Newer
Older
//*-- Author :
//////////////////////////////////////////////////////////////////////////
//
// THcShowerArray
//
//////////////////////////////////////////////////////////////////////////
#include "THcShowerArray.h"
#include "TClonesArray.h"
#include "THcSignalHit.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "THcHitList.h"
#include "THcShower.h"
#include "THcRawShowerHit.h"
#include "TClass.h"
#include "math.h"
#include "THaTrack.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
using namespace std;
ClassImp(THcShowerArray)
//______________________________________________________________________________
THcShowerArray::THcShowerArray( const char* name,
const char* description,
const Int_t layernum,
THaDetectorBase* parent )
: THaSubDetector(name,description,parent)
{
fADCHits = new TClonesArray("THcSignalHit",100);
fLayerNum = layernum;
}
THcShowerArray::~THcShowerArray()
{
// Destructor
delete fADCHits;
delete [] fA;
delete [] fP;
delete [] fA_p;
delete [] fE;
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcShowerArray::Init( const TDatime& date )
{
// Extra initialization for shower layer: set up DataDest map
if( IsZombie())
return fStatus = kInitError;
// How to get information for parent
// if( GetParent() )
// fOrigin = GetParent()->GetOrigin();
EStatus status;
if( (status=THaSubDetector::Init( date )) )
return fStatus = status;
return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcShowerArray::ReadDatabase( const TDatime& date )
{
char prefix[2];
prefix[0]=tolower(GetParent()->GetPrefix()[0]);
prefix[1]='\0';
cout << "Parent name: " << GetParent()->GetPrefix() << endl;
fUsingFADC=0;
fPedSampLow=0;
fPedSampHigh=9;
fDataSampLow=23;
fDataSampHigh=49;
DBRequest list[]={
{"cal_nrows", &fNRows, kInt},
{"cal_ncolumns", &fNColumns, kInt},
{"cal_using_fadc", &fUsingFADC, kInt, 0, 1},
{"cal_ped_sample_low", &fPedSampLow, kInt, 0, 1},
{"cal_ped_sample_high", &fPedSampHigh, kInt, 0, 1},
{"cal_data_sample_low", &fDataSampLow, kInt, 0, 1},
{"cal_data_sample_high", &fDataSampHigh, kInt, 0, 1},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list, prefix);
fNelem = fNRows*fNColumns;
// Debug output.
THcShower* fParent;
fParent = (THcShower*) GetParent();
if (fParent->fdbg_init_cal) {
cout << "---------------------------------------------------------------\n";
cout << "Debug output from THcShowerArray::ReadDatabase for "
<< GetParent()->GetPrefix() << ":" << endl;
cout << " Layer #" << fLayerNum << ", number of elements " << dec << fNelem
<< endl;
cout << " Columns " << fNColumns << ", Rows " << fNRows << endl;
cout << " Using FADC " << fUsingFADC << endl;
if (fUsingFADC) {
cout << " FADC pedestal sample low = " << fPedSampLow << ", high = "
<< fPedSampHigh << endl;
cout << " FADC data sample low = " << fDataSampLow << ", high = "
<< fDataSampHigh << endl;
}
}
// Here read the 2-D arrays of pedestals, gains, etc.
// Pedestal limits per channel.
fPedLimit = new Int_t [fNelem];
Double_t cal_arr_cal_const[fNelem];
Double_t cal_arr_gain_cor[fNelem];
DBRequest list1[]={
{"cal_arr_ped_limit", fPedLimit, kInt, fNelem},
{"cal_arr_cal_const", cal_arr_cal_const, kDouble, fNelem},
{"cal_arr_gain_cor", cal_arr_gain_cor, kDouble, fNelem},
// {"cal_min_peds", &fShMinPeds, kInt},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list1, prefix);
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Debug output.
if (fParent->fdbg_init_cal) {
cout << " fPedLimit:" << endl;
Int_t el=0;
for (UInt_t j=0; j<fNColumns; j++) {
cout << " ";
for (UInt_t i=0; i<fNRows; i++) {
cout << fPedLimit[el++] << " ";
};
cout << endl;
};
cout << " cal_arr_cal_const:" << endl;
el=0;
for (UInt_t j=0; j<fNColumns; j++) {
cout << " ";
for (UInt_t i=0; i<fNRows; i++) {
cout << cal_arr_cal_const[el++] << " ";
};
cout << endl;
};
cout << " cal_arr_gain_cor:" << endl;
el=0;
for (UInt_t j=0; j<fNColumns; j++) {
cout << " ";
for (UInt_t i=0; i<fNRows; i++) {
cout << cal_arr_gain_cor[el++] << " ";
};
cout << endl;
};
} // end of debug output
// Calibration constants (GeV / ADC channel).
fGain = new Double_t [fNelem];
for (UInt_t i=0; i<fNelem; i++) {
fGain[i] = cal_arr_cal_const[i] * cal_arr_gain_cor[i];
}
// Debug output.
if (fParent->fdbg_init_cal) {
cout << " fGain:" << endl;
Int_t el=0;
for (UInt_t j=0; j<fNColumns; j++) {
cout << " ";
for (UInt_t i=0; i<fNRows; i++) {
cout << fGain[el++] << " ";
};
cout << endl;
};
}
fMinPeds = fParent->GetMinPeds();
InitializePedestals();
// Event by event amplitude and pedestal
fA = new Double_t[fNelem];
fP = new Double_t[fNelem];
fA_p = new Double_t[fNelem];
// Energy depositions per block.
fE = new Double_t[fNelem];
#ifdef HITPIC
hitpic = new char*[fNRows];
for(Int_t row=0;row<fNRows;row++) {
hitpic[row] = new char[NPERLINE*(fNColumns+1)+2];
}
piccolumn=0;
#endif
// Debug output.
if (fParent->fdbg_init_cal) {
cout << " fMinPeds = " << fMinPeds << endl;
// cout << " Origin of Layer at X = " << fOrigin.X()
// << " Y = " << fOrigin.Y() << " Z = " << fOrigin.Z() << endl;
cout << "---------------------------------------------------------------\n";
}
return kOK;
}
//_____________________________________________________________________________
Int_t THcShowerArray::DefineVariables( EMode mode )
{
// Initialize global variables
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
RVarDef vars[] = {
{"adchits", "List of ADC hits", "fADCHits.THcSignalHit.GetPaddleNumber()"},
{"a", "Raw ADC Amplitude", "fA"},
{"p", "Dynamic ADC Pedestal", "fP"},
{"a_p", "Sparsified, ped-subtracted ADC Amplitudes", "fA_p"},
{"e", "Energy Depositions per block", "fE"},
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
{ 0 }
};
return DefineVarsFromList( vars, mode );
}
//_____________________________________________________________________________
void THcShowerArray::Clear( Option_t* )
{
// Clears the hit lists
fADCHits->Clear();
}
//_____________________________________________________________________________
Int_t THcShowerArray::Decode( const THaEvData& evdata )
{
// Doesn't actually get called. Use Fill method instead
return 0;
}
//_____________________________________________________________________________
Int_t THcShowerArray::CoarseProcess( TClonesArray& tracks )
{
// Nothing is done here. See ProcessHits method instead.
//
return 0;
}
//_____________________________________________________________________________
Int_t THcShowerArray::FineProcess( TClonesArray& tracks )
{
return 0;
}
//_____________________________________________________________________________
Int_t THcShowerArray::ProcessHits(TClonesArray* rawhits, Int_t nexthit)
{
// Extract the data for this layer from hit list.
THcShower* fParent;
fParent = (THcShower*) GetParent();
// Initialize variables.
fADCHits->Clear();
for(Int_t i=0;i<fNelem;i++) {
fA[i] = 0;
fA_p[i] = 0;
fE[i] = 0;
fETot = 0;
// Process raw hits. Get ADC hits for the plane, assign variables for each
// channel.
Int_t nrawhits = rawhits->GetLast()+1;
Int_t ihit = nexthit;
Int_t ngood = 0;
Int_t threshold = 100;
while(ihit < nrawhits) {
THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ihit);
if(hit->fPlane != fLayerNum) {
break;
}
// Should probably check that counter # is in range
if(fUsingFADC) {
fA[hit->fCounter-1] = hit->GetData(0,fPedSampLow,fPedSampHigh,
fDataSampLow,fDataSampHigh);
fP[hit->fCounter-1] = hit->GetPedestal(0,fPedSampLow,fPedSampHigh);
} else {
fA[hit->fCounter-1] = hit->GetData(0);
}
if(fA[hit->fCounter-1] > threshold) {
ngood++;
}
// Sparsify hits, fill the hit list, compute the energy depostion.
Double_t thresh = fThresh[hit->fCounter -1];
if(fA[hit->fCounter-1] > thresh) {
// THcSignalHit *sighit =
// (THcSignalHit*) fPosADCHits->ConstructedAt(nPosADCHits++);
// sighit->Set(hit->fCounter, fA_Pos[hit->fCounter-1]);
fUsingFADC ?
fA_p[hit->fCounter-1] = fA[hit->fCounter-1] :
fA_p[hit->fCounter-1] = fA[hit->fCounter-1] - fP[hit->fCounter -1];
fE[hit->fCounter-1] += fA_p[hit->fCounter-1] * fGain[hit->fCounter-1];
}
// Accumulate energies in the plane.
fETot += fE[hit->fCounter-1];
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#if 0
if(ngood > 0) {
cout << "+";
for(Int_t column=0;column<fNColumns;column++) {
cout << "-";
}
cout << "+" << endl;
for(Int_t row=0;row<fNRows;row++) {
cout << "|";
for(Int_t column=0;column<fNColumns;column++) {
Int_t counter = column*fNRows + row;
if(fA[counter]>threshold) {
cout << "X";
} else {
cout << " ";
}
}
cout << "|" << endl;
}
}
#endif
#ifdef HITPIC
if(ngood > 0) {
for(Int_t row=0;row<fNRows;row++) {
if(piccolumn==0) {
hitpic[row][0] = '|';
}
for(Int_t column=0;column<fNColumns;column++) {
Int_t counter = column*fNRows+row;
if(fA[counter] > threshold) {
hitpic[row][piccolumn*(fNColumns+1)+column+1] = 'X';
} else {
hitpic[row][piccolumn*(fNColumns+1)+column+1] = ' ';
}
hitpic[row][(piccolumn+1)*(fNColumns+1)] = '|';
}
}
piccolumn++;
if(piccolumn==NPERLINE) {
cout << "+";
for(Int_t pc=0;pc<NPERLINE;pc++) {
for(Int_t column=0;column<fNColumns;column++) {
cout << "-";
}
cout << "+";
}
cout << endl;
for(Int_t row=0;row<fNRows;row++) {
hitpic[row][(piccolumn+1)*(fNColumns+1)+1] = '\0';
cout << hitpic[row] << endl;
}
piccolumn = 0;
}
}
#endif
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//Debug output.
if (fParent->fdbg_decoded_cal) {
cout << "---------------------------------------------------------------\n";
cout << "Debug output from THcShowerArray::ProcessHits for "
<< fParent->GetPrefix() << ":" << endl;
cout << " nrawhits = " << nrawhits << " nexthit = " << nexthit << endl;
cout << " Sparsified hits for shower array, plane #" << fLayerNum
<< ", " << GetName() << ":" << endl;
Int_t nspar = 0;
for (Int_t jhit = nexthit; jhit < nrawhits; jhit++) {
THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(jhit);
if(hit->fPlane != fLayerNum) {
break;
}
if(fA[hit->fCounter-1] > fThresh[hit->fCounter -1]) {
cout << " counter = " << hit->fCounter
<< " E = " << fE[hit->fCounter-1]
<< endl;
nspar++;
}
}
if (nspar == 0) cout << " No hits\n";
cout << " E total = " << fETot << endl;
cout << "---------------------------------------------------------------\n";
}
return(ihit);
}
//_____________________________________________________________________________
Int_t THcShowerArray::AccumulatePedestals(TClonesArray* rawhits, Int_t nexthit)
{
// Extract data for this plane from hit list and accumulate in
// arrays for subsequent pedestal calculations.
Int_t nrawhits = rawhits->GetLast()+1;
Int_t ihit = nexthit;
while(ihit < nrawhits) {
THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ihit);
if(hit->fPlane != fLayerNum) {
break;
}
Int_t element = hit->fCounter - 1; // Should check if in range
Int_t adc = fUsingFADC ?
hit->GetData(0,fPedSampLow,fPedSampHigh,fDataSampLow,fDataSampHigh)
:
hit->GetData(0);
if(adc <= fPedLimit[element]) {
fPedSum[element] += adc;
fPedSum2[element] += adc*adc;
fPedCount[element]++;
if(fPedCount[element] == fMinPeds/5) {
fPedLimit[element] = 100 + fPedSum[element]/fPedCount[element];
}
}
ihit++;
}
fNPedestalEvents++;
// Debug output.
if ( ((THcShower*) GetParent())->fdbg_raw_cal ) {
cout << "---------------------------------------------------------------\n";
cout << "Debug output from THcShowerArray::AcculatePedestals for "
<< GetParent()->GetPrefix() << ":" << endl;
cout << "Processed hit list for plane " << GetName() << ":\n";
for (Int_t ih=nexthit; ih<nrawhits; ih++) {
THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ih);
if(hit->fPlane != fLayerNum) {
break;
}
Int_t adc = fUsingFADC ?
hit->GetData(0,fPedSampLow,fPedSampHigh,fDataSampLow,fDataSampHigh)
:
hit->GetData(0);
cout << " hit " << ih << ":"
<< " plane = " << hit->fPlane
<< " counter = " << hit->fCounter
<< endl;
}
cout << "---------------------------------------------------------------\n";
}
//_____________________________________________________________________________
void THcShowerArray::CalculatePedestals( )
{
// Use the accumulated pedestal data to calculate pedestals.
for(Int_t i=0; i<fNelem;i++) {
fPed[i] = ((Float_t) fPedSum[i]) / TMath::Max(1, fPedCount[i]);
fSig[i] = sqrt(((Float_t)fPedSum2[i])/TMath::Max(1, fPedCount[i])
- fPed[i]*fPed[i]);
fThresh[i] = fPed[i] + TMath::Min(50., TMath::Max(10., 3.*fSig[i]));
}
// Debug output.
if ( ((THcShower*) GetParent())->fdbg_raw_cal ) {
cout << "---------------------------------------------------------------\n";
cout << "Debug output from THcShowerArray::CalculatePedestals for "
<< GetParent()->GetPrefix() << ":" << endl;
cout << " ADC pedestals and thresholds for calorimeter plane "
<< GetName() << endl;
for(Int_t i=0; i<fNelem;i++) {
cout << " element " << i << ": "
<< " Pedestal = " << fPed[i]
<< " threshold = " << fThresh[i]
<< endl;
}
cout << "---------------------------------------------------------------\n";
}
}
//_____________________________________________________________________________
void THcShowerArray::InitializePedestals( )
{
fNPedestalEvents = 0;
fPedSum = new Int_t [fNelem];
fPedSum2 = new Int_t [fNelem];
fPedCount = new Int_t [fNelem];
fSig = new Float_t [fNelem];
fPed = new Float_t [fNelem];
fThresh = new Float_t [fNelem];
for(Int_t i=0;i<fNelem;i++) {
fPedSum[i] = 0;
fPedSum2[i] = 0;
fPedCount[i] = 0;
}