Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
//*-- Author : Julie Roche, November 2010
// this is a modified version of THaGOHelicity.C
////////////////////////////////////////////////////////////////////////
//
// THcHelicity
//
// Helicity of the beam from QWEAK electronics in delayed mode
// +1 = plus, -1 = minus, 0 = unknown
//
// Also supports in-time mode with delay = 0
//
////////////////////////////////////////////////////////////////////////
#include "THcHelicity.h"
#include "THaApparatus.h"
#include "THaEvData.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "TH1F.h"
#include "TMath.h"
#include <iostream>
using namespace std;
//_____________________________________________________________________________
THcHelicity::THcHelicity( const char* name, const char* description,
THaApparatus* app ):
THaHelicityDet( name, description, app ),
fnQrt(-1), fHelDelay(8), fMAXBIT(30)
{
// for( Int_t i = 0; i < NHIST; ++i )
// fHisto[i] = 0;
// memset(fHbits, 0, sizeof(fHbits));
}
//_____________________________________________________________________________
THcHelicity::THcHelicity()
: fnQrt(-1), fHelDelay(8), fMAXBIT(30)
{
// Default constructor for ROOT I/O
// for( Int_t i = 0; i < NHIST; ++i )
// fHisto[i] = 0;
}
//_____________________________________________________________________________
THcHelicity::~THcHelicity()
{
DefineVariables( kDelete );
// for( Int_t i = 0; i < NHIST; ++i ) {
// delete fHisto[i];
// }
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHelicity::Init(const TDatime& date) {
// Call `Setup` before everything else.
Setup(GetName(), GetTitle());
fFirstEvProcessed = kFALSE;
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
fLastMPSTime = 0;
fFoundMPS = kFALSE;
// Call initializer for base class.
// This also calls `ReadDatabase` and `DefineVariables`.
EStatus status = THaDetector::Init(date);
if (status) {
fStatus = status;
return fStatus;
}
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
fStatus = kOK;
return fStatus;
}
//_____________________________________________________________________________
void THcHelicity::Setup(const char* name, const char* description) {
// Prefix for parameters in `param` file.
string kwPrefix = string(GetApparatus()->GetName()) + "_" + name;
std::transform(kwPrefix.begin(), kwPrefix.end(), kwPrefix.begin(), ::tolower);
fKwPrefix = kwPrefix;
}
//_____________________________________________________________________________
Int_t THcHelicity::ReadDatabase( const TDatime& date )
{
cout << "In THcHelicity::ReadDatabase" << endl;
// Read general HelicityDet database values (e.g. fSign)
// Int_t st = THaHelicityDet::ReadDatabase( date );
// if( st != kOK )
// return st;
// Read readout parameters (ROC addresses etc.)
Int_t st = THcHelicityReader::ReadDatabase( GetDBFileName(), GetPrefix(),
date, fQWEAKDebug );
if( st != kOK )
return st;
fSign = 1; // Default helicity sign
fRingSeed_reported_initial = 0; // Initial see that should predict reported
// helicity of first quartet.
fFirstCycle = -1; // First Cycle that starts a quad (0 to 3)
fFreq = 29.5596;
fHelDelay=8;
DBRequest list[]= {
// {"_hsign", &fSign, kInt, 0, 1},
{"helicity_delay", &fHelDelay, kInt, 0, 1},
{"helicity_freq", &fFreq, kDouble, 0, 1},
// {"helicity_seed", &fRingSeed_reported_initial, kInt, 0, 1},
// {"helicity_cycle", &fFirstCycle, kInt, 0, 1},
{0}
};
gHcParms->LoadParmValues(list, "");
fMAXBIT=30;
fTIPeriod = 250000000.0/fFreq;
// maximum of event in the pattern, for now we are working with quartets
// Int_t localpattern[4]={1,-1,-1,1};
// careful, the first value here should always +1
// for(int i=0;i<fQWEAKNPattern;i++)
// {
// fPatternSequence.push_back(localpattern[i]);
// }
HWPIN=kTRUE;
fQuartet[0]=fQuartet[1]=fQuartet[2]=fQuartet[3]=0;
if (fFirstCycle>=0 && fRingSeed_reported_initial!=0) {
// Set the seed for predicted reported and predicted actual
} else {
// Initialize mode to find quartets and then seed
}
cout << "Helicity decoder initialized with frequency of " << fFreq
<< " Hz and reporting delay of " << fHelDelay << " cycles." << endl;
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
return kOK;
}
//_____________________________________________________________________________
void THcHelicity::MakePrefix()
{
THaDetector::MakePrefix();
}
//_____________________________________________________________________________
Int_t THcHelicity::DefineVariables( EMode mode )
{
// Initialize global variables
cout << "Called THcHelicity::DefineVariables with mode == "
<< mode << endl;
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Define standard variables from base class
THaHelicityDet::DefineVariables( mode );
const RVarDef var[] = {
{ "nqrt", "position of cycle in quartet", "fnQrt" },
{ "hel", "actual helicity for event", "fActualHelicity" },
{ "helrep", "reported helicity for event", "fReportedHelicity" },
{ "helpred", "predicted reported helicity for event", "fPredictedHelicity" },
{ "mps", "In MPS blanking period", "fMPS"},
{ 0 }
};
cout << "Calling THcHelicity DefineVarsFromList" << endl;
return DefineVarsFromList( var, mode );
}
//_____________________________________________________________________________
void THcHelicity::PrintEvent(Int_t evtnum)
{
cout<<" ++++++ THcHelicity::Print ++++++\n";
cout<<" +++++++++++++++++++++++++++++++++++++\n";
return;
}
//_____________________________________________________________________________
Int_t THcHelicity::Begin( THaRunBase* )
{
THcHelicityReader::Begin();
// fHisto[0] = new TH1F("hel.seed","hel.seed",32,-1.5,30.5);
// fHisto[1] = new TH1F("hel.error.code","hel.error.code",35,-1.5,33.5);
return 0;
}
//_____________________________________________________________________________
//void THcHelicity::FillHisto()
//{
// fHisto[0]->Fill(fRing_NSeed);
// fHisto[1]->Fill(fErrorCode);
// return;
//}
//_____________________________________________________________________________
void THcHelicity::SetErrorCode(Int_t error)
{
// used as a control for the helciity computation
// 2^0: if the reported number of events in a pattern is larger than fQWEAKNPattern
// 2^1: if the offset between the ring reported value and TIR value is not fOffsetTIRvsRing
// 2^2: if the reported time in the ring is 0
// 2^3: if the predicted reported helicity doesn't match the reported helicity in the ring
// 2^4: if the helicity cannot be computed using the SetHelicity routine
// 2^5: if seed is being gathered
if(fErrorCode==0)
fErrorCode=(1<<error);
// only one reported error at the time
return;
}
//_____________________________________________________________________________
void THcHelicity::Clear( Option_t* opt )
{
// Clear event-by-event data
THaHelicityDet::Clear(opt);
THcHelicityReader::Clear(opt);
fEvtype = 0;
fQrt=0;
fErrorCode=0;
return;
}
//_____________________________________________________________________________
Int_t THcHelicity::Decode( const THaEvData& evdata )
{
// Decode Helicity data.
// Return 1 if helicity was assigned, 0 if not, <0 if error.
Int_t err = ReadData( evdata ); // from THcHelicityReader class
if( err ) {
Error( Here("THcHelicity::Decode"), "Error decoding helicity data." );
return err;
}
fReportedHelicity = (fIsHelp?(fIsHelm?kUnknown:kPlus):(fIsHelm?kMinus:kUnknown));
fMPS = fIsMPS?1:0;
if(fHelDelay == 0) { // If no delay actual=reported (but zero if in MPS)
fActualHelicity = fIsMPS?kUnknown:fReportedHelicity;
return 0;
}
if(fDisabled) {
fActualHelicity = kUnknown;
return 0;
}
fEvNumCheck++;
Int_t evnum = evdata.GetEvNum();
if(fEvNumCheck!=evnum) {
cout << "THcHelicity: Missed " << evnum-fEvNumCheck << " events at event " << evnum << endl;
cout << " Disabling helicity decoding for rest of run." << endl;
cout << " Make sure \"RawDecode_master in cuts file accepts all physics events." <<endl;
fDisabled = kTRUE;
fActualHelicity = kUnknown;
return 0;
}
fActualHelicity = -10.0;
if(fFirstEvProcessed) { // Normal processing
// cout << evnum << " " << fNCycle << " " << fIsMPS << " " << fFoundMPS << " " << fTITime << " "
// << fLastMPSTime << " " << fNBits << endl;
Int_t missed = 0;
// Double_t elapsed_time = (fTITime - fFirstEvTime)/250000000.0;
if(fIsMPS) {
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
if(fFoundMPS) {
missed = TMath::Nint(fTITime/fTIPeriod-fLastMPSTime/fTIPeriod);
if(missed < 1) { // was <=1
fLastMPSTime = (fTITime+fLastMPSTime+missed*fTIPeriod)/2;
fIsNewCycle = kTRUE;
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
} else {
fLastMPSTime = (fLastMPSTime + fTITime - missed*fTIPeriod)/2;
}
// If there is a skip, pass it off to next non MPS event
// Need to also check here for missed MPS's
// cout << "Found MPS" << endl;
// check for Nint((time-last)/period) > 1
} else {
fFoundMPS = kTRUE;
} else if (fFoundMPS) { //
if(fTITime - fLastMPSTime > fTIPeriod) { // We missed MPS periods
missed = TMath::Nint(floor((fTITime-fLastMPSTime)/fTIPeriod));
if(missed > 1) {
// cout << "Missed " << missed << " MPSes" << endl;
Int_t newNCycle = fNCycle + missed -1; // How many cycles really missed
Int_t quartets_missed = (newNCycle-fFirstCycle)/4 - (fNCycle-fFirstCycle)/4;
for(Int_t i=0;i<quartets_missed;i++) { // Advance the seeds.
fRingSeed_reported = RanBit30(fRingSeed_reported);
fRingSeed_actual = RanBit30(fRingSeed_actual);
}
int quartetphase = (newNCycle-fFirstCycle)%4;
// cout << " " << fNCycle << " " << newNCycle << " " << fFirstCycle << " " << quartets_missed << " " << quartetphase << endl;
// cout << "Cycles " << fNCycle << " " << newNCycle << " " << fFirstCycle
// << " skipped " << quartets_missed << " quartets" << endl;
fNCycle = newNCycle;
// Need to reset fQuartet to reflect where we are based on the current
// reported helicity. So we don't fail quartet testing.
// But only do this if we are calibrated.
if(fNBits >= fMAXBIT) {
fQuartetStartHelicity = (fRingSeed_actual&1)?kPlus:kMinus;
fQuartetStartPredictedHelicity = (fRingSeed_reported&1)?kPlus:kMinus;
fActualHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartHelicity:-fQuartetStartHelicity;
fPredictedHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartPredictedHelicity:-fQuartetStartPredictedHelicity;
if (((fNCycle - fFirstCycle)%2)==1) {
fQuartet[0] = fReportedHelicity;
fQuartet[1] = fQuartet[2] = -fQuartet[0];
} else {
fQuartet[0] = fQuartet[1] = -fReportedHelicity;
fQuartet[2] = -fQuartet[1];
}
} else {
fQuartet[0] = fReportedHelicity;
fQuartet[1] = 0;
}
}
fLastMPSTime += missed*fTIPeriod;
fIsNewCycle = kTRUE;
fLastReportedHelicity = fReportedHelicity;
} else { // No missed periods. Get helicities from rings
if(fNBits>=fMAXBIT) {
int quartetphase = (fNCycle-fFirstCycle)%4;
fQuartetStartHelicity = (fRingSeed_actual&1)?kPlus:kMinus;
fQuartetStartPredictedHelicity = (fRingSeed_reported&1)?kPlus:kMinus;
fActualHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartHelicity:-fQuartetStartHelicity;
fPredictedHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartPredictedHelicity:-fQuartetStartPredictedHelicity;
} else {
fActualHelicity = 0;
}
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
}
if(fIsNewCycle) {
fQuartet[3]=fQuartet[2]; fQuartet[2]=fQuartet[1]; fQuartet[1]=fQuartet[0];
fQuartet[0]=fReportedHelicity;
fNCycle++;
if((fNCycle-fFirstCycle)%4 == 3) {// Test if last in a quartet
if((abs(fQuartet[0]+fQuartet[3]-fQuartet[1]-fQuartet[2])==4)) {
if(!fFoundQuartet) {
// fFirstCycle = fNCycle - 3;
cout << "Quartet potentially found, starting at cycle " << fFirstCycle
<< " - event " << evdata.GetEvNum() << endl;
fFoundQuartet = kTRUE;
}
} else {
if(fNCycle - fFirstCycle > 4) { // Not at start of run. Reset
cout << "Lost quartet sync at cycle " << fNCycle << " - event "
<< evdata.GetEvNum() << endl;
cout << fQuartet[0] << " " << fQuartet[1] << " " << fQuartet[2] << " "
<< fQuartet[3] << endl;
fFirstCycle += 4*((fNCycle-fFirstCycle)/4); // Update, but don't change phase
}
fFoundQuartet = kFALSE;
fNBits = 0;
cout << "Searching for first of a quartet at cycle " << " " << fFirstCycle
<< " - event " << evdata.GetEvNum() << endl;
cout << fQuartet[0] << " " << fQuartet[1] << " " << fQuartet[2] << " "
<< fQuartet[3] << endl;
fFirstCycle++;
}
}
// Load the actual helicity. Calibrate if not calibrated.
fActualHelicity = kUnknown;
LoadHelicity(fReportedHelicity, fNCycle, missed);
fLastReportedHelicity = fReportedHelicity;
fIsNewCycle = kFALSE;
// cout << fTITime/250000000.0 << " " << fNCycle << " " << fReportedHelicity << endl;
// cout << fNCycle << ": " << fReportedHelicity << " "
// << fPredictedHelicity << " " << fActualHelicity << endl;
}
// Ignore until a MPS Is found
} else { // No MPS found yet
fActualHelicity = kUnknown;
}
} else {
cout << "Initializing" << endl;
fLastReportedHelicity = fReportedHelicity;
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
fFirstEvTime = fTITime;
fLastEvTime = fTITime;
fLastMPSTime = fTITime; // Not necessarily during the MPS
fNCycle = 0;
fFirstEvProcessed = kTRUE;
fFoundMPS = kFALSE;
fFoundQuartet = kFALSE;
fIsNewCycle = kFALSE;
fNBits = 0;
}
// Some sanity checks
if(fActualHelicity < -5) {
cout << "Actual Helicity never got defined" << endl;
}
if(fNBits < fMAXBIT) {
if(fActualHelicity == -1 || fActualHelicity == 1) {
cout << "Helicity of " << fActualHelicity << " reported prematurely at cycle " << fNCycle << endl;
}
}
fLastActualHelicity = fActualHelicity;
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
return 0;
}
//_____________________________________________________________________________
Int_t THcHelicity::End( THaRunBase* )
{
// End of run processing. Write histograms.
THcHelicityReader::End();
// for( Int_t i = 0; i < NHIST; ++i )
// fHisto[i]->Write();
return 0;
}
//_____________________________________________________________________________
void THcHelicity::SetDebug( Int_t level )
{
// Set debug level of this detector as well as the THcHelicityReader
// helper class.
THaHelicityDet::SetDebug( level );
fQWEAKDebug = level;
}
//_____________________________________________________________________________
void THcHelicity::LoadHelicity(Int_t reportedhelicity, Int_t cyclecount, Int_t missedcycles)
{
// static const char* const here = "THcHelicity::LoadHelicity";
int quartetphase = (cyclecount-fFirstCycle)%4;
fnQrt = quartetphase;
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
if(missedcycles > 1) { // If we missed windows
if(fNBits< fMAXBIT) { // and we haven't gotten the seed, start over
fNBits = 0;
return;
}
}
if(!fFoundQuartet) { // Wait until we have found quad phase before starting
return; // to calibrate
}
if(quartetphase == 0) { // Start of a quad
if(fNBits < fMAXBIT) {
if(fNBits == 0) {
cout << "Start calibrating at cycle " << cyclecount << endl;
fRingSeed_reported = 0;
}
if(fReportedHelicity == kPlus) {
fRingSeed_reported = ((fRingSeed_reported<<1) | 1) & 0x3FFFFFFF;
} else {
fRingSeed_reported = (fRingSeed_reported<<1) & 0x3FFFFFFF;
}
fNBits++;
if(fReportedHelicity == kUnknown) {
fNBits = 0;
fRingSeed_reported = 0;
} else if (fNBits==fMAXBIT) {
cout << "Seed Found " << hex << fRingSeed_reported << dec << " at cycle " << cyclecount << " with first cycle " << fFirstCycle << endl;
Int_t backseed = GetSeed30(fRingSeed_reported);
cout << "Seed at cycle " << fFirstCycle << " should be " << hex << backseed << dec << endl;
}
fActualHelicity = kUnknown;
} else if (fNBits >= fMAXBIT) {
fRingSeed_reported = RanBit30(fRingSeed_reported);
if(fNBits==fMAXBIT) {
fRingSeed_actual = fRingSeed_reported;
for(Int_t i=0;i<fHelDelay/4; i++) {
fRingSeed_actual = RanBit30(fRingSeed_actual);
}
fNBits++;
} else {
fRingSeed_actual = RanBit30(fRingSeed_actual);
}
fActualHelicity = (fRingSeed_actual&1)?kPlus:kMinus;
fPredictedHelicity = (fRingSeed_reported&1)?kPlus:kMinus;
// if(fTITime/250000000.0 > 380.0) cout << fTITime/250000000.0 << " " << fNCycle << " " << hex <<
// fRingSeed_reported << " " << fRingSeed_actual << dec << endl;
if(fReportedHelicity != fPredictedHelicity) {
cout << "Helicity prediction failed " << fReportedHelicity << " "
<< fPredictedHelicity << " " << fActualHelicity << endl;
cout << hex << fRingSeed_reported << " " << fRingSeed_actual << dec << endl;
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
fNBits = 0; // Need to reaquire seed
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
}
}
fQuartetStartHelicity = fActualHelicity;
fQuartetStartPredictedHelicity = fPredictedHelicity;
} else { // Not the beginning of a quad
if(fNBits>=fMAXBIT) {
fActualHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartHelicity:-fQuartetStartHelicity;
fPredictedHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartPredictedHelicity:-fQuartetStartPredictedHelicity;
}
}
return;
}
//_____________________________________________________________________________
Int_t THcHelicity::RanBit30(Int_t ranseed)
{
UInt_t bit7 = (ranseed & 0x00000040) != 0;
UInt_t bit28 = (ranseed & 0x08000000) != 0;
UInt_t bit29 = (ranseed & 0x10000000) != 0;
UInt_t bit30 = (ranseed & 0x20000000) != 0;
UInt_t newbit = (bit30 ^ bit29 ^ bit28 ^ bit7) & 0x1;
if(ranseed<=0) {
if(fQWEAKDebug>1)
std::cerr<<"ranseed must be greater than zero!"<<"\n";
newbit = 0;
}
ranseed = ( (ranseed<<1) | newbit ) & 0x3FFFFFFF;
//here ranseed is changed
if(fQWEAKDebug>1)
{
cout<< "THcHelicity::RanBit30, newbit="<<newbit<<"\n";
}
return ranseed;
}
//_____________________________________________________________________________
Int_t THcHelicity::GetSeed30(Int_t currentseed)
/* Back track the seed by 30 samples */
{
#if 1
Int_t seed = currentseed;
for(Int_t i=0;i<30;i++) {
UInt_t bit1 = (seed & 0x00000001) != 0;
UInt_t bit8 = (seed & 0x00000080) != 0;
UInt_t bit29 = (seed & 0x10000000) != 0;
UInt_t bit30 = (seed & 0x20000000) != 0;
UInt_t newbit30 = (bit30 ^ bit29 ^ bit8 ^ bit1) & 0x1;
seed = (seed >> 1) | (newbit30<<29);
}
#else
Int_t bits = currentseed;
Int_t seed=0;
for(Int_t i=0;i<30;i++) {
Int_t val;
// XOR at virtual position 0 and 29
if(i==0) {
val = ((bits & (1<<(i)))!=0) ^ ((bits & (1<<(i+29)))!=0);
} else {
val = ((bits & (1<<(i)))!=0) ^ ((seed & (1<<(i-1)))!=0);
}
if(i<=1) {
val = ((bits & (1<<(1-i)))!=0) ^ val;
} else {
val = ((seed & (1<<(i-2)))!=0) ^ val;
}
if(i<=22) {
val = ((bits & (1<<(i-22)))!=0) ^ val;
} else {
val = ((seed & (1<<(i-23)))!=0) ^ val;
}
seed |= (val<<i);
}
#endif
return seed;
}
ClassImp(THcHelicity)