTime = fpTimeSum/fNfptimes;
    fGoodStartTime=kTRUE;
      fFPTimeAll = fStartTime ;
  } else {
    fStartTime = fStartTimeCenter;
    fGoodStartTime=kFALSE;
    fFPTimeAll = fStartTime ;
  }
  if((goodplanetime[0]||goodplanetime[1])
     &&(goodplanetime[2]||goodplanetime[3])) {

    Double_t sumW = 0.;
    Double_t sumT = 0.;
    Double_t sumZ = 0.;
    Double_t sumZZ = 0.;
    Double_t sumTZ = 0.;
    Int_t ihhit = 0;

    temp_planes=fNPlanes;
  if (fSHMS) temp_planes=3;
    for(Int_t ip=0;ip<temp_planes;ip++) {
      Int_t nphits=fPlanes[ip]->GetNScinHits();
      TClonesArray* hodoHits = fPlanes[ip]->GetHits();

      for(Int_t i=0;i<nphits;i++) {
	Int_t index=((THcHodoHit*)hodoHits->At(i))->GetPaddleNumber()-1;

	if(twogoodtimes[ihhit]){

	  Double_t sigma = 0.5 * ( TMath::Sqrt( TMath::Power( fHodoPosSigma[GetScinIndex(ip,index)],2) +
						TMath::Power( fHodoNegSigma[GetScinIndex(ip,index)],2) ) );
	  Double_t scinWeight = 1 / TMath::Power(sigma,2);
	  Double_t zPosition = fPlanes[ip]->GetZpos() + (index%2)*fPlanes[ip]->GetDzpos();
 	  //	  cout << "hit = " << ihhit + 1 << "   zpos = " << zPosition << "   sigma = " << sigma << endl;

	  sumW  += scinWeight;
	  sumT  += scinWeight * ((THcHodoHit*)hodoHits->At(i))->GetScinCorrectedTime();
	  sumZ  += scinWeight * zPosition;
	  sumZZ += scinWeight * ( zPosition * zPosition );
	  sumTZ += scinWeight * zPosition * ((THcHodoHit*)hodoHits->At(i))->GetScinCorrectedTime();

	} // condition of good scin time
	ihhit ++;
      } // loop over hits of plane
    } // loop over planes

    Double_t tmp = sumW * sumZZ - sumZ * sumZ ;
    Double_t t0 = ( sumT * sumZZ - sumZ * sumTZ ) / tmp ;
    Double_t tmpDenom = sumW * sumTZ - sumZ * sumT;

    if ( TMath::Abs( tmpDenom ) > ( 1 / 10000000000.0 ) ) {

      fBetaNoTrk = tmp / tmpDenom;
      fBetaNoTrkChiSq = 0.;
      ihhit = 0;

      for (Int_t ip = 0; ip < temp_planes; ip++ ){                           // Loop over planes
	Int_t nphits=fPlanes[ip]->GetNScinHits();
	TClonesArray* hodoHits = fPlanes[ip]->GetHits();

	for(Int_t i=0;i<nphits;i++) {
	  Int_t index=((THcHodoHit*)hodoHits->At(i))->GetPaddleNumber()-1;

	  if(twogoodtimes[ihhit]) {

	    Double_t zPosition = fPlanes[ip]->GetZpos() + (index%2)*fPlanes[ip]->GetDzpos();
	    Double_t timeDif = ( ((THcHodoHit*)hodoHits->At(i))->GetScinCorrectedTime() - t0 );
	    Double_t sigma = 0.5 * ( TMath::Sqrt( TMath::Power( fHodoPosSigma[GetScinIndex(ip,index)],2) +
						  TMath::Power( fHodoNegSigma[GetScinIndex(ip,index)],2) ) );
	    fBetaNoTrkChiSq += ( ( zPosition / fBetaNoTrk - timeDif ) *
				 ( zPosition / fBetaNoTrk - timeDif ) ) / ( sigma * sigma );


	  } // condition for good scin time
	  ihhit++;
	} // loop over hits of a plane
      } // loop over planes

      Double_t pathNorm = 1.0;

      fBetaNoTrk = fBetaNoTrk * pathNorm;
      fBetaNoTrk = fBetaNoTrk / 29.979;    // velocity / c

    }  // condition for fTmpDenom
    else {
      fBetaNoTrk = 0.;
      fBetaNoTrkChiSq = -2.;
    } // else condition for fTmpDenom
  }
   fGoodEventTOFCalib=kFALSE;
  if (!fSHMS&&goodplanetime[0]&&goodplanetime[1]&&goodplanetime[2]&&goodplanetime[3]&&fPlanes[0]->GetNGoodHits()==1&&fPlanes[1]->GetNGoodHits()==1&&fPlanes[2]->GetNGoodHits()==1&&fPlanes[3]->GetNGoodHits()==1) fGoodEventTOFCalib=kTRUE;
  if (fSHMS&&goodplanetime[0]&&goodplanetime[1]&&goodplanetime[2]&&fPlanes[0]->GetNGoodHits()==1&&fPlanes[1]->GetNGoodHits()==1&&fPlanes[2]->GetNGoodHits()==1) fGoodEventTOFCalib=kTRUE;

}
//_____________________________________________________________________________
Int_t THcHodoscope::ApplyCorrections( void )
{
  return(0);
}
//_____________________________________________________________________________
Double_t THcHodoscope::TimeWalkCorrection(const Int_t& paddle,
					     const ESide side)
{
  return(0.0);
}

//_____________________________________________________________________________
Int_t THcHodoscope::CoarseProcess( TClonesArray&  tracks  )
{

  ApplyCorrections();

  return 0;
}

//_____________________________________________________________________________
Int_t THcHodoscope::FineProcess( TClonesArray& tracks )
{

  Int_t ntracks = tracks.GetLast()+1; // Number of reconstructed tracks
  Int_t timehist[200];
  // -------------------------------------------------

  //  fDumpOut << " ntrack =  " << ntracks  << endl;
  Int_t temp_planes=fNPlanes;
  if (fSHMS) temp_planes=3;

  if (tracks.GetLast()+1 > 0 ) {

    // **MAIN LOOP: Loop over all tracks and get corrected time, tof, beta...
    Double_t* nPmtHit = new Double_t [ntracks];
    Double_t* timeAtFP = new Double_t [ntracks];
    for ( Int_t itrack = 0; itrack < ntracks; itrack++ ) { // Line 133
      nPmtHit[itrack]=0;
      timeAtFP[itrack]=0;

      THaTrack* theTrack = dynamic_cast<THaTrack*>( tracks.At(itrack) );
      if (!theTrack) return -1;

      for (Int_t ip = 0; ip < temp_planes; ip++ ){
	fGoodPlaneTime[ip] = kFALSE;
	fNScinHits[ip] = 0;
	fNPlaneTime[ip] = 0;
	fSumPlaneTime[ip] = 0.;
      }
      std::vector<Double_t> dedx_temp;
      fdEdX.push_back(dedx_temp); // Create array of dedx per hit
      std::vector<std::vector<GoodFlags> > goodflagstmp1;
      fGoodFlags.push_back(goodflagstmp1);

      Int_t nFPTime = 0;
      Double_t betaChiSq = -3;
      Double_t beta = 0;
      //      timeAtFP[itrack] = 0.;
      Double_t sumFPTime = 0.; // Line 138
      fNScinHit.push_back(0);
      Double_t p = theTrack->GetP(); // Line 142
      fBetaP = p/( TMath::Sqrt( p * p + fPartMass * fPartMass) );

      //! Calculate all corrected hit times and histogram
      //! This uses a copy of code below. Results are save in time_pos,neg
      //! including the z-pos. correction assuming nominal value of betap
      //! Code is currently hard-wired to look for a peak in the
      //! range of 0 to 100 nsec, with a group of times that all
      //! agree withing a time_tolerance of time_tolerance nsec. The normal
      //! peak position appears to be around 35 nsec.
      //! NOTE: if want to find particles with beta different than
      //! reference particle, need to make sure this is big enough
      //! to accomodate difference in TOF for other particles
      //! Default value in case user hasnt defined something reasonable

      for (Int_t j=0; j<200; j++) { timehist[j]=0; } // Line 176

      // Loop over scintillator planes.
      // In ENGINE, its loop over good scintillator hits.

      fTOFCalc.clear();   // SAW - Can we
      fTOFPInfo.clear();  // SAW - combine these two?
      Int_t ihhit = 0;		// Hit # overall

     for(Int_t ip = 0; ip < temp_planes; ip++ ) {

	std::vector<GoodFlags> goodflagstmp2;
	fGoodFlags[itrack].push_back(goodflagstmp2);

	fNScinHits[ip] = fPlanes[ip]->GetNScinHits();
	TClonesArray* hodoHits = fPlanes[ip]->GetHits();

	Double_t zPos = fPlanes[ip]->GetZpos();
	Double_t dzPos = fPlanes[ip]->GetDzpos();

	// first loop over hits with in a single plane
	for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
	  // iphit is hit # within a plane
	  THcHodoHit *hit = (THcHodoHit*)hodoHits->At(iphit);

	  fTOFPInfo.push_back(TOFPInfo());
	  // Can remove these as we will initialize in the constructor
	  //	  fTOFPInfo[ihhit].time_pos = -99.0;
	  //	  fTOFPInfo[ihhit].time_neg = -99.0;
	  //	  fTOFPInfo[ihhit].keep_pos = kFALSE;
	  //	  fTOFPInfo[ihhit].keep_neg = kFALSE;
	  fTOFPInfo[ihhit].scin_pos_time = 0.0;
	  fTOFPInfo[ihhit].scin_neg_time = 0.0;
	  fTOFPInfo[ihhit].hit = hit;
	  fTOFPInfo[ihhit].planeIndex = ip;
	  fTOFPInfo[ihhit].hitNumInPlane = iphit;
	  fTOFPInfo[ihhit].onTrack = kFALSE;

	  Int_t paddle = hit->GetPaddleNumber()-1;
	  Double_t zposition = zPos + (paddle%2)*dzPos;

	  Double_t xHitCoord = theTrack->GetX() + theTrack->GetTheta() *
	    ( zposition ); // Line 183

	  Double_t yHitCoord = theTrack->GetY() + theTrack->GetPhi() *
	    ( zposition ); // Line 184

	  Double_t scinTrnsCoord, scinLongCoord;
	  if ( ( ip == 0 ) || ( ip == 2 ) ){ // !x plane. Line 185
	    scinTrnsCoord = xHitCoord;
	    scinLongCoord = yHitCoord;
	  }

	  else if ( ( ip == 1 ) || ( ip == 3 ) ){ // !y plane. Line 188
	    scinTrnsCoord = yHitCoord;
	    scinLongCoord = xHitCoord;
	  }
	  else { return -1; } // Line 195
	  fTOFPInfo[ihhit].scinTrnsCoord = scinTrnsCoord;
	  fTOFPInfo[ihhit].scinLongCoord = scinLongCoord;

	  Double_t scinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();

	  // Index to access the 2d arrays of paddle/scintillator properties
	  Int_t fPIndex = GetScinIndex(ip,paddle);
          
	  if ( TMath::Abs( scinCenter - scinTrnsCoord ) <
	       ( fPlanes[ip]->GetSize() * 0.5 + fPlanes[ip]->GetHodoSlop() ) ){ // Line 293

	    fTOFPInfo[ihhit].onTrack = kTRUE;
	    Double_t zcor = zposition/(29.979*fBetaP)*
		TMath::Sqrt(1. + theTrack->GetTheta()*theTrack->GetTheta()
			    + theTrack->GetPhi()*theTrack->GetPhi());
	    fTOFPInfo[ihhit].zcor = zcor;
	    if (fCosmicFlag) {
	    Double_t zcor = -zposition/(29.979*1.0)*
		TMath::Sqrt(1. + theTrack->GetTheta()*theTrack->GetTheta()
			    + theTrack->GetPhi()*theTrack->GetPhi());
	    fTOFPInfo[ihhit].zcor = zcor;
	    }
	    Double_t tdc_pos = hit->GetPosTDC();
	    if(tdc_pos >=fScinTdcMin && tdc_pos <= fScinTdcMax ) {
	      Double_t adc_pos = hit->GetPosADC();
	      Double_t pathp = fPlanes[ip]->GetPosLeft() - scinLongCoord;
	      fTOFPInfo[ihhit].pathp = pathp;
	      Double_t timep = tdc_pos*fScinTdcToTime;
	      if(fTofUsingInvAdc) {
		timep -= fHodoPosInvAdcOffset[fPIndex]
		  + pathp/fHodoPosInvAdcLinear[fPIndex]
		  + fHodoPosInvAdcAdc[fPIndex]
		  /TMath::Sqrt(TMath::Max(20.0,adc_pos));
	      } else {
		timep -= fHodoPosPhcCoeff[fPIndex]*
		  TMath::Sqrt(TMath::Max(0.0,adc_pos/fHodoPosMinPh[fPIndex]-1.0))
		  + pathp/fHodoVelLight[fPIndex]
		  + fHodoPosTimeOffset[fPIndex];
	      }
	      fTOFPInfo[ihhit].scin_pos_time = timep;
 	      timep -= zcor;
	      fTOFPInfo[ihhit].time_pos = timep;

	      for ( Int_t k = 0; k < 200; k++ ){ // Line 211
		Double_t tmin = 0.5 * ( k + 1 ) ;
		if ( ( timep > tmin ) && ( timep < ( tmin + fTofTolerance ) ) )
		  timehist[k] ++;
	      }
	    }

	    Double_t tdc_neg = hit->GetNegTDC();
	    if(tdc_neg >=fScinTdcMin && tdc_neg <= fScinTdcMax ) {
	      Double_t adc_neg = hit->GetNegADC();
	      Double_t pathn =  scinLongCoord - fPlanes[ip]->GetPosRight();
	      fTOFPInfo[ihhit].pathn = pathn;
	      Double_t timen = tdc_neg*fScinTdcToTime;
	      if(fTofUsingInvAdc) {
		timen -= fHodoNegInvAdcOffset[fPIndex]
		  + pathn/fHodoNegInvAdcLinear[fPIndex]
		  + fHodoNegInvAdcAdc[fPIndex]
		  /TMath::Sqrt(TMath::Max(20.0,adc_neg));
	      } else {
		timen -= fHodoNegPhcCoeff[fPIndex]*
		  TMath::Sqrt(TMath::Max(0.0,adc_neg/fHodoNegMinPh[fPIndex]-1.0))
		  + pathn/fHodoVelLight[fPIndex]
		  + fHodoNegTimeOffset[fPIndex];
	      }
	      fTOFPInfo[ihhit].scin_neg_time = timen;
	      timen -=  zcor;
	      fTOFPInfo[ihhit].time_neg = timen;

	      for ( Int_t k = 0; k < 200; k++ ){ // Line 230
		Double_t tmin = 0.5 * ( k + 1 );
		if ( ( timen > tmin ) && ( timen < ( tmin + fTofTolerance ) ) )
		  timehist[k] ++;
	      }
	    }
	  } // condition for cenetr on a paddle
	  ihhit++;
	} // First loop over hits in a plane <---------

	//-----------------------------------------------------------------------------------------------
	//------------- First large loop over scintillator hits ends here --------------------
	//-----------------------------------------------------------------------------------------------
      }
      Int_t nhits=ihhit;

      // Find bin with the most hits
      Int_t jmax = 0; // Line 240
      Int_t maxhit = 0;
      for ( Int_t k = 0; k < 200; k++ ){
	if ( timehist[k] > maxhit ){
	  jmax = k+1;
	  maxhit = timehist[k];
	}
      }


      if(jmax > 0) {
	Double_t tmin = 0.5 * jmax;

	for(Int_t ih = 0; ih < nhits; ih++) { // loop over all scintillator hits
	  if ( ( fTOFPInfo[ih].time_pos > tmin ) && ( fTOFPInfo[ih].time_pos < ( tmin + fTofTolerance ) ) ) {
	    fTOFPInfo[ih].keep_pos=kTRUE;
	  }
	  if ( ( fTOFPInfo[ih].time_neg > tmin ) && ( fTOFPInfo[ih].time_neg < ( tmin + fTofTolerance ) ) ){
	    fTOFPInfo[ih].keep_neg=kTRUE;
	  }
	}
      }

	//---------------------------------------------------------------------------------------------
	// ---------------------- Scond loop over scint. hits in a plane ------------------------------
	//---------------------------------------------------------------------------------------------
      for(Int_t ih=0; ih < nhits; ih++) {
	THcHodoHit *hit = fTOFPInfo[ih].hit;
	Int_t iphit = fTOFPInfo[ih].hitNumInPlane;
	Int_t ip = fTOFPInfo[ih].planeIndex;
	//         fDumpOut << " looping over hits = " << ih << " plane = " << ip+1 << endl;
	GoodFlags flags;
	// Flags are used by THcHodoEff
	fGoodFlags[itrack][ip].push_back(flags);
	fGoodFlags[itrack][ip][iphit].onTrack = kFALSE;
	fGoodFlags[itrack][ip][iphit].goodScinTime = kFALSE;
	fGoodFlags[itrack][ip][iphit].goodTdcNeg = kFALSE;
	fGoodFlags[itrack][ip][iphit].goodTdcPos = kFALSE;

	fTOFCalc.push_back(TOFCalc());
	// Do we set back to false for each track, or just once per event?
	fTOFCalc[ih].good_scin_time = kFALSE;
	// These need a track index too to calculate efficiencies
	fTOFCalc[ih].good_tdc_pos = kFALSE;
	fTOFCalc[ih].good_tdc_neg = kFALSE;
	fTOFCalc[ih].pindex = ip;

	Int_t paddle = hit->GetPaddleNumber()-1;
	fTOFCalc[ih].hit_paddle = paddle;
	fTOFCalc[ih].good_raw_pad = paddle;

	//	Double_t scinCenter = fPlanes[ip]->GetPosCenter(paddle) + fPlanes[ip]->GetPosOffset();
	//	Double_t scinTrnsCoord = fTOFPInfo[ih].scinTrnsCoord;
	//	Double_t scinLongCoord = fTOFPInfo[ih].scinLongCoord;

	Int_t fPIndex = GetScinIndex(ip,paddle);

	if (fTOFPInfo[ih].onTrack) {
	  if ( fTOFPInfo[ih].keep_pos ) { // 301
	    fTOFCalc[ih].good_tdc_pos = kTRUE;
	    fGoodFlags[itrack][ip][iphit].goodTdcPos = kTRUE;
	    if(fDumpTOF && ntracks==1 && fGoodEventTOFCalib) {
              fDumpOut << fixed << setprecision(2);
             fDumpOut  << showpoint << " 1" << setw(3) << ip+1 << setw(3) << hit->GetPaddleNumber()  << setw(10) << hit->GetPosTDC()*fScinTdcToTime  << setw(10) << fTOFPInfo[ih].pathp << setw(10) << fTOFPInfo[ih].zcor  << setw(10) << fTOFPInfo[ih].time_pos << setw(10) << hit->GetPosADC() << endl;
	    }
	  }
	  if ( fTOFPInfo[ih].keep_neg ) { //
	    fTOFCalc[ih].good_tdc_neg = kTRUE;
	    fGoodFlags[itrack][ip][iphit].goodTdcNeg = kTRUE;
	    if(fDumpTOF && ntracks==1 && fGoodEventTOFCalib) {
             fDumpOut << fixed << setprecision(2);
             fDumpOut  << showpoint << " 2" << setw(3) << ip+1 << setw(3) << hit->GetPaddleNumber() << setw(10) << hit->GetNegTDC()*fScinTdcToTime  << setw(10) << fTOFPInfo[ih].pathn << setw(10) << fTOFPInfo[ih].zcor  << setw(10) << fTOFPInfo[ih].time_neg << setw(10) << hit->GetNegADC() << endl;
	    }
	  }

	  // ** Calculate ave time for scin and error.
	  if ( fTOFCalc[ih].good_tdc_pos ){
	    if ( fTOFCalc[ih].good_tdc_neg ){
	      fTOFCalc[ih].scin_time  = ( fTOFPInfo[ih].scin_pos_time +
					     fTOFPInfo[ih].scin_neg_time ) / 2.;
	      fTOFCalc[ih].scin_time_fp  = ( fTOFPInfo[ih].time_pos +
					     fTOFPInfo[ih].time_neg ) / 2.;
	      fTOFCalc[ih].scin_sigma = TMath::Sqrt( fHodoPosSigma[fPIndex] * fHodoPosSigma[fPIndex] +
							fHodoNegSigma[fPIndex] * fHodoNegSigma[fPIndex] )/2.;
	      fTOFCalc[ih].good_scin_time = kTRUE;
	      fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
	    } else{
	      fTOFCalc[ih].scin_time = fTOFPInfo[ih].scin_pos_time;
	      fTOFCalc[ih].scin_time_fp = fTOFPInfo[ih].time_pos;
	      fTOFCalc[ih].scin_sigma = fHodoPosSigma[fPIndex];
	      fTOFCalc[ih].good_scin_time = kTRUE;
	      fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
	    }
	  } else {
	    if ( fTOFCalc[ih].good_tdc_neg ){
	      fTOFCalc[ih].scin_time = fTOFPInfo[ih].scin_neg_time;
	      fTOFCalc[ih].scin_time_fp = fTOFPInfo[ih].time_neg;
	      fTOFCalc[ih].scin_sigma = fHodoNegSigma[fPIndex];
	      fTOFCalc[ih].good_scin_time = kTRUE;
	      fGoodFlags[itrack][ip][iphit].goodScinTime = kTRUE;
	    }
	  } // In h_tof.f this includes the following if condition for time at focal plane
	    // // because it is written in FORTRAN code

	    // c     Get time at focal plane
	  if ( fTOFCalc[ih].good_scin_time ){

	    // scin_time_fp doesn't need to be an array
	    // Is this any different than the average of time_pos and time_neg?
	    //	    Double_t scin_time_fp = ( fTOFPInfo[ih].time_pos +
	    //				      fTOFPInfo[ih].time_neg ) / 2.;
	    Double_t scin_time_fp = fTOFCalc[ih].scin_time_fp;

	    sumFPTime = sumFPTime + scin_time_fp;
	    nFPTime ++;

	    fSumPlaneTime[ip] = fSumPlaneTime[ip] + scin_time_fp;
	    fNPlaneTime[ip] ++;
	    fNScinHit[itrack] ++;

	    if ( ( fTOFCalc[ih].good_tdc_pos ) && ( fTOFCalc[ih].good_tdc_neg ) ){
	      nPmtHit[itrack] = nPmtHit[itrack] + 2;
	    } else {
	      nPmtHit[itrack] = nPmtHit[itrack] + 1;
	    }

	    fdEdX[itrack].push_back(0.0);

	    // --------------------------------------------------------------------------------------------
	    if ( fTOFCalc[ih].good_tdc_pos ){
	      if ( fTOFCalc[ih].good_tdc_neg ){
		fdEdX[itrack][fNScinHit[itrack]-1]=
		  TMath::Sqrt( TMath::Max( 0., hit->GetPosADC() * hit->GetNegADC() ) );
	      } else{
		fdEdX[itrack][fNScinHit[itrack]-1]=
		  TMath::Max( 0., hit->GetPosADC() );
	      }
	    } else{
	      if ( fTOFCalc[ih].good_tdc_neg ){
		fdEdX[itrack][fNScinHit[itrack]-1]=
		  TMath::Max( 0., hit->GetNegADC() );
	      } else{
		fdEdX[itrack][fNScinHit[itrack]-1]=0.0;
	      }
	    }
	    // --------------------------------------------------------------------------------------------


	  } // time at focal plane condition
	} // on track condition

	  // ** See if there are any good time measurements in the plane.
	if ( fTOFCalc[ih].good_scin_time ){
	  fGoodPlaneTime[ip] = kTRUE;
	  fTOFCalc[ih].dedx = fdEdX[itrack][fNScinHit[itrack]-1];
	} else {
	  fTOFCalc[ih].dedx = 0.0;
	}

      } // Second loop over hits of a scintillator plane ends here
       theTrack->SetGoodPlane3( fGoodPlaneTime[2] ? 1 : 0 );
      theTrack->SetGoodPlane4( fGoodPlaneTime[3] ? 1 : 0 );
     //
       //------------------------------------------------------------------------------
      //------------------------------------------------------------------------------
      //------------------------------------------------------------------------------
      //------------------------------------------------------------------------------
      //------------------------------------------------------------------------------
      //------------------------------------------------------------------------------
      //------------------------------------------------------------------------------
      //------------------------------------------------------------------------------

      // * * Fit beta if there are enough time measurements (one upper, one lower)
      // From h_tof_fit
      if ( ( ( fGoodPlaneTime[0] ) || ( fGoodPlaneTime[1] ) ) &&
	   ( ( fGoodPlaneTime[2] ) || ( fGoodPlaneTime[3] ) ) ){

	Double_t sumW = 0.;
	Double_t sumT = 0.;
	Double_t sumZ = 0.;
	Double_t sumZZ = 0.;
	Double_t sumTZ = 0.;

	for(Int_t ih=0; ih < nhits; ih++) {
	  Int_t ip = fTOFPInfo[ih].planeIndex;

	  if ( fTOFCalc[ih].good_scin_time ) {

	    Double_t scinWeight = 1 / ( fTOFCalc[ih].scin_sigma * fTOFCalc[ih].scin_sigma );
	    Double_t zPosition = ( fPlanes[ip]->GetZpos()
				   +( fTOFCalc[ih].hit_paddle % 2 ) *
				   fPlanes[ip]->GetDzpos() );

	    sumW  += scinWeight;
	    sumT  += scinWeight * fTOFCalc[ih].scin_time;
	    sumZ  += scinWeight * zPosition;
	    sumZZ += scinWeight * ( zPosition * zPosition );
	    sumTZ += scinWeight * zPosition * fTOFCalc[ih].scin_time;

	  } // condition of good scin time
	} // loop over hits

	Double_t tmp = sumW * sumZZ - sumZ * sumZ ;
	Double_t t0 = ( sumT * sumZZ - sumZ * sumTZ ) / tmp ;
	Double_t tmpDenom = sumW * sumTZ - sumZ * sumT;

	if ( TMath::Abs( tmpDenom ) > ( 1 / 10000000000.0 ) ) {

	  beta = tmp / tmpDenom;
	  betaChiSq = 0.;

	  for(Int_t ih=0; ih < nhits; ih++) {
	    Int_t ip = fTOFPInfo[ih].planeIndex;

	    if ( fTOFCalc[ih].good_scin_time ){

	      Double_t zPosition = ( fPlanes[ip]->GetZpos() + ( fTOFCalc[ih].hit_paddle % 2 ) *
				     fPlanes[ip]->GetDzpos() );
	      Double_t timeDif = ( fTOFCalc[ih].scin_time - t0 );
	      betaChiSq += ( ( zPosition / beta - timeDif ) *
			     ( zPosition / beta - timeDif ) )  /
		( fTOFCalc[ih].scin_sigma * fTOFCalc[ih].scin_sigma );

	    } // condition for good scin time
	  } // loop over hits

	  Double_t pathNorm = TMath::Sqrt( 1. + theTrack->GetTheta() * theTrack->GetTheta() +
				       theTrack->GetPhi()   * theTrack->GetPhi() );
	  // Take angle into account
	  beta = beta / pathNorm;
	  beta = beta / 29.979;    // velocity / c

	}  // condition for fTmpDenom
	else {
	  beta = 0.;
	  betaChiSq = -2.;
	} // else condition for fTmpDenom
      }
      else {
	beta = 0.;
	betaChiSq = -1;
      }

      if ( nFPTime != 0 ){
      	timeAtFP[itrack] = ( sumFPTime / nFPTime );
      }
      //
      // ---------------------------------------------------------------------------

      Double_t FPTimeSum=0.0;
      Int_t nFPTimeSum=0;
      for (Int_t ip = 0; ip < temp_planes; ip++ ){
	if ( fNPlaneTime[ip] != 0 ){
	  fFPTime[ip] = ( fSumPlaneTime[ip] / fNPlaneTime[ip] );
	  FPTimeSum += fSumPlaneTime[ip];
	  nFPTimeSum += fNPlaneTime[ip];
	}
	else{
	  fFPTime[ip] = 1000. * ( ip + 1 );
	}
      }
      Double_t fptime = FPTimeSum/nFPTimeSum;
      fFPTimeAll = fptime;
      Double_t dedx=0.0;
      for(UInt_t ih=0;ih<fTOFCalc.size();ih++) {
	if(fTOFCalc[ih].good_scin_time) {
	  dedx = fTOFCalc[ih].dedx;
	  break;
	}
      }
      theTrack->SetDedx(dedx);
      theTrack->SetFPTime(fptime);
      theTrack->SetBeta(beta);
      theTrack->SetBetaChi2( betaChiSq );
      theTrack->SetNPMT(nPmtHit[itrack]);
      theTrack->SetFPTime( timeAtFP[itrack]);


    } // Main loop over tracks ends here.

  } // If condition for at least one track

   if(fDumpTOF && ntracks==1 && fGoodEventTOFCalib) {
         fDumpOut << "0 "  << endl;
	    }

  //-----------------------------------------------------------------------
  //
  //   Trnslation of h_track_tests.f file for tracking efficiency
  //
  //-----------------------------------------------------------------------

  //************************now look at some hodoscope tests
  //  *second, we move the scintillators.  here we use scintillator cuts to see
  //  *if a track should have been found.

  for(Int_t ip = 0; ip < temp_planes; ip++ ) {
    if (!fPlanes[ip])
      return -1;

    TClonesArray* hodoHits = fPlanes[ip]->GetHits();
    //    TClonesArray* scinPosTDC = fPlanes[ip]->GetPosTDC();
    //    TClonesArray* scinNegTDC = fPlanes[ip]->GetNegTDC();

    fNScinHits[ip] = fPlanes[ip]->GetNScinHits();
    for (Int_t iphit = 0; iphit < fNScinHits[ip]; iphit++ ){
      Int_t paddle = ((THcHodoHit*)hodoHits->At(iphit))->GetPaddleNumber()-1;

      fScinHitPaddle[ip][paddle] = 1;
    }
  }

  //  *next, look for clusters of hits in a scin plane.  a cluster is a group of
  //  *adjacent scintillator hits separated by a non-firing scintillator.
  //  *Wwe count the number of three adjacent scintillators too.  (A signle track
  //  *shouldn't fire three adjacent scintillators.

  for(Int_t ip = 0; ip < temp_planes; ip++ ) {
    // Planes ip = 0 = 1X
    // Planes ip = 2 = 2X
    if (!fPlanes[ip]) return -1;
    fNClust.push_back(0);
    fThreeScin.push_back(0);
  }

  // *look for clusters in x planes... (16 scins)  !this assume both x planes have same
  // *number of scintillators.
  Int_t icount;
  for (Int_t ip = 0; ip < 3; ip +=2 ) {
    icount = 0;
    if ( fScinHitPaddle[ip][0] == 1 )
      icount ++;

    for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 1; ipaddle++ ){
      // !look for number of clusters of 1 or more hits

      if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
	   ( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
	icount ++;

    } // Loop over  paddles

    fNClust[ip] = icount;
    icount = 0;

    for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0] - 2; ipaddle++ ){
      // !look for three or more adjacent hits

      if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
	   ( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
	   ( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
	icount ++;
    } // Second loop over paddles

    if ( icount > 0 )
      fThreeScin[ip] = 1;

  } // Loop over X plane

  // *look for clusters in y planes... (10 scins)  !this assume both y planes have same
  // *number of scintillators.

  for (Int_t ip = 1; ip < 4; ip +=2 ) {
    // Planes ip = 1 = 1Y
    // Planes ip = 3 = 2Y
    if (!fPlanes[ip]) return -1;

    icount = 0;
    if ( fScinHitPaddle[ip][0] == 1 )
      icount ++;

    for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 1; ipaddle++ ){
      //  !look for number of clusters of 1 or more hits

      if ( ( fScinHitPaddle[ip][ipaddle] == 0 ) &&
	   ( fScinHitPaddle[ip][ipaddle + 1] == 1 ) )
	icount ++;

    } // Loop over Y paddles

    fNClust[ip] = icount;
    icount = 0;

    for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1] - 2; ipaddle++ ){
      // !look for three or more adjacent hits

      if ( ( fScinHitPaddle[ip][ipaddle] == 1 ) &&
	   ( fScinHitPaddle[ip][ipaddle + 1] == 1 ) &&
	   ( fScinHitPaddle[ip][ipaddle + 2] == 1 ) )
	icount ++;

    } // Second loop over Y paddles

    if ( icount > 0 )
      fThreeScin[ip] = 1;

  }// Loop over Y planes

  // *now put some "tracking" like cuts on the hslopes, based only on scins...
  // *by "slope" here, I mean the difference in the position of scin hits in two
  // *like-planes.  For example, a track that those great straight through will
  // *have a slope of zero.  If it moves one scin over from s1x to s2x it has an
  // *x-slope of 1...  I pick the minimum slope if there are multiple scin hits.

  Double_t bestXpScin = 100.0;
  Double_t bestYpScin = 100.0;

  for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[0]; ipaddle++ ){
    for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[0]; ipaddle2++ ){

      if ( ( fScinHitPaddle[0][ipaddle] == 1 ) &&
	   ( fScinHitPaddle[2][ipaddle2] == 1 ) ){

	Double_t slope = TMath::Abs(ipaddle - ipaddle2);

	if ( slope < bestXpScin ) {
	  bestXpScin = slope;

	}
      }
    }  // Second loop over X paddles
  } // First loop over X paddles


  for (Int_t ipaddle = 0; ipaddle < (Int_t) fNPaddle[1]; ipaddle++ ){
    for (Int_t ipaddle2 = 0; ipaddle2 < (Int_t) fNPaddle[1]; ipaddle2++ ){

      if ( ( fScinHitPaddle[1][ipaddle] == 1 ) &&
	   ( fScinHitPaddle[3][ipaddle2] == 1 ) ){

	Double_t slope = TMath::Abs(ipaddle - ipaddle2);

	if ( slope < bestYpScin ) {
	  bestYpScin = slope;
	}
      }
    }  // Second loop over Y paddles
  } // First loop over Y paddles

  // *next we mask out the edge scintillators, and look at triggers that happened
  // *at the center of the acceptance.  To change which scins are in the mask
  // *change the values of h*loscin and h*hiscin in htracking.param

  //      fGoodScinHits = 0;
  for (Int_t ifidx = fxLoScin[0]; ifidx < (Int_t) fxHiScin[0]; ifidx ++ ){
    fGoodScinHitsX.push_back(0);
  }

  // *first x plane.  first see if there are hits inside the scin region
  for (Int_t ifidx = fxLoScin[0]-1; ifidx < fxHiScin[0]; ifidx ++ ){
    if ( fScinHitPaddle[0][ifidx] == 1 ){
      fHitSweet1X = 1;
      fSweet1XScin = ifidx + 1;
    }
  }

  // *  next make sure nothing fired outside the good region
  for (Int_t ifidx = 0; ifidx < fxLoScin[0]-1; ifidx ++ ){
    if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
  }
  for (Int_t ifidx = fxHiScin[0]; ifidx < (Int_t) fNPaddle[0]; ifidx ++ ){
    if ( fScinHitPaddle[0][ifidx] == 1 ){ fHitSweet1X = -1; }
  }

  // *second x plane.  first see if there are hits inside the scin region
  for (Int_t ifidx = fxLoScin[1]-1; ifidx < fxHiScin[1]; ifidx ++ ){
    if ( fScinHitPaddle[2][ifidx] == 1 ){
      fHitSweet2X = 1;
      fSweet2XScin = ifidx + 1;
    }
  }
  // *  next make sure nothing fired outside the good region
  for (Int_t ifidx = 0; ifidx < fxLoScin[1]-1; ifidx ++ ){
    if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
  }
  for (Int_t ifidx = fxHiScin[1]; ifidx < (Int_t) fNPaddle[2]; ifidx ++ ){
    if ( fScinHitPaddle[2][ifidx] == 1 ){ fHitSweet2X = -1; }
  }

  // *first y plane.  first see if there are hits inside the scin region
  for (Int_t ifidx = fyLoScin[0]-1; ifidx < fyHiScin[0]; ifidx ++ ){
    if ( fScinHitPaddle[1][ifidx] == 1 ){
      fHitSweet1Y = 1;
      fSweet1YScin = ifidx + 1;
    }
  }
  // *  next make sure nothing fired outside the good region
  for (Int_t ifidx = 0; ifidx < fyLoScin[0]-1; ifidx ++ ){
    if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
  }
  for (Int_t ifidx = fyHiScin[0]; ifidx < (Int_t) fNPaddle[1]; ifidx ++ ){
    if ( fScinHitPaddle[1][ifidx] == 1 ){ fHitSweet1Y = -1; }
  }

  // *second y plane.  first see if there are hits inside the scin region
  for (Int_t ifidx = fyLoScin[1]-1; ifidx < fyHiScin[1]; ifidx ++ ){
    if ( fScinHitPaddle[3][ifidx] == 1 ){
      fHitSweet2Y = 1;
      fSweet2YScin = ifidx + 1;
    }
  }

  // *  next make sure nothing fired outside the good region
  for (Int_t ifidx = 0; ifidx < fyLoScin[1]-1; ifidx ++ ){
    if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
  }
  for (Int_t ifidx = fyHiScin[1]; ifidx < (Int_t) fNPaddle[3]; ifidx ++ ){
    if ( fScinHitPaddle[3][ifidx] == 1 ){ fHitSweet2Y = -1; }
  }

  fTestSum = fHitSweet1X + fHitSweet2X + fHitSweet1Y + fHitSweet2Y;

  // * now define a 3/4 or 4/4 trigger of only good scintillators the value
  // * is specified in htracking.param...
  if ( fTestSum >= fTrackEffTestNScinPlanes ){
    fGoodScinHits = 1;
    for (Int_t ifidx = fxLoScin[0]; ifidx < fxHiScin[0]; ifidx ++ ){
      if ( fSweet1XScin == ifidx )
	fGoodScinHitsX[ifidx] = 1;
    }
  }

  // * require front/back hodoscopes be close to each other
  if ( ( fGoodScinHits == 1 ) && ( fTrackEffTestNScinPlanes == 4 ) ){
    if ( TMath::Abs( fSweet1XScin - fSweet2XScin ) > 3 )
      fGoodScinHits = 0;
    if ( TMath::Abs( fSweet1YScin - fSweet2YScin ) > 2 )
      fGoodScinHits = 0;
  }


  if ( !fChern || !fShower ) {
    return 0;
  }


  if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
       ( fChern->GetCerNPE() > fNCerNPE ) )
    fScinShould = 1;

  if ( ( fGoodScinHits == 1 ) && ( fShower->GetNormETot() > fNormETot ) &&
       ( fChern->GetCerNPE() > fNCerNPE ) && ( tracks.GetLast() + 1 > 0 ) ) {
      fScinDid = 1;
  }

  return 0;

}
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nPlane, Int_t nPaddle ) {
  // GN: Return the index of a scintillator given the plane # and the paddle #
  // This assumes that both planes and
  // paddles start counting from 0!
  // Result also counts from 0.
  return fNPlanes*nPaddle+nPlane;
}
//_____________________________________________________________________________
Int_t THcHodoscope::GetScinIndex( Int_t nSide, Int_t nPlane, Int_t nPaddle ) {
  return nSide*fMaxHodoScin+fNPlanes*nPaddle+nPlane-1;
}
//_____________________________________________________________________________
Double_t THcHodoscope::GetPathLengthCentral() {
  return fPathLengthCentral;
}
ClassImp(THcHodoscope)
////////////////////////////////////////////////////////////////////////////////