Skip to content
Snippets Groups Projects
json.hpp 624 KiB
Newer Older
  • Learn to ignore specific revisions
  • 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
                        utf8_bytes[1] = 0x80 | ((charcode >> 12) & 0x3F);
                        utf8_bytes[2] = 0x80 | ((charcode >> 6) & 0x3F);
                        utf8_bytes[3] = 0x80 | (charcode & 0x3F);
                        utf8_bytes_filled = 4;
                    }
                    else
                    {
                        // unknown character
                        ++current_wchar;
                        utf8_bytes[0] = wc;
                        utf8_bytes_filled = 1;
                    }
                }
            }
        }
    
        void fill_buffer_utf32()
        {
            utf8_bytes_index = 0;
    
            if (current_wchar == str.size())
            {
                utf8_bytes[0] = std::char_traits<char>::eof();
                utf8_bytes_filled = 1;
            }
            else
            {
                // get the current character
                const int wc = static_cast<int>(str[current_wchar++]);
    
                // UTF-32 to UTF-8 encoding
                if (wc < 0x80)
                {
                    utf8_bytes[0] = wc;
                    utf8_bytes_filled = 1;
                }
                else if (wc <= 0x7FF)
                {
                    utf8_bytes[0] = 0xC0 | ((wc >> 6) & 0x1F);
                    utf8_bytes[1] = 0x80 | (wc & 0x3F);
                    utf8_bytes_filled = 2;
                }
                else if (wc <= 0xFFFF)
                {
                    utf8_bytes[0] = 0xE0 | ((wc >> 12) & 0x0F);
                    utf8_bytes[1] = 0x80 | ((wc >> 6) & 0x3F);
                    utf8_bytes[2] = 0x80 | (wc & 0x3F);
                    utf8_bytes_filled = 3;
                }
                else if (wc <= 0x10FFFF)
                {
                    utf8_bytes[0] = 0xF0 | ((wc >> 18 ) & 0x07);
                    utf8_bytes[1] = 0x80 | ((wc >> 12) & 0x3F);
                    utf8_bytes[2] = 0x80 | ((wc >> 6) & 0x3F);
                    utf8_bytes[3] = 0x80 | (wc & 0x3F);
                    utf8_bytes_filled = 4;
                }
                else
                {
                    // unknown character
                    utf8_bytes[0] = wc;
                    utf8_bytes_filled = 1;
                }
            }
        }
    
      private:
        /// the wstring to process
        const WideStringType& str;
    
        /// index of the current wchar in str
        std::size_t current_wchar = 0;
    
        /// a buffer for UTF-8 bytes
        std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
    
        /// index to the utf8_codes array for the next valid byte
        std::size_t utf8_bytes_index = 0;
        /// number of valid bytes in the utf8_codes array
        std::size_t utf8_bytes_filled = 0;
    };
    
    class input_adapter
    {
      public:
        // native support
    
        /// input adapter for input stream
        input_adapter(std::istream& i)
            : ia(std::make_shared<input_stream_adapter>(i)) {}
    
        /// input adapter for input stream
        input_adapter(std::istream&& i)
            : ia(std::make_shared<input_stream_adapter>(i)) {}
    
        input_adapter(const std::wstring& ws)
            : ia(std::make_shared<wide_string_input_adapter<std::wstring>>(ws)) {}
    
        input_adapter(const std::u16string& ws)
            : ia(std::make_shared<wide_string_input_adapter<std::u16string>>(ws)) {}
    
        input_adapter(const std::u32string& ws)
            : ia(std::make_shared<wide_string_input_adapter<std::u32string>>(ws)) {}
    
        /// input adapter for buffer
        template<typename CharT,
                 typename std::enable_if<
                     std::is_pointer<CharT>::value and
                     std::is_integral<typename std::remove_pointer<CharT>::type>::value and
                     sizeof(typename std::remove_pointer<CharT>::type) == 1,
                     int>::type = 0>
        input_adapter(CharT b, std::size_t l)
            : ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {}
    
        // derived support
    
        /// input adapter for string literal
        template<typename CharT,
                 typename std::enable_if<
                     std::is_pointer<CharT>::value and
                     std::is_integral<typename std::remove_pointer<CharT>::type>::value and
                     sizeof(typename std::remove_pointer<CharT>::type) == 1,
                     int>::type = 0>
        input_adapter(CharT b)
            : input_adapter(reinterpret_cast<const char*>(b),
                            std::strlen(reinterpret_cast<const char*>(b))) {}
    
        /// input adapter for iterator range with contiguous storage
        template<class IteratorType,
                 typename std::enable_if<
                     std::is_same<typename std::iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
                     int>::type = 0>
        input_adapter(IteratorType first, IteratorType last)
        {
            // assertion to check that the iterator range is indeed contiguous,
            // see http://stackoverflow.com/a/35008842/266378 for more discussion
            assert(std::accumulate(
                       first, last, std::pair<bool, int>(true, 0),
                       [&first](std::pair<bool, int> res, decltype(*first) val)
            {
                res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
                return res;
            }).first);
    
            // assertion to check that each element is 1 byte long
            static_assert(
                sizeof(typename std::iterator_traits<IteratorType>::value_type) == 1,
                "each element in the iterator range must have the size of 1 byte");
    
            const auto len = static_cast<size_t>(std::distance(first, last));
            if (JSON_LIKELY(len > 0))
            {
                // there is at least one element: use the address of first
                ia = std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(&(*first)), len);
            }
            else
            {
                // the address of first cannot be used: use nullptr
                ia = std::make_shared<input_buffer_adapter>(nullptr, len);
            }
        }
    
        /// input adapter for array
        template<class T, std::size_t N>
        input_adapter(T (&array)[N])
            : input_adapter(std::begin(array), std::end(array)) {}
    
        /// input adapter for contiguous container
        template<class ContiguousContainer, typename
                 std::enable_if<not std::is_pointer<ContiguousContainer>::value and
                                std::is_base_of<std::random_access_iterator_tag, typename std::iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value,
                                int>::type = 0>
        input_adapter(const ContiguousContainer& c)
            : input_adapter(std::begin(c), std::end(c)) {}
    
        operator input_adapter_t()
        {
            return ia;
        }
    
      private:
        /// the actual adapter
        input_adapter_t ia = nullptr;
    };
    }
    }
    
    // #include <nlohmann/detail/input/lexer.hpp>
    
    
    #include <clocale> // localeconv
    #include <cstddef> // size_t
    #include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull
    #include <cstdio> // snprintf
    #include <initializer_list> // initializer_list
    #include <string> // char_traits, string
    #include <vector> // vector
    
    // #include <nlohmann/detail/macro_scope.hpp>
    
    // #include <nlohmann/detail/input/input_adapters.hpp>
    
    
    namespace nlohmann
    {
    namespace detail
    {
    ///////////
    // lexer //
    ///////////
    
    /*!
    @brief lexical analysis
    
    This class organizes the lexical analysis during JSON deserialization.
    */
    template<typename BasicJsonType>
    class lexer
    {
        using number_integer_t = typename BasicJsonType::number_integer_t;
        using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
        using number_float_t = typename BasicJsonType::number_float_t;
        using string_t = typename BasicJsonType::string_t;
    
      public:
        /// token types for the parser
        enum class token_type
        {
            uninitialized,    ///< indicating the scanner is uninitialized
            literal_true,     ///< the `true` literal
            literal_false,    ///< the `false` literal
            literal_null,     ///< the `null` literal
            value_string,     ///< a string -- use get_string() for actual value
            value_unsigned,   ///< an unsigned integer -- use get_number_unsigned() for actual value
            value_integer,    ///< a signed integer -- use get_number_integer() for actual value
            value_float,      ///< an floating point number -- use get_number_float() for actual value
            begin_array,      ///< the character for array begin `[`
            begin_object,     ///< the character for object begin `{`
            end_array,        ///< the character for array end `]`
            end_object,       ///< the character for object end `}`
            name_separator,   ///< the name separator `:`
            value_separator,  ///< the value separator `,`
            parse_error,      ///< indicating a parse error
            end_of_input,     ///< indicating the end of the input buffer
            literal_or_value  ///< a literal or the begin of a value (only for diagnostics)
        };
    
        /// return name of values of type token_type (only used for errors)
        static const char* token_type_name(const token_type t) noexcept
        {
            switch (t)
            {
                case token_type::uninitialized:
                    return "<uninitialized>";
                case token_type::literal_true:
                    return "true literal";
                case token_type::literal_false:
                    return "false literal";
                case token_type::literal_null:
                    return "null literal";
                case token_type::value_string:
                    return "string literal";
                case lexer::token_type::value_unsigned:
                case lexer::token_type::value_integer:
                case lexer::token_type::value_float:
                    return "number literal";
                case token_type::begin_array:
                    return "'['";
                case token_type::begin_object:
                    return "'{'";
                case token_type::end_array:
                    return "']'";
                case token_type::end_object:
                    return "'}'";
                case token_type::name_separator:
                    return "':'";
                case token_type::value_separator:
                    return "','";
                case token_type::parse_error:
                    return "<parse error>";
                case token_type::end_of_input:
                    return "end of input";
                case token_type::literal_or_value:
                    return "'[', '{', or a literal";
                default: // catch non-enum values
                    return "unknown token"; // LCOV_EXCL_LINE
            }
        }
    
        explicit lexer(detail::input_adapter_t&& adapter)
            : ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {}
    
        // delete because of pointer members
        lexer(const lexer&) = delete;
        lexer& operator=(lexer&) = delete;
    
      private:
        /////////////////////
        // locales
        /////////////////////
    
        /// return the locale-dependent decimal point
        static char get_decimal_point() noexcept
        {
            const auto loc = localeconv();
            assert(loc != nullptr);
            return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
        }
    
        /////////////////////
        // scan functions
        /////////////////////
    
        /*!
        @brief get codepoint from 4 hex characters following `\u`
    
        For input "\u c1 c2 c3 c4" the codepoint is:
          (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
        = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
    
        Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
        must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
        conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
        between the ASCII value of the character and the desired integer value.
    
        @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
                non-hex character)
        */
        int get_codepoint()
        {
            // this function only makes sense after reading `\u`
            assert(current == 'u');
            int codepoint = 0;
    
            const auto factors = { 12, 8, 4, 0 };
            for (const auto factor : factors)
            {
                get();
    
                if (current >= '0' and current <= '9')
                {
                    codepoint += ((current - 0x30) << factor);
                }
                else if (current >= 'A' and current <= 'F')
                {
                    codepoint += ((current - 0x37) << factor);
                }
                else if (current >= 'a' and current <= 'f')
                {
                    codepoint += ((current - 0x57) << factor);
                }
                else
                {
                    return -1;
                }
            }
    
            assert(0x0000 <= codepoint and codepoint <= 0xFFFF);
            return codepoint;
        }
    
        /*!
        @brief check if the next byte(s) are inside a given range
    
        Adds the current byte and, for each passed range, reads a new byte and
        checks if it is inside the range. If a violation was detected, set up an
        error message and return false. Otherwise, return true.
    
        @param[in] ranges  list of integers; interpreted as list of pairs of
                           inclusive lower and upper bound, respectively
    
        @pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
             1, 2, or 3 pairs. This precondition is enforced by an assertion.
    
        @return true if and only if no range violation was detected
        */
        bool next_byte_in_range(std::initializer_list<int> ranges)
        {
            assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6);
            add(current);
    
            for (auto range = ranges.begin(); range != ranges.end(); ++range)
            {
                get();
                if (JSON_LIKELY(*range <= current and current <= *(++range)))
                {
                    add(current);
                }
                else
                {
                    error_message = "invalid string: ill-formed UTF-8 byte";
                    return false;
                }
            }
    
            return true;
        }
    
        /*!
        @brief scan a string literal
    
        This function scans a string according to Sect. 7 of RFC 7159. While
        scanning, bytes are escaped and copied into buffer token_buffer. Then the
        function returns successfully, token_buffer is *not* null-terminated (as it
        may contain \0 bytes), and token_buffer.size() is the number of bytes in the
        string.
    
        @return token_type::value_string if string could be successfully scanned,
                token_type::parse_error otherwise
    
        @note In case of errors, variable error_message contains a textual
              description.
        */
        token_type scan_string()
        {
            // reset token_buffer (ignore opening quote)
            reset();
    
            // we entered the function by reading an open quote
            assert(current == '\"');
    
            while (true)
            {
                // get next character
                switch (get())
                {
                    // end of file while parsing string
                    case std::char_traits<char>::eof():
                    {
                        error_message = "invalid string: missing closing quote";
                        return token_type::parse_error;
                    }
    
                    // closing quote
                    case '\"':
                    {
                        return token_type::value_string;
                    }
    
                    // escapes
                    case '\\':
                    {
                        switch (get())
                        {
                            // quotation mark
                            case '\"':
                                add('\"');
                                break;
                            // reverse solidus
                            case '\\':
                                add('\\');
                                break;
                            // solidus
                            case '/':
                                add('/');
                                break;
                            // backspace
                            case 'b':
                                add('\b');
                                break;
                            // form feed
                            case 'f':
                                add('\f');
                                break;
                            // line feed
                            case 'n':
                                add('\n');
                                break;
                            // carriage return
                            case 'r':
                                add('\r');
                                break;
                            // tab
                            case 't':
                                add('\t');
                                break;
    
                            // unicode escapes
                            case 'u':
                            {
                                const int codepoint1 = get_codepoint();
                                int codepoint = codepoint1; // start with codepoint1
    
                                if (JSON_UNLIKELY(codepoint1 == -1))
                                {
                                    error_message = "invalid string: '\\u' must be followed by 4 hex digits";
                                    return token_type::parse_error;
                                }
    
                                // check if code point is a high surrogate
                                if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF)
                                {
                                    // expect next \uxxxx entry
                                    if (JSON_LIKELY(get() == '\\' and get() == 'u'))
                                    {
                                        const int codepoint2 = get_codepoint();
    
                                        if (JSON_UNLIKELY(codepoint2 == -1))
                                        {
                                            error_message = "invalid string: '\\u' must be followed by 4 hex digits";
                                            return token_type::parse_error;
                                        }
    
                                        // check if codepoint2 is a low surrogate
                                        if (JSON_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF))
                                        {
                                            // overwrite codepoint
                                            codepoint =
                                                // high surrogate occupies the most significant 22 bits
                                                (codepoint1 << 10)
                                                // low surrogate occupies the least significant 15 bits
                                                + codepoint2
                                                // there is still the 0xD800, 0xDC00 and 0x10000 noise
                                                // in the result so we have to subtract with:
                                                // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
                                                - 0x35FDC00;
                                        }
                                        else
                                        {
                                            error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
                                            return token_type::parse_error;
                                        }
                                    }
                                    else
                                    {
                                        error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
                                        return token_type::parse_error;
                                    }
                                }
                                else
                                {
                                    if (JSON_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF))
                                    {
                                        error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
                                        return token_type::parse_error;
                                    }
                                }
    
                                // result of the above calculation yields a proper codepoint
                                assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
    
                                // translate codepoint into bytes
                                if (codepoint < 0x80)
                                {
                                    // 1-byte characters: 0xxxxxxx (ASCII)
                                    add(codepoint);
                                }
                                else if (codepoint <= 0x7FF)
                                {
                                    // 2-byte characters: 110xxxxx 10xxxxxx
                                    add(0xC0 | (codepoint >> 6));
                                    add(0x80 | (codepoint & 0x3F));
                                }
                                else if (codepoint <= 0xFFFF)
                                {
                                    // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
                                    add(0xE0 | (codepoint >> 12));
                                    add(0x80 | ((codepoint >> 6) & 0x3F));
                                    add(0x80 | (codepoint & 0x3F));
                                }
                                else
                                {
                                    // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
                                    add(0xF0 | (codepoint >> 18));
                                    add(0x80 | ((codepoint >> 12) & 0x3F));
                                    add(0x80 | ((codepoint >> 6) & 0x3F));
                                    add(0x80 | (codepoint & 0x3F));
                                }
    
                                break;
                            }
    
                            // other characters after escape
                            default:
                                error_message = "invalid string: forbidden character after backslash";
                                return token_type::parse_error;
                        }
    
                        break;
                    }
    
                    // invalid control characters
                    case 0x00:
                    case 0x01:
                    case 0x02:
                    case 0x03:
                    case 0x04:
                    case 0x05:
                    case 0x06:
                    case 0x07:
                    case 0x08:
                    case 0x09:
                    case 0x0A:
                    case 0x0B:
                    case 0x0C:
                    case 0x0D:
                    case 0x0E:
                    case 0x0F:
                    case 0x10:
                    case 0x11:
                    case 0x12:
                    case 0x13:
                    case 0x14:
                    case 0x15:
                    case 0x16:
                    case 0x17:
                    case 0x18:
                    case 0x19:
                    case 0x1A:
                    case 0x1B:
                    case 0x1C:
                    case 0x1D:
                    case 0x1E:
                    case 0x1F:
                    {
                        error_message = "invalid string: control character must be escaped";
                        return token_type::parse_error;
                    }
    
                    // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
                    case 0x20:
                    case 0x21:
                    case 0x23:
                    case 0x24:
                    case 0x25:
                    case 0x26:
                    case 0x27:
                    case 0x28:
                    case 0x29:
                    case 0x2A:
                    case 0x2B:
                    case 0x2C:
                    case 0x2D:
                    case 0x2E:
                    case 0x2F:
                    case 0x30:
                    case 0x31:
                    case 0x32:
                    case 0x33:
                    case 0x34:
                    case 0x35:
                    case 0x36:
                    case 0x37:
                    case 0x38:
                    case 0x39:
                    case 0x3A:
                    case 0x3B:
                    case 0x3C:
                    case 0x3D:
                    case 0x3E:
                    case 0x3F:
                    case 0x40:
                    case 0x41:
                    case 0x42:
                    case 0x43:
                    case 0x44:
                    case 0x45:
                    case 0x46:
                    case 0x47:
                    case 0x48:
                    case 0x49:
                    case 0x4A:
                    case 0x4B:
                    case 0x4C:
                    case 0x4D:
                    case 0x4E:
                    case 0x4F:
                    case 0x50:
                    case 0x51:
                    case 0x52:
                    case 0x53:
                    case 0x54:
                    case 0x55:
                    case 0x56:
                    case 0x57:
                    case 0x58:
                    case 0x59:
                    case 0x5A:
                    case 0x5B:
                    case 0x5D:
                    case 0x5E:
                    case 0x5F:
                    case 0x60:
                    case 0x61:
                    case 0x62:
                    case 0x63:
                    case 0x64:
                    case 0x65:
                    case 0x66:
                    case 0x67:
                    case 0x68:
                    case 0x69:
                    case 0x6A:
                    case 0x6B:
                    case 0x6C:
                    case 0x6D:
                    case 0x6E:
                    case 0x6F:
                    case 0x70:
                    case 0x71:
                    case 0x72:
                    case 0x73:
                    case 0x74:
                    case 0x75:
                    case 0x76:
                    case 0x77:
                    case 0x78:
                    case 0x79:
                    case 0x7A:
                    case 0x7B:
                    case 0x7C:
                    case 0x7D:
                    case 0x7E:
                    case 0x7F:
                    {
                        add(current);
                        break;
                    }
    
                    // U+0080..U+07FF: bytes C2..DF 80..BF
                    case 0xC2:
                    case 0xC3:
                    case 0xC4:
                    case 0xC5:
                    case 0xC6:
                    case 0xC7:
                    case 0xC8:
                    case 0xC9:
                    case 0xCA:
                    case 0xCB:
                    case 0xCC:
                    case 0xCD:
                    case 0xCE:
                    case 0xCF:
                    case 0xD0:
                    case 0xD1:
                    case 0xD2:
                    case 0xD3:
                    case 0xD4:
                    case 0xD5:
                    case 0xD6:
                    case 0xD7:
                    case 0xD8:
                    case 0xD9:
                    case 0xDA:
                    case 0xDB:
                    case 0xDC:
                    case 0xDD:
                    case 0xDE:
                    case 0xDF:
                    {
                        if (JSON_UNLIKELY(not next_byte_in_range({0x80, 0xBF})))
                        {
                            return token_type::parse_error;
                        }
                        break;
                    }
    
                    // U+0800..U+0FFF: bytes E0 A0..BF 80..BF
                    case 0xE0:
                    {
                        if (JSON_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
                        {
                            return token_type::parse_error;
                        }
                        break;
                    }
    
                    // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
                    // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
                    case 0xE1:
                    case 0xE2:
                    case 0xE3:
                    case 0xE4:
                    case 0xE5:
                    case 0xE6:
                    case 0xE7:
                    case 0xE8:
                    case 0xE9:
                    case 0xEA:
                    case 0xEB:
                    case 0xEC:
                    case 0xEE:
                    case 0xEF:
                    {
                        if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
                        {
                            return token_type::parse_error;
                        }
                        break;
                    }
    
                    // U+D000..U+D7FF: bytes ED 80..9F 80..BF
                    case 0xED:
                    {
                        if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
                        {
                            return token_type::parse_error;
                        }
                        break;
                    }
    
                    // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
                    case 0xF0:
                    {
                        if (JSON_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
                        {
                            return token_type::parse_error;
                        }
                        break;
                    }
    
                    // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
                    case 0xF1:
                    case 0xF2:
                    case 0xF3:
                    {
                        if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
                        {
                            return token_type::parse_error;
                        }
                        break;
                    }
    
                    // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
                    case 0xF4:
                    {
                        if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
                        {
                            return token_type::parse_error;
                        }
                        break;
                    }
    
                    // remaining bytes (80..C1 and F5..FF) are ill-formed
                    default:
                    {
                        error_message = "invalid string: ill-formed UTF-8 byte";
                        return token_type::parse_error;
                    }
                }
            }
        }
    
        static void strtof(float& f, const char* str, char** endptr) noexcept
        {
            f = std::strtof(str, endptr);
        }
    
        static void strtof(double& f, const char* str, char** endptr) noexcept
        {
            f = std::strtod(str, endptr);
        }
    
        static void strtof(long double& f, const char* str, char** endptr) noexcept
        {
            f = std::strtold(str, endptr);
        }
    
        /*!
        @brief scan a number literal
    
        This function scans a string according to Sect. 6 of RFC 7159.
    
        The function is realized with a deterministic finite state machine derived
        from the grammar described in RFC 7159. Starting in state "init", the
        input is read and used to determined the next state. Only state "done"
        accepts the number. State "error" is a trap state to model errors. In the
        table below, "anything" means any character but the ones listed before.
    
        state    | 0        | 1-9      | e E      | +       | -       | .        | anything
        ---------|----------|----------|----------|---------|---------|----------|-----------
        init     | zero     | any1     | [error]  | [error] | minus   | [error]  | [error]
        minus    | zero     | any1     | [error]  | [error] | [error] | [error]  | [error]
        zero     | done     | done     | exponent | done    | done    | decimal1 | done
        any1     | any1     | any1     | exponent | done    | done    | decimal1 | done
        decimal1 | decimal2 | [error]  | [error]  | [error] | [error] | [error]  | [error]
        decimal2 | decimal2 | decimal2 | exponent | done    | done    | done     | done
        exponent | any2     | any2     | [error]  | sign    | sign    | [error]  | [error]
        sign     | any2     | any2     | [error]  | [error] | [error] | [error]  | [error]
        any2     | any2     | any2     | done     | done    | done    | done     | done
    
        The state machine is realized with one label per state (prefixed with
        "scan_number_") and `goto` statements between them. The state machine
        contains cycles, but any cycle can be left when EOF is read. Therefore,
        the function is guaranteed to terminate.
    
        During scanning, the read bytes are stored in token_buffer. This string is
        then converted to a signed integer, an unsigned integer, or a
        floating-point number.
    
        @return token_type::value_unsigned, token_type::value_integer, or
                token_type::value_float if number could be successfully scanned,
                token_type::parse_error otherwise
    
        @note The scanner is independent of the current locale. Internally, the
              locale's decimal point is used instead of `.` to work with the
              locale-dependent converters.
        */
        token_type scan_number()
        {
            // reset token_buffer to store the number's bytes
            reset();
    
            // the type of the parsed number; initially set to unsigned; will be
            // changed if minus sign, decimal point or exponent is read
            token_type number_type = token_type::value_unsigned;
    
            // state (init): we just found out we need to scan a number
            switch (current)
            {
                case '-':
                {
                    add(current);
                    goto scan_number_minus;
                }
    
                case '0':
                {
                    add(current);
                    goto scan_number_zero;
                }
    
                case '1':
                case '2':
                case '3':
                case '4':
                case '5':
                case '6':
                case '7':
                case '8':
                case '9':
                {
                    add(current);
                    goto scan_number_any1;
                }
    
                default:
                {
                    // all other characters are rejected outside scan_number()
                    assert(false); // LCOV_EXCL_LINE
                }
            }
    
    scan_number_minus:
            // state: we just parsed a leading minus sign
            number_type = token_type::value_integer;
            switch (get())
            {
                case '0':
                {
                    add(current);
                    goto scan_number_zero;
                }
    
                case '1':
                case '2':
                case '3':
                case '4':
                case '5':
                case '6':
                case '7':
                case '8':
                case '9':
                {
                    add(current);
                    goto scan_number_any1;
                }
    
                default:
                {
                    error_message = "invalid number; expected digit after '-'";
                    return token_type::parse_error;
                }
            }
    
    scan_number_zero:
            // state: we just parse a zero (maybe with a leading minus sign)
            switch (get())
            {
                case '.':
                {
                    add(decimal_point_char);
                    goto scan_number_decimal1;
                }
    
                case 'e':
                case 'E':
                {
                    add(current);
                    goto scan_number_exponent;
                }
    
                default:
                    goto scan_number_done;
            }
    
    scan_number_any1:
            // state: we just parsed a number 0-9 (maybe with a leading minus sign)
            switch (get())