Newer
Older
///////////////////////////////////////////////////////////////////////////////
// //
// //
// Subdetector class to hold a bunch of planes constituting a chamber //
// This class will be created by the THcDC class which will also create //
// the plane objects. //
// The THcDC class will then pass this class a list of the planes. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "THcDriftChamber.h"
#include "THcDC.h"
#include "THcDCHit.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
//_____________________________________________________________________________
THcDriftChamber::THcDriftChamber(
const char* name, const char* description,
const Int_t chambernum, THaDetectorBase* parent ) :
THaSubDetector(name,description,parent)
{
// Constructor
// fTrackProj = new TClonesArray( "THaTrackProj", 5 );
Stephen A. Wood
committed
fNPlanes = 0; // No planes until we make them
}
//_____________________________________________________________________________
void THcDriftChamber::Setup(const char* name, const char* description)
{
char prefix[2];
THaApparatus *app = GetApparatus();
if(app) {
cout << app->GetName() << endl;
} else {
cout << "No apparatus found" << endl;
}
prefix[0]=tolower(app->GetName()[0]);
prefix[1]='\0';
}
//_____________________________________________________________________________
THcDriftChamber::THcDriftChamber( ) :
{
// Constructor
}
//_____________________________________________________________________________
Int_t THcDriftChamber::Decode( const THaEvData& evdata )
{
cout << "THcDriftChamber::Decode called" << endl;
return 0;
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcDriftChamber::Init( const TDatime& date )
{
static const char* const here = "Init()";
EStatus status;
// This triggers call of ReadDatabase and DefineVariables
if( (status = THaSubDetector::Init( date )) )
return fStatus=status;
void THcDriftChamber::AddPlane(THcDriftChamberPlane *plane)
{
cout << "Added plane " << plane->GetPlaneNum() << " to chamber " << fChamberNum << endl;
plane->SetPlaneIndex(fNPlanes);
fPlanes[fNPlanes] = plane;
// HMS Specific
// Check if this is a Y Plane
if(plane->GetPlaneNum() == YPlaneNum) {
YPlaneInd = fNPlanes;
} else if (plane->GetPlaneNum() == YPlanePNum) {
YPlanePInd = fNPlanes;
}
}
//_____________________________________________________________________________
Int_t THcDriftChamber::ReadDatabase( const TDatime& date )
{
cout << "THcDriftChamber::ReadDatabase()" << endl;
char prefix[2];
prefix[0]=tolower(GetApparatus()->GetName()[0]);
prefix[1]='\0';
DBRequest list[]={
{"_remove_sppt_if_one_y_plane",&fRemove_Sppt_If_One_YPlane, kInt},
Stephen A. Wood
committed
{"dc_wire_velocity", &fWireVelocity, kDouble},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list,prefix);
// Get parameters parent knows about
THcDC* fParent;
fParent = (THcDC*) GetParent();
fMinHits = fParent->GetMinHits(fChamberNum);
fMaxHits = fParent->GetMaxHits(fChamberNum);
fMinCombos = fParent->GetMinCombos(fChamberNum);
cout << "Chamber " << fChamberNum << " Min/Max: " << fMinHits << "/" << fMaxHits << endl;
fSpacePointCriterion = fParent->GetSpacePointCriterion(fChamberNum);
fSpacePointCriterion2 = fSpacePointCriterion*fSpacePointCriterion;
// HMS Specific
// Hard code Y plane numbers. Should be able to get from wire angle
if(fChamberNum == 1) {
YPlaneNum = 2;
YPlanePNum = 5;
} else {
YPlaneNum = 8;
YPlanePNum = 11;
}
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t THcDriftChamber::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
// RVarDef vars[] = {
// { "nhit", "Number of DC hits", "fNhits" },
// { 0 }
// };
// return DefineVarsFromList( vars, mode );
return kOK;
}
void THcDriftChamber::ProcessHits( void)
{
// Make a list of hits for whole chamber
fNhits = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
TClonesArray* hitsarray = fPlanes[ip]->GetHits();
for(Int_t ihit=0;ihit<fPlanes[ip]->GetNHits();ihit++) {
fHits[fNhits++] = static_cast<THcDCHit*>(hitsarray->At(ihit));
}
}
// cout << "ThcDriftChamber::ProcessHits() " << fNhits << " hits" << endl;
}
Int_t THcDriftChamber::FindSpacePoints( void )
{
// Following h_pattern_recognition.f, but just for one chamber
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Code below is specifically for HMS chambers with Y and Y' planes
Int_t yplane_hitind=0;
Int_t yplanep_hitind=0;
fNSpacePoints=0;
fEasySpacePoint = 0;
// Should really build up array of hits
if(fNhits >= fMinHits && fNhits < fMaxHits) {
/* Has this list of hits already been cut the way it should have at this point? */
for(Int_t ihit=0;ihit<fNhits;ihit++) {
THcDCHit* thishit = fHits[ihit];
Int_t ip=thishit->GetPlaneNum(); // This is the absolute plane mumber
if(ip==YPlaneNum) yplane_hitind = ihit;
if(ip==YPlanePNum) yplanep_hitind = ihit;
}
// fPlanes is the array of planes for this chamber.
// cout << fPlanes[YPlaneInd]->GetNHits() << " "
// << fPlanes[YPlanePInd]->GetNHits() << " " << endl;
if (fPlanes[YPlaneInd]->GetNHits() == 1 && fPlanes[YPlanePInd]->GetNHits() == 1) {
cout << fHits[yplane_hitind]->GetWireNum() << " "
<< fHits[yplane_hitind]->GetPos() << " "
<< fHits[yplanep_hitind]->GetWireNum() << " "
<< fHits[yplanep_hitind]->GetPos() << " "
<< fSpacePointCriterion << endl;
}
if(fPlanes[YPlaneInd]->GetNHits() == 1 && fPlanes[YPlanePInd]->GetNHits() == 1
&& TMath::Abs(fHits[yplane_hitind]->GetPos() - fHits[yplanep_hitind]->GetPos())
< fSpacePointCriterion
&& fNhits <= 6) { // An easy case, probably one hit per plane
fEasySpacePoint = FindEasySpacePoint(yplane_hitind, yplanep_hitind);
}
if(!fEasySpacePoint) { // It's not easy
FindHardSpacePoints();
}
// We have our space points for this chamber
cout << fNSpacePoints << " Space Points found" << endl;
if(fNSpacePoints > 0) {
if(fRemove_Sppt_If_One_YPlane == 1) {
// The routine is specific to HMS
Int_t ndest=DestroyPoorSpacePoints();
cout << ndest << " Poor space points destroyed" << endl;
// Loop over space points and remove those with less than 4 planes
// hit and missing hits in Y,Y' planes
}
if(fNSpacePoints == 0) cout << "DestroyPoorSpacePoints() killed SP" << endl;
Int_t nadded=SpacePointMultiWire();
if (nadded) cout << nadded << " Space Points added with SpacePointMultiWire()" << endl;
ChooseSingleHit();
SelectSpacePoints();
if(fNSpacePoints == 0) cout << "SelectSpacePoints() killed SP" << endl;
}
//cout << fNSpacePoints << " Space Points remain" << endl;
// Add these space points to the total list of space points for the
// the DC package. Do this in THcDC.cxx.
#if 0
for(Int_t ip=0;ip<fNPlanes;ip++) {
Int_t np = fPlanes[ip]->GetPlaneNum(); // Actuall plane number of this plane
// (0-11) or (1-12)?
TClonesArray* fHits = fPlanes[ip]->GetHits();
for(Int_t ihit=0;ihit<fNhits;ihit++) { // Looping over all hits in all planes of the chamber
THcDCHit* hit = static_cast<THcDCHit*>(fHits->At(ihit));
//
}
}
#endif
}
return(fNSpacePoints);
}
//_____________________________________________________________________________
// HMS Specific
Int_t THcDriftChamber::FindEasySpacePoint(Int_t yplane_hitind,Int_t yplanep_hitind)
{
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Simplified HMS find_space_point routing. It is given all y hits and
// checks to see if all x-like hits are close enough together to make
// a space point.
Int_t easy_space_point=0;
cout << "Doing Find Easy Space Point" << endl;
Double_t yt = (fHits[yplane_hitind]->GetPos() + fHits[yplanep_hitind]->GetPos())/2.0;
Double_t xt = 0.0;
Int_t num_xhits = 0;
Double_t x_pos[MAX_HITS_PER_POINT];
for(Int_t ihit=0;ihit<fNhits;ihit++) {
THcDCHit* thishit = fHits[ihit];
if(ihit!=yplane_hitind && ihit!=yplanep_hitind) { // x-like hit
// ysp and xsp are from h_generate_geometry
x_pos[ihit] = (thishit->GetPos()
-yt*thishit->GetWirePlane()->GetYsp())
/thishit->GetWirePlane()->GetXsp();
xt += x_pos[ihit];
num_xhits++;
} else {
x_pos[ihit] = 0.0;
}
}
xt = (num_xhits>0?xt/num_xhits:0.0);
cout << "xt=" << xt << endl;
easy_space_point = 1; // Assume we have an easy space point
// Rule it out if x points don't cluster well enough
for(Int_t ihit=0;ihit<fNhits;ihit++) {
cout << "Hit " << ihit << " " << x_pos[ihit] << " " << xt << endl;
if(ihit!=yplane_hitind && ihit!=yplanep_hitind) { // x-like hit
if(TMath::Abs(xt-x_pos[ihit]) >= fSpacePointCriterion)
{ easy_space_point=0; break;}
}
}
if(easy_space_point) { // Register the space point
cout << "Easy Space Point " << xt << " " << yt << endl;
fNSpacePoints = 1;
fSpacePoints[0].x = xt;
fSpacePoints[0].y = yt;
fSpacePoints[0].nhits = fNhits;
fSpacePoints[0].ncombos = 0; // No combos
for(Int_t ihit=0;ihit<fNhits;ihit++) {
THcDCHit* thishit = fHits[ihit];
fSpacePoints[0].hits[ihit] = thishit;
}
}
return(easy_space_point);
}
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
//_____________________________________________________________________________
// Generic
Int_t THcDriftChamber::FindHardSpacePoints()
{
Int_t MAX_NUMBER_PAIRS=1000; // Where does this get set?
struct Pair {
THcDCHit* hit1;
THcDCHit* hit2;
Double_t x, y;
};
Pair pairs[MAX_NUMBER_PAIRS];
//
Int_t ntest_points=0;
for(Int_t ihit1=0;ihit1<fNhits-1;ihit1++) {
THcDCHit* hit1=fHits[ihit1];
THcDriftChamberPlane* plane1 = hit1->GetWirePlane();
for(Int_t ihit2=ihit1+1;ihit2<fNhits;ihit2++) {
if(ntest_points < MAX_NUMBER_PAIRS) {
THcDCHit* hit2=fHits[ihit2];
THcDriftChamberPlane* plane2 = hit2->GetWirePlane();
Double_t determinate = plane1->GetXsp()*plane2->GetYsp()
-plane1->GetYsp()*plane2->GetXsp();
if(TMath::Abs(determinate) > 0.3) { // 0.3 is sin(alpha1-alpha2)=sin(17.5)
pairs[ntest_points].hit1 = hit1;
pairs[ntest_points].hit2 = hit2;
pairs[ntest_points].x = (hit1->GetPos()*plane2->GetYsp()
- hit2->GetPos()*plane1->GetYsp())
/determinate;
pairs[ntest_points].y = (hit2->GetPos()*plane1->GetXsp()
- hit1->GetPos()*plane2->GetXsp())
/determinate;
ntest_points++;
}
}
}
}
Int_t ncombos=0;
struct Combo {
Pair* pair1;
Pair* pair2;
};
Combo combos[10*MAX_NUMBER_PAIRS];
for(Int_t ipair1=0;ipair1<ntest_points-1;ipair1++) {
for(Int_t ipair2=ipair1+1;ipair2<ntest_points;ipair2++) {
Double_t dist2 = pow(pairs[ipair1].x - pairs[ipair2].x,2)
+ pow(pairs[ipair1].y - pairs[ipair2].y,2);
if(dist2 <= fSpacePointCriterion2) {
combos[ncombos].pair1 = &pairs[ipair1];
combos[ncombos].pair2 = &pairs[ipair2];
ncombos++;
}
}
}
// Loop over all valid combinations and build space points
for(Int_t icombo=0;icombo<ncombos;icombo++) {
THcDCHit* hits[4];
hits[0]=combos[icombo].pair1->hit1;
hits[1]=combos[icombo].pair1->hit2;
hits[2]=combos[icombo].pair2->hit1;
hits[3]=combos[icombo].pair2->hit2;
// Get Average Space point xt, yt
Double_t xt = combos[icombo].pair1->x + combos[icombo].pair2->x;
Double_t yt = combos[icombo].pair1->y + combos[icombo].pair2->y;
// Loop over space points
if(fNSpacePoints > 0) {
Int_t add_flag=1;
for(Int_t ispace=0;ispace<fNSpacePoints;ispace++) {
if(fSpacePoints[ispace].nhits > 0) {
Double_t sqdist_test = pow(xt - fSpacePoints[ispace].x,2) +
pow(yt - fSpacePoints[ispace].y,2);
// I (who is I) want to be careful if sqdist_test is bvetween 1 and
// 3 fSpacePointCriterion2. Let me ignore not add a new point the
if(sqdist_test < 3*fSpacePointCriterion2) {
add_flag = 0; // do not add a new space point
}
if(sqdist_test < fSpacePointCriterion2) {
// This is a real match
// Add the new hits to the existing space point
Int_t iflag[4];
iflag[0]=0;iflag[1]=0;iflag[2]=0;iflag[3]=0;
// Find out which of the four hits in the combo are already
// in the space point under consideration so that we don't
// add duplicate hits to the space point
for(Int_t isp_hit=0;isp_hit<fSpacePoints[ispace].nhits;isp_hit++) {
for(Int_t icm_hit=0;icm_hit<4;icm_hit++) { // Loop over combo hits
if(fSpacePoints[ispace].hits[isp_hit]==hits[icm_hit]) {
iflag[icm_hit] = 1;
}
}
}
// Remove duplicated pionts in the combo so we don't add
// duplicate hits to the space point
for(Int_t icm1=0;icm1<3;icm1++) {
for(Int_t icm2=icm1+1;icm2<4;icm2++) {
if(hits[icm1]==hits[icm2]) {
iflag[icm2] = 1;
}
}
}
// Add the unique combo hits to the space point
for(Int_t icm=0;icm<4;icm++) {
if(iflag[icm]==0) {
fSpacePoints[ispace].hits[fSpacePoints[ispace].nhits++] = hits[icm];
}
fSpacePoints[ispace].ncombos++;
}
}
}
}// End of loop over existing space points
// Create a new space point if more than 2*space_point_criteria
if(fNSpacePoints < MAX_SPACE_POINTS) {
if(add_flag) {
fSpacePoints[fNSpacePoints].nhits=2;
fSpacePoints[fNSpacePoints].ncombos=1;
fSpacePoints[fNSpacePoints].hits[0]=hits[0];
fSpacePoints[fNSpacePoints].hits[1]=hits[1];
fSpacePoints[fNSpacePoints].x = xt;
fSpacePoints[fNSpacePoints].y = yt;
if(hits[0] != hits[2] && hits[1] != hits[2]) {
fSpacePoints[fNSpacePoints].hits[fSpacePoints[fNSpacePoints].nhits++] = hits[2];
}
if(hits[0] != hits[3] && hits[1] != hits[3]) {
fSpacePoints[fNSpacePoints].hits[fSpacePoints[fNSpacePoints].nhits++] = hits[3];
}
fNSpacePoints++;
}
}
} else {// Create first space point
// This duplicates code above. Need to see if we can restructure
// to avoid
fSpacePoints[fNSpacePoints].nhits=2;
fSpacePoints[fNSpacePoints].ncombos=1;
fSpacePoints[fNSpacePoints].hits[0]=hits[0];
fSpacePoints[fNSpacePoints].hits[1]=hits[1];
fSpacePoints[fNSpacePoints].x = xt;
fSpacePoints[fNSpacePoints].y = yt;
if(hits[0] != hits[2] && hits[1] != hits[2]) {
fSpacePoints[fNSpacePoints].hits[fSpacePoints[fNSpacePoints].nhits++] = hits[2];
}
if(hits[0] != hits[3] && hits[1] != hits[3]) {
fSpacePoints[fNSpacePoints].hits[fSpacePoints[fNSpacePoints].nhits++] = hits[3];
}
fNSpacePoints++;
}//End check on 0 space points
}//End loop over combos
return(fNSpacePoints);
}
//_____________________________________________________________________________
// HMS Specific?
Int_t THcDriftChamber::DestroyPoorSpacePoints()
{
Int_t spacepointsgood[fNSpacePoints];
Int_t ngood=0;
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
for(Int_t i=0;i<fNSpacePoints;i++) {
spacepointsgood[i] = 0;
}
for(Int_t isp=0;isp<fNSpacePoints;isp++) {
Int_t nplanes_hit = 0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
nhitsperplane[ip] = 0;
}
// Count # hits in each plane for this space point
for(Int_t ihit=0;ihit<fSpacePoints[isp].nhits;ihit++) {
THcDCHit* hit=fSpacePoints[isp].hits[ihit];
// hit_order(hit) = ihit;
Int_t ip = hit->GetPlaneIndex();
nhitsperplane[ip]++;
}
// Count # planes that have hits
for(Int_t ip=0;ip<fNPlanes;ip++) {
if(nhitsperplane[ip] > 0) {
nplanes_hit++;
}
}
if(nplanes_hit >= fMinHits && nhitsperplane[YPlaneInd]>0
&& nhitsperplane[YPlanePInd] > 0) {
spacepointsgood[ngood++] = isp; // Build list of good points
} else {
// cout << "Missing Y-hit!!";
}
// Remove the bad space points
Int_t nremoved=fNSpacePoints-ngood;
fNSpacePoints = ngood;
for(Int_t isp=0;isp<fNSpacePoints;isp++) { // New index num ber
Int_t osp=spacepointsgood[isp]; // Original index number
if(osp > isp) {
// Does this work, or do we have to copy each member?
// If it doesn't we should overload the = operator
fSpacePoints[isp] = fSpacePoints[osp];
}
}
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
return nremoved;
}
//_____________________________________________________________________________
// HMS Specific?
/*
Purpose and Methods : This routine loops over space points and
looks at all hits in the space
point. If more than 1 hit is in the same
plane then the space point is cloned with
all combinations of 1 wire per plane. The
requirements for cloning are: 1) at least
4 planes fire, and 2) no more than 6 planes
have multiple hits.
*/
Int_t THcDriftChamber::SpacePointMultiWire()
{
Int_t nhitsperplane[fNPlanes];
THcDCHit* hits_plane[fNPlanes][MAX_HITS_PER_POINT];
Int_t nsp_check;
Int_t nplanes_single;
Int_t nsp_tot=fNSpacePoints;
for(Int_t isp=0;isp<fNSpacePoints;isp++) {
Int_t nplanes_hit = 0; // Number of planes with hits
Int_t nplanes_mult = 0; // Number of planes with multiple hits
Int_t nsp_new = 1;
Int_t newsp_num=0;
for(Int_t ip=0;ip<fNPlanes;ip++) {
nhitsperplane[ip] = 0;
}
// Sort Space Points hits by plane
for(Int_t ihit=0;ihit<fSpacePoints[isp].nhits;ihit++) { // All hits in SP
THcDCHit* hit=fSpacePoints[isp].hits[ihit];
// hit_order Make a hash
// hash(hit) = ihit;
Int_t ip = hit->GetPlaneIndex();
hits_plane[ip][nhitsperplane[ip]++] = hit;
}
for(Int_t ip=0;ip<fNPlanes;ip++) {
if(nhitsperplane[ip] > 0) {
nplanes_hit++;
nsp_new *= nhitsperplane[ip];
if(nhitsperplane[ip] > 1) nplanes_mult++;
}
}
--nsp_new;
nsp_check=nsp_tot + nsp_new;
nplanes_single = nplanes_hit - nplanes_mult;
// Check if cloning conditions are met
Int_t ntot = 0;
if(nplanes_hit >= 4 && nplanes_mult < 4 && nplanes_mult >0
&& nsp_check < 20) {
// Order planes by decreasing # of hits
Int_t maxplane[fNPlanes];
for(Int_t ip=0;ip<fNPlanes;ip++) {
maxplane[ip] = ip;
}
// Sort by decreasing # of hits
for(Int_t ip1=0;ip1<fNPlanes-1;ip1++) {
for(Int_t ip2=ip1+1;ip2<fNPlanes;ip2++) {
if(nhitsperplane[maxplane[ip2]] > nhitsperplane[maxplane[ip1]]) {
Int_t temp = maxplane[ip1];
maxplane[ip1] = maxplane[ip2];
maxplane[ip2] = temp;
}
}
}
// First fill clones with 1 hit each from the 3 planes with the most hits
for(Int_t n1=0;n1<nhitsperplane[maxplane[0]];n1++) {
for(Int_t n2=0;n2<nhitsperplane[maxplane[1]];n2++) {
for(Int_t n3=0;n3<nhitsperplane[maxplane[2]];n3++) {
ntot++;
newsp_num = nsp_tot + ntot - 2; // ntot will be 2 for first new
if(n1==0 && n2==0 && n3==0) newsp_num = isp; // Copy over original SP
fSpacePoints[newsp_num].x = fSpacePoints[isp].x;
fSpacePoints[newsp_num].y = fSpacePoints[isp].y;
fSpacePoints[newsp_num].nhits = nplanes_hit;
fSpacePoints[newsp_num].ncombos = fSpacePoints[isp].ncombos;
fSpacePoints[newsp_num].hits[0] = hits_plane[maxplane[0]][n1];
fSpacePoints[newsp_num].hits[1] = hits_plane[maxplane[1]][n2];
fSpacePoints[newsp_num].hits[2] = hits_plane[maxplane[2]][n3];
fSpacePoints[newsp_num].hits[3] = hits_plane[maxplane[3]][0];
if(nhitsperplane[maxplane[4]] == 1)
fSpacePoints[newsp_num].hits[4] = hits_plane[maxplane[4]][0];
if(nhitsperplane[maxplane[5]] == 1)
fSpacePoints[newsp_num].hits[5] = hits_plane[maxplane[5]][0];
}
}
}
#if 0
// Loop over clones and order hits in the same way as parent SP
// Why do we have to order the hits.
for(Int_t i=0;i<ntot;i++) {
Int_t newsp_num= nsp_tot + i;
if(i == 1) newsp_num = isp;
for(Int_t j=0;j<nplanes_hit;j++) {
for(Int_t k=0;k<nplanes_hit;k++) {
THcDCHit* hit1 = fSpacePointHits[newsp_num][j];
THcDCHit* hit2 = fSpacePointHits[newsp_num][k];
if(hit_order(hit1) > hit_order(hit2)) {
THcDCHit* temp = fSpacePoints[newsp_num].hits[k];
fSpacePoints[newsp_num].hits[k] = fSpacePoints[newsp_num].hits[j];
fSpacePoints[newsp_num].hits[j] = temp;
}
}
}
}
nsp_tot += (ntot-1);
} else {
ntot=1;
}
}
assert (nsp_tot > 0);
Int_t nadded=0;
if(nsp_tot <= 20) {
nadded = nsp_tot - fNSpacePoints;
fNSpacePoints = nsp_tot;
}
// In Fortran, fill in zeros.
return(nadded);
}
//_____________________________________________________________________________
// HMS Specific?
void THcDriftChamber::ChooseSingleHit()
{
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
// Look at all hits in a space point. If two hits are in the same plane,
// reject the one with the longer drift time.
Int_t goodhit[MAX_HITS_PER_POINT];
for(Int_t isp=0;isp<fNSpacePoints;isp++) {
Int_t startnum = fSpacePoints[isp].nhits;
for(Int_t ihit=0;ihit<startnum;ihit++) {
goodhit[ihit] = 1;
}
// For each plane, mark all hits longer than the shortest drift time
for(Int_t ihit1=0;ihit1<startnum-1;ihit1++) {
THcDCHit* hit1 = fSpacePoints[isp].hits[ihit1];
Int_t plane1=hit1->GetPlaneIndex();
Double_t tdrift1 = hit1->GetTime();
for(Int_t ihit2=ihit1+1;ihit2<startnum;ihit2++) {
THcDCHit* hit2 = fSpacePoints[isp].hits[ihit2];
Int_t plane2=hit2->GetPlaneIndex();
Double_t tdrift2 = hit2->GetTime();
if(plane1 == plane2) {
if(tdrift1 > tdrift2) {
goodhit[ihit1] = 0;
} else {
goodhit[ihit2] = 0;
}
}
}
}
// Gather the remaining hits
Int_t finalnum = 0;
for(Int_t ihit=0;ihit<startnum;ihit++) {
if(goodhit[ihit] > 0) { // Keep this hit
if (ihit > finalnum) { // Move hit
fSpacePoints[isp].hits[finalnum++] = fSpacePoints[isp].hits[ihit];
} else {
finalnum++;
}
}
}
fSpacePoints[isp].nhits = finalnum;
}
}
//_____________________________________________________________________________
// Generic
void THcDriftChamber::SelectSpacePoints()
// This routine goes through the list of space_points and space_point_hits
// found by find_space_points and only accepts those with
// number of hits > min_hits
// number of combinations > min_combos
{
Int_t sp_count=0;
for(Int_t isp=0;isp<fNSpacePoints;isp++) {
// Include fEasySpacePoint because ncombos not filled in
if(fSpacePoints[isp].ncombos >= fMinCombos || fEasySpacePoint) {
if(fSpacePoints[isp].nhits >= fMinHits) {
fSpacePoints[sp_count++] = fSpacePoints[isp];
}
}
}
fNSpacePoints = sp_count;
}
Stephen A. Wood
committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
void THcDriftChamber::CorrectHitTimes()
{
// Use the rough hit positions in the chambers to correct the drift time
// for hits in the space points.
// Assume all wires for a plane are read out on the same side (l/r or t/b).
// If the wire is closer to horizontal, read out left/right. If nearer
// vertical, assume top/bottom. (Note, this is not always true for the
// SOS u and v planes. They have 1 card each on the side, but the overall
// time offset per card will cancel much of the error caused by this. The
// alternative is to check by card, rather than by plane and this is harder.
for(Int_t isp=0;isp<fNSpacePoints;isp++) {
Double_t x = fSpacePoints[isp].x;
Double_t y = fSpacePoints[isp].y;
for(Int_t ihit=0;ihit<fSpacePoints[isp].nhits;ihit++) {
THcDCHit* hit = fSpacePoints[isp].hits[ihit];
THcDriftChamberPlane* plane=hit->GetWirePlane();
// How do we know this correction only gets applied once? Is
// it determined that a given hit can only belong to one space point?
Double_t time_corr = plane->GetReadoutX() ?
fSpacePoints[isp].y*plane->GetReadoutCorr()/fWireVelocity :
fSpacePoints[isp].x*plane->GetReadoutCorr()/fWireVelocity;
hit->SetTime(hit->GetTime()
- plane->GetCentralTime() + plane->GetDriftTimeSign()*time_corr);
hit->ConvertTimeToDist();
}
}
}
//_____________________________________________________________________________
{
// Destructor. Remove variables from global list.
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
{
// Delete member arrays. Used by destructor.
//_____________________________________________________________________________
inline
void THcDriftChamber::Clear( const Option_t* )
{
// Reset per-event data.
// fNhits = 0;
// fTrackProj->Clear();
fNhits = 0;
}
//_____________________________________________________________________________
Int_t THcDriftChamber::ApplyCorrections( void )
{
return(0);
}
ClassImp(THcDriftChamber)
////////////////////////////////////////////////////////////////////////////////