Newer
Older
Simon Zhamkochyan
committed
///////////////////////////////////////////////////////////////////////////////
// //
// THcShower //
// //
// Shower counter class, describing a generic segmented shower detector. //
// //
// //
// //
// //
///////////////////////////////////////////////////////////////////////////////
#include "THcShower.h"
#include "THcShowerCluster.h"
Simon Zhamkochyan
committed
#include "THaEvData.h"
#include "THaDetMap.h"
#include "THcDetectorMap.h"
#include "THcGlobals.h"
#include "THaCutList.h"
Simon Zhamkochyan
committed
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "THaTrackProj.h"
Simon Zhamkochyan
committed
#include "TMath.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
//_____________________________________________________________________________
THcShower::THcShower( const char* name, const char* description,
THaApparatus* apparatus ) :
THaNonTrackingDetector(name,description,apparatus)
{
// Constructor
// fTrackProj = new TClonesArray( "THaTrackProj", 5 );
fNLayers = 0; // No layers until we make them
Simon Zhamkochyan
committed
}
//_____________________________________________________________________________
THcShower::THcShower( ) :
THaNonTrackingDetector()
{
// Constructor
}
void THcShower::Setup(const char* name, const char* description)
{
char prefix[2];
prefix[0] = tolower(GetApparatus()->GetName()[0]);
prefix[1] = '\0';
string layernamelist;
DBRequest list[]={
{"cal_num_layers", &fNLayers, kInt},
{"cal_layer_names", &layernamelist, kString},
{0}
};
cout << "THcShower::Setup called " << GetName() << endl;
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
cout << layernamelist << endl;
cout << "Shower Counter: " << fNLayers << " layers" << endl;
vector<string> layer_names = vsplit(layernamelist);
if(layer_names.size() != (UInt_t) fNLayers) {
cout << "ERROR: Number of layers " << fNLayers << " doesn't agree with number of layer names " << layer_names.size() << endl;
// Should quit. Is there an official way to quit?
}
for(Int_t i=0;i<fNLayers;i++) {
fLayerNames[i] = new char[layer_names[i].length()];
strcpy(fLayerNames[i], layer_names[i].c_str());
}
char *desc = new char[strlen(description)+100];
for(Int_t i=0;i < fNLayers;i++) {
strcpy(desc, description);
strcat(desc, " Plane ");
strcat(desc, fLayerNames[i]);
fPlanes[i] = new THcShowerPlane(fLayerNames[i], desc, i+1, this);
cout << "Created Shower Plane " << fLayerNames[i] << ", " << desc << endl;
}
cout << "THcShower::Setup Return " << GetName() << endl;
Simon Zhamkochyan
committed
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcShower::Init( const TDatime& date )
{
static const char* const here = "Init()";
cout << "THcShower::Init " << GetName() << endl;
Setup(GetName(), GetTitle());
Simon Zhamkochyan
committed
// Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map
THcHitList::InitHitList(fDetMap, "THcRawShowerHit", 100);
Simon Zhamkochyan
committed
EStatus status;
if( (status = THaNonTrackingDetector::Init( date )) )
return fStatus=status;
for(Int_t ip=0;ip<fNLayers;ip++) {
if((status = fPlanes[ip]->Init( date ))) {
return fStatus=status;
}
}
char EngineDID[] = " CAL";
EngineDID[0] = toupper(GetApparatus()->GetName()[0]);
if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) {
Simon Zhamkochyan
committed
Error( Here(here), "Error filling detectormap for %s.",
Simon Zhamkochyan
committed
return kInitError;
}
return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcShower::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
// static const char* const here = "ReadDatabase()";
char prefix[2];
Simon Zhamkochyan
committed
// Read data from database
// Pull values from the THcParmList instead of reading a database
// file like Hall A does.
// We will probably want to add some kind of method to gHcParms to allow
// bulk retrieval of parameters of interest.
// Will need to determine which spectrometer in order to construct
// the parameter names (e.g. hscin_1x_nr vs. sscin_1x_nr)
cout << "THcShower::ReadDatabase called " << GetName() << endl;
Simon Zhamkochyan
committed
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
Simon Zhamkochyan
committed
{
DBRequest list[]={
{"cal_num_neg_columns", &fNegCols, kInt},
{"cal_slop", &fSlop, kDouble},
{"cal_fv_test", &fvTest, kInt},
{"cal_fv_delta", &fvDelta, kDouble},
{"dbg_clusters_cal", &fdbg_clusters_cal, kInt},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list, prefix);
}
cout << "Number of neg. columns = " << fNegCols << endl;
cout << "Slop parameter = " << fSlop << endl;
cout << "Fiducial volume test flag = " << fvTest << endl;
cout << "Fiducial volume excl. width = " << fvDelta << endl;
cout << "Cluster debug flag = " << fdbg_clusters_cal << endl;
fNBlocks = new Int_t [fNLayers];
Simon Zhamkochyan
committed
for(Int_t i=0;i<fNLayers;i++) {
DBRequest list[]={
{Form("cal_%s_thick",fLayerNames[i]), &BlockThick[i], kDouble},
{Form("cal_%s_nr",fLayerNames[i]), &fNBlocks[i], kInt},
{Form("cal_%s_zpos",fLayerNames[i]), &fNLayerZPos[i], kDouble},
{Form("cal_%s_right",fLayerNames[i]), &YPos[2*i], kDouble},
{Form("cal_%s_left",fLayerNames[i]), &YPos[2*i+1], kDouble},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list, prefix);
Simon Zhamkochyan
committed
}
//Caution! Z positions (fronts) are off in hcal.param! Correct later on.
for(Int_t i=0;i<fNLayers;i++) {
XPos[i] = new Double_t [fNBlocks[i]];
DBRequest list[]={
{Form("cal_%s_top",fLayerNames[i]),XPos[i], kDouble, fNBlocks[i]},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list, prefix);
Simon Zhamkochyan
committed
}
for(Int_t i=0;i<fNLayers;i++) {
cout << "Plane " << fLayerNames[i] << ":" << endl;
cout << " Block thickness: " << BlockThick[i] << endl;
cout << " NBlocks : " << fNBlocks[i] << endl;
cout << " Z Position : " << fNLayerZPos[i] << endl;
cout << " Y Positions : " << YPos[2*i] << ", " << YPos[2*i+1] <<endl;
cout << " X Positions :";
for(Int_t j=0; j<fNBlocks[i]; j++) {
}
cout << endl;
Simon Zhamkochyan
committed
}
// Fiducial volume limits, based on Plane 1 positions.
//
fvXmin = XPos[0][0] + fvDelta;
fvXmax = XPos[0][fNBlocks[0]-1] + BlockThick[0] - fvDelta;
fvYmin = YPos[0] + fvDelta;
fvYmax = YPos[1] - fvDelta;
cout << "Fiducial volume limits:" << endl;
cout << " Xmin = " << fvXmin << " Xmax = " << fvXmax << endl;
cout << " Ymin = " << fvYmin << " Ymax = " << fvYmax << endl;
//Calibration related parameters (from hcal.param).
fNtotBlocks=0; //total number of blocks
for (Int_t i=0; i<fNLayers; i++) fNtotBlocks += fNBlocks[i];
cout << "Total number of blocks in the calorimeter: " << fNtotBlocks << endl;
//Pedestal limits from hcal.param.
Vardan Tadevosyan
committed
fShPosPedLimit = new Int_t [fNtotBlocks];
fShNegPedLimit = new Int_t [fNtotBlocks];
//Calibration constants
fPosGain = new Double_t [fNtotBlocks];
fNegGain = new Double_t [fNtotBlocks];
//Read in parameters from hcal.param
Double_t hcal_pos_cal_const[fNtotBlocks];
// Double_t hcal_pos_gain_ini[fNtotBlocks];
// Double_t hcal_pos_gain_cur[fNtotBlocks];
Vardan Tadevosyan
committed
// Int_t hcal_pos_ped_limit[fNtotBlocks];
Double_t hcal_pos_gain_cor[fNtotBlocks];
Double_t hcal_neg_cal_const[fNtotBlocks];
// Double_t hcal_neg_gain_ini[fNtotBlocks];
// Double_t hcal_neg_gain_cur[fNtotBlocks];
Vardan Tadevosyan
committed
// Int_t hcal_neg_ped_limit[fNtotBlocks];
Double_t hcal_neg_gain_cor[fNtotBlocks];
DBRequest list[]={
{"cal_pos_cal_const", hcal_pos_cal_const, kDouble, fNtotBlocks},
// {"cal_pos_gain_ini", hcal_pos_gain_ini, kDouble, fNtotBlocks},
// {"cal_pos_gain_cur", hcal_pos_gain_cur, kDouble, fNtotBlocks},
Vardan Tadevosyan
committed
{"cal_pos_ped_limit", fShPosPedLimit, kInt, fNtotBlocks},
{"cal_pos_gain_cor", hcal_pos_gain_cor, kDouble, fNtotBlocks},
{"cal_neg_cal_const", hcal_neg_cal_const, kDouble, fNtotBlocks},
// {"cal_neg_gain_ini", hcal_neg_gain_ini, kDouble, fNtotBlocks},
// {"cal_neg_gain_cur", hcal_neg_gain_cur, kDouble, fNtotBlocks},
Vardan Tadevosyan
committed
{"cal_neg_ped_limit", fShNegPedLimit, kInt, fNtotBlocks},
{"cal_neg_gain_cor", hcal_neg_gain_cor, kDouble, fNtotBlocks},
{"cal_min_peds", &fShMinPeds, kInt},
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list, prefix);
//+++
cout << "hcal_pos_cal_const:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
cout << hcal_pos_cal_const[j*fNBlocks[j]+i] << " ";
};
cout << endl;
};
// cout << "hcal_pos_gain_ini:" << endl;
// for (Int_t j=0; j<fNLayers; j++) {
// for (Int_t i=0; i<fNBlocks[j]; i++) {
// cout << hcal_pos_gain_ini[j*fNBlocks[j]+i] << " ";
// };
// cout << endl;
// };
// cout << "hcal_pos_gain_cur:" << endl;
// for (Int_t j=0; j<fNLayers; j++) {
// for (Int_t i=0; i<fNBlocks[j]; i++) {
// cout << hcal_pos_gain_cur[j*fNBlocks[j]+i] << " ";
// };
// cout << endl;
// };
Vardan Tadevosyan
committed
cout << "fShPosPedLimit:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
Vardan Tadevosyan
committed
cout << fShPosPedLimit[j*fNBlocks[j]+i] << " ";
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
};
cout << endl;
};
cout << "hcal_pos_gain_cor:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
cout << hcal_pos_gain_cor[j*fNBlocks[j]+i] << " ";
};
cout << endl;
};
//---
cout << "hcal_neg_cal_const:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
cout << hcal_neg_cal_const[j*fNBlocks[j]+i] << " ";
};
cout << endl;
};
// cout << "hcal_neg_gain_ini:" << endl;
// for (Int_t j=0; j<fNLayers; j++) {
// for (Int_t i=0; i<fNBlocks[j]; i++) {
// cout << hcal_neg_gain_ini[j*fNBlocks[j]+i] << " ";
// };
// // cout << endl;
// };
// cout << "hcal_neg_gain_cur:" << endl;
// for (Int_t j=0; j<fNLayers; j++) {
// for (Int_t i=0; i<fNBlocks[j]; i++) {
// cout << hcal_neg_gain_cur[j*fNBlocks[j]+i] << " ";
// };
// cout << endl;
// };
Vardan Tadevosyan
committed
cout << "fShNegPedLimit:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
Vardan Tadevosyan
committed
cout << fShNegPedLimit[j*fNBlocks[j]+i] << " ";
};
cout << endl;
};
cout << "hcal_neg_gain_cor:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
cout << hcal_neg_gain_cor[j*fNBlocks[j]+i] << " ";
};
cout << endl;
};
//Calibration constants in GeV per ADC channel.
for (Int_t i=0; i<fNtotBlocks; i++) {
fPosGain[i] = hcal_pos_cal_const[i] * hcal_pos_gain_cor[i];
fNegGain[i] = hcal_neg_cal_const[i] * hcal_neg_gain_cor[i];
cout << "fPosGain:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
cout << fPosGain[j*fNBlocks[j]+i] << " ";
};
cout << endl;
};
cout << "fNegGain:" << endl;
for (Int_t j=0; j<fNLayers; j++) {
for (Int_t i=0; i<fNBlocks[j]; i++) {
cout << fNegGain[j*fNBlocks[j]+i] << " ";
};
cout << endl;
};
// Origin of the calorimeter, at tha middle of the face of the detector,
// or at the middle of the front plane of the 1-st layer.
//
Double_t xOrig = (XPos[0][0] + XPos[0][fNBlocks[0]-1])/2 + BlockThick[0]/2;
Double_t yOrig = (YPos[0] + YPos[1])/2;
Double_t zOrig = fNLayerZPos[0];
// cout << "Origin of the Calorimeter to be set:" << endl;
// cout << " Xorig = " << xOrig << endl;
// cout << " Yorig = " << yOrig << endl;
// cout << " Zorig = " << zOrig << endl;
// << endl;
fOrigin.SetXYZ(xOrig, yOrig, zOrig);
cout << "Origin of the Calorimeter:" << endl;
cout << " Xorig = " << GetOrigin().X() << endl;
cout << " Yorig = " << GetOrigin().Y() << endl;
cout << " Zorig = " << GetOrigin().Z() << endl;
cout << endl;
// Detector axes. Assume no rotation.
//
DefineAxes(0.);
Simon Zhamkochyan
committed
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t THcShower::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
cout << "THcShower::DefineVariables called " << GetName() << endl;
Simon Zhamkochyan
committed
// Register variables in global list
RVarDef vars[] = {
{ "nhits", "Number of hits", "fNhits" },
Simon Zhamkochyan
committed
// { "a", "Raw ADC amplitudes", "fA" },
// { "a_p", "Ped-subtracted ADC amplitudes", "fA_p" },
// { "a_c", "Calibrated ADC amplitudes", "fA_c" },
// { "asum_p", "Sum of ped-subtracted ADCs", "fAsum_p" },
// { "asum_c", "Sum of calibrated ADCs", "fAsum_c" },
{ "nclust", "Number of clusters", "fNclust" },
{ "emax", "Energy (MeV) of largest cluster", "fE" },
{ "eprmax", "Preshower Energy (MeV) of largest cluster", "fEpr" },
{ "xmax", "x-position (cm) of largest cluster", "fX" },
// { "z", "z-position (cm) of largest cluster", "fZ" },
{ "mult", "Multiplicity of largest cluster", "fMult" },
Simon Zhamkochyan
committed
// { "nblk", "Numbers of blocks in main cluster", "fNblk" },
// { "eblk", "Energies of blocks in main cluster", "fEblk" },
Vardan Tadevosyan
committed
{ "trx", "track x-position in det plane (1st track)", "fTRX" },
{ "try", "track y-position in det plane (1st track)", "fTRY" },
{ "tre", "track energy in the calorimeter (1st track)", "fTRE" },
{ "trepr", "track energy in the preshower (1st track)", "fTREpr" },
{ 0 }
};
return DefineVarsFromList( vars, mode );
Simon Zhamkochyan
committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
return kOK;
}
//_____________________________________________________________________________
THcShower::~THcShower()
{
// Destructor. Remove variables from global list.
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
void THcShower::DeleteArrays()
{
// Delete member arrays. Used by destructor.
delete [] BlockThick; BlockThick = NULL;
delete [] fNBlocks; fNBlocks = NULL;
delete [] fNLayerZPos; fNLayerZPos = NULL;
delete [] XPos; XPos = NULL;
Simon Zhamkochyan
committed
//delete [] fSpacing; fSpacing = NULL;
//delete [] fCenter; fCenter = NULL; // This 2D. What is correct way to delete?
}
//_____________________________________________________________________________
inline
void THcShower::Clear(Option_t* opt)
Simon Zhamkochyan
committed
{
// Reset per-event data.
for(Int_t ip=0;ip<fNLayers;ip++) {
fPlanes[ip]->Clear(opt);
}
// fTrackProj->Clear();
fNhits = 0;
fNclust = 0;
fMult = 0;
fE = 0.;
Vardan Tadevosyan
committed
fX = -75.; //out of acceptance
fTRX = -75.; //out of acceptance
fTRY = -40.; //out of acceptance
fTRE = -1.;
fTREpr = -1.;
Simon Zhamkochyan
committed
}
//_____________________________________________________________________________
Int_t THcShower::Decode( const THaEvData& evdata )
{
Simon Zhamkochyan
committed
// Get the Hall C style hitlist (fRawHitList) for this event
Int_t nhits = THcHitList::DecodeToHitList(evdata);
if(gHaCuts->Result("Pedestal_event")) {
Int_t nexthit = 0;
for(Int_t ip=0;ip<fNLayers;ip++) {
nexthit = fPlanes[ip]->AccumulatePedestals(fRawHitList, nexthit);
//cout << "nexthit = " << nexthit << endl;
}
fAnalyzePedestals = 1; // Analyze pedestals first normal events
return(0);
}
if(fAnalyzePedestals) {
for(Int_t ip=0;ip<fNLayers;ip++) {
fPlanes[ip]->CalculatePedestals();
}
fAnalyzePedestals = 0; // Don't analyze pedestals next event
}
Int_t nexthit = 0;
for(Int_t ip=0;ip<fNLayers;ip++) {
nexthit = fPlanes[ip]->ProcessHits(fRawHitList, nexthit);
}
// fRawHitList is TClones array of THcRawShowerHit objects
// cout << "THcShower::Decode: Shower raw hit list:" << endl;
// for(Int_t ihit = 0; ihit < fNRawHits ; ihit++) {
// THcRawShowerHit* hit = (THcRawShowerHit *) fRawHitList->At(ihit);
// cout << ihit << " : " << hit->fPlane << ":" << hit->fCounter << " : "
// << hit->fADC_pos << " " << hit->fADC_neg << " " << endl;
// }
// cout << endl;
Simon Zhamkochyan
committed
return nhits;
}
//_____________________________________________________________________________
Int_t THcShower::ApplyCorrections( void )
{
return(0);
}
//_____________________________________________________________________________
//Double_t THcShower::TimeWalkCorrection(const Int_t& paddle,
// const ESide side)
//{
// return(0.0);
//}
Simon Zhamkochyan
committed
//_____________________________________________________________________________
Int_t THcShower::CoarseProcess( TClonesArray& tracks)
Simon Zhamkochyan
committed
{
// Calculation of coordinates of particle track cross point with shower
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::CoarseTrack() are used.
//
// Apply corrections and reconstruct the complete hits.
//
// static const Double_t sqrt2 = TMath::Sqrt(2.);
if (fdbg_clusters_cal)
cout << "THcShower::CoarseProcess called ---------------------------" <<endl;
// ApplyCorrections();
//
// Clustering of hits.
//
THcShowerHitList HitList; //list of unclusterd hits
for(Int_t j=0; j < fNLayers; j++) {
//cout << "Plane " << j << " Eplane = " << fPlanes[j]->GetEplane() << endl;
Simon Zhamkochyan
committed
for (Int_t i=0; i<fNBlocks[j]; i++) {
//May be should be done this way.
//
// Double_t Edep = fPlanes[j]->GetEmean(i);
// Double_t x = YPos[j][i] + BlockThick[j]/2.; //top + thick/2
// Double_t z = fNLayerZPos[j] + BlockThick[j]/2.; //front + thick/2
// THcShowerHit* hit = new THcShowerHit(i,j,x,z,Edep);
//ENGINE way.
//
// if (fPlanes[j]->GetApos(i)> fPlanes[j]->GetPosThr(i) ||
// fPlanes[j]->GetAneg(i)> fPlanes[j]->GetNegThr(i)) { //hit
if (fPlanes[j]->GetApos(i) - fPlanes[j]->GetPosPed(i) >
fPlanes[j]->GetPosThr(i) - fPlanes[j]->GetPosPed(i) ||
fPlanes[j]->GetAneg(i) - fPlanes[j]->GetNegPed(i) >
fPlanes[j]->GetNegThr(i) - fPlanes[j]->GetNegPed(i)) { //hit
Double_t Edep = fPlanes[j]->GetEmean(i);
Double_t x = XPos[j][i] + BlockThick[j]/2.; //top + thick/2
Double_t z = fNLayerZPos[j] + BlockThick[j]/2.; //front + thick/2
THcShowerHit* hit = new THcShowerHit(i,j,x,z,Edep);
HitList.push_back(hit);
//cout << "Hit: Edep = " << Edep << " X = " << x << " Z = " << z <<
// " Block " << i << " Layer " << j << endl;
};
}
}
//Print out hits before clustering.
//
if (fdbg_clusters_cal) {
cout << "Total hits: " << fNhits << endl;
for (UInt_t i=0; i!=fNhits; i++) {
cout << "unclustered hit " << i << ": ";
(*(HitList.begin()+i))->show();
}
}
THcShowerClusterList* ClusterList = new THcShowerClusterList;
ClusterList->ClusterHits(HitList);
fNclust = (*ClusterList).NbClusters();
//Print out the cluster list.
//
if (fdbg_clusters_cal) {
cout << "Cluster_list size: " << fNclust << endl;
for (UInt_t i=0; i!=fNclust; i++) {
THcShowerCluster* cluster = (*ClusterList).ListedCluster(i);
cout << "Cluster #" << i
<<": E=" << (*cluster).clE()
<< " Epr=" << (*cluster).clEpr()
<< " X=" << (*cluster).clX()
<< " Z=" << (*cluster).clZ()
<< " size=" << (*cluster).clSize()
<< endl;
for (UInt_t j=0; j!=(*cluster).clSize(); j++) {
THcShowerHit* hit = (*cluster).ClusteredHit(j);
cout << " hit #" << j << ": "; (*hit).show();
}
//The largest cluster.
//
if (fNclust != 0) {
THcShowerCluster* MaxCluster = (*ClusterList).ListedCluster(0);
fE = (*MaxCluster).clE();
for (UInt_t i=1; i<fNclust; i++) {
THcShowerCluster* cluster = (*ClusterList).ListedCluster(i);
Double_t E = (*cluster).clE();
if (fE < E) {
fE = E;
fMult = (*MaxCluster).clSize();
fEpr = (*MaxCluster).clEpr();
fX = (*MaxCluster).clX();
if (fdbg_clusters_cal)
cout << fEpr << " " << fE << " " << fX << " PrSh" << endl;
// Track-to-cluster matching.
//
Int_t Ntracks = tracks.GetLast()+1; // Number of reconstructed tracks
cout << "Number of reconstructed tracks = " << Ntracks << endl;
for (Int_t i=0; i<Ntracks; i++) {
THaTrack* theTrack = static_cast<THaTrack*>( tracks[i] );
// cout << " Track " << i << ": "
// << " X = " << theTrack->GetX()
// << " Y = " << theTrack->GetY()
// << " Theta = " << theTrack->GetTheta()
// << " Phi = " << theTrack->GetPhi()
// << endl;
Vardan Tadevosyan
committed
Double_t Xtr;
Double_t Ytr;
Int_t mclust = MatchCluster(theTrack, ClusterList, Xtr, Ytr);
if (i==0) {
fTRX = Xtr;
fTRY = Ytr;
if (mclust >= 0) {
THcShowerCluster* cluster = (*ClusterList).ListedCluster(mclust);
fTRE = (*cluster).clE();
fTREpr = (*cluster).clEpr();
}
}
Vardan Tadevosyan
committed
cout << " fTRX = " << fTRX << " fTRY = " << fTRY << endl;
if (fdbg_clusters_cal)
cout << "THcShower::CoarseProcess return ---------------------------" <<endl;
Simon Zhamkochyan
committed
return 0;
}
//-----------------------------------------------------------------------------
Int_t THcShower::MatchCluster(THaTrack* Track,
Vardan Tadevosyan
committed
THcShowerClusterList* ClusterList,
Double_t& XTrFront, Double_t& YTrFront)
{
// Match a cluster to a given track.
cout << "Track at DC:"
<< " X = " << Track->GetX()
<< " Y = " << Track->GetY()
<< " Theta = " << Track->GetTheta()
<< " Phi = " << Track->GetPhi()
<< endl;
Vardan Tadevosyan
committed
XTrFront = kBig;
YTrFront = kBig;
Double_t pathl = kBig;
// Track interception with face of the calorimeter. The coordinates are
// in the calorimeter's local system.
fOrigin = fPlanes[0]->GetOrigin();
CalcTrackIntercept(Track, pathl, XTrFront, YTrFront);
// Transform coordiantes to the spectrometer's coordinate system.
XTrFront += GetOrigin().X();
YTrFront += GetOrigin().Y();
cout << "Track at the front of Calorimeter:"
<< " X = " << XTrFront
<< " Y = " << YTrFront
<< " Pathl = " << pathl
<< endl;
Bool_t inFidVol = true;
if (fvTest) {
fOrigin = fPlanes[fNLayers-1]->GetOrigin();
Double_t XTrBack = kBig;
Double_t YTrBack = kBig;
CalcTrackIntercept(Track, pathl, XTrBack, YTrBack);
XTrBack += GetOrigin().X();
YTrBack += GetOrigin().Y();
cout << "Track at the back of Calorimeter:"
<< " X = " << XTrBack
<< " Y = " << YTrBack
<< " Pathl = " << pathl
<< endl;
inFidVol = (XTrFront < fvXmax) && (XTrFront > fvXmin) &&
(YTrFront < fvYmax) && (YTrFront > fvYmin) &&
(XTrBack < fvXmax) && (XTrBack > fvXmin) &&
(YTrBack < fvYmax) && (YTrBack > fvYmin);
cout << "Fiducial volume test: inFidVol = " << inFidVol << endl;
}
// Match a cluster to the track.
Int_t mclust = -1; // The match cluster #, initialize with a bogus value.
Double_t deltaX = kBig; // Track to cluster distance
if (inFidVol) {
for (Int_t i=0; i<fNclust; i++) {
THcShowerCluster* cluster = (*ClusterList).ListedCluster(i);
Double_t dx = TMath::Abs( (*cluster).clX() - XTrFront );
if (dx <= (0.5*BlockThick[0] + fSlop)) {
if (dx <= deltaX) {
mclust = i;
deltaX = dx;
}
}
}
}
cout << "MatchCluster: mclust= " << mclust << " delatX= " << deltaX << endl;
return mclust;
Simon Zhamkochyan
committed
//_____________________________________________________________________________
Int_t THcShower::FineProcess( TClonesArray& tracks )
{
// Reconstruct coordinates of particle track cross point with shower
// plane, and copy the data into the following local data structure:
//
// Units of measurements are meters.
// Calculation of coordinates of particle track cross point with shower
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::FineTrack() are used.
return 0;
}
ClassImp(THcShower)
////////////////////////////////////////////////////////////////////////////////