Newer
Older
/** \class THcScalerEvtHandler
\ingroup Base
\brief Event handler for Hall C scalers
For a particular set of event types (here, event type 0)
decode the scalers and put some variables into global variables.
The global variables can then appear in the Podd output tree T.
In addition, a tree "TS" is created by this class; it contains
just the scaler data by itself. Note, the "fName" is concatenated
with "TS" to ensure the tree is unqiue; further, "fName" is
concatenated with the name of the global variables, for uniqueness.
The list of global variables and how they are tied to the
scaler module and channels is defined here; eventually this
will be modified to use a scaler.map file
NOTE: if you don't have the scaler map file (e.g. Leftscalevt.map)
there will be no variable output to the Trees.
To use in the analyzer, your setup script needs something like this
~~~
gHaEvtHandlers->Add (new THcScalerEvtHandler("HMS","HC scaler event type 0"));
~~~
To enable debugging you may try this in the setup script
~~~
THcScalerEvtHandler *hscaler = new THcScalerEvtHandler("HS","HC scaler event type 0");
hscaler->SetDebugFile("HScaler.txt");
gHaEvtHandlers->Add (hscaler);
\author E. Brash based on THaScalerEvtHandler by R. Michaels
*/
#include "THaEvtTypeHandler.h"
#include "THcScalerEvtHandler.h"
#include "GenScaler.h"
#include "Scaler3800.h"
#include "Scaler3801.h"
#include "Scaler1151.h"
#include "Scaler560.h"
#include "Scaler9001.h"
#include "Scaler9250.h"
#include "THaCodaData.h"
#include "THaEvData.h"
#include "THcParmList.h"
#include "THcGlobals.h"
#include "THaGlobals.h"
#include "TNamed.h"
#include "TMath.h"
#include "TString.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <map>
#include <iterator>
#include "THaVarList.h"
#include "VarDef.h"
using namespace std;
using namespace Decoder;
static const UInt_t ICOUNT = 1;
static const UInt_t IRATE = 2;
static const UInt_t ICURRENT = 3;
static const UInt_t ICHARGE = 4;
static const UInt_t ITIME = 5;
static const UInt_t ICUT = 6;
static const UInt_t MAXCHAN = 32;
static const UInt_t defaultDT = 4;
THcScalerEvtHandler::THcScalerEvtHandler(const char *name, const char* description)
: THaEvtTypeHandler(name,description), evcount(0), evcountR(0.0), ifound(0), fNormIdx(-1),
dvars(0),dvars_prev_read(0), dvarsFirst(0), fScalerTree(0), fUseFirstEvent(kTRUE),
fDelayedType(-1), fOnlyBanks(kFALSE)
fRocSet.clear();
fModuleSet.clear();
}
THcScalerEvtHandler::~THcScalerEvtHandler()
{
if (fScalerTree) {
delete fScalerTree;
}
}
Int_t THcScalerEvtHandler::End( THaRunBase* r)
{
// Process any delayed events in order received
cout << "THcScalerEvtHandler::End Analyzing " << fDelayedEvents.size() << " delayed scaler events" << endl;
for(std::vector<UInt_t*>::iterator it = fDelayedEvents.begin();
it != fDelayedEvents.end(); ++it) {
UInt_t* rdata = *it;
AnalyzeBuffer(rdata);
}
fDelayedEvents.clear(); // Does this free the arrays?
if (fScalerTree) fScalerTree->Write();
return 0;
}
Int_t THcScalerEvtHandler::ReadDatabase(const TDatime& date )
{
char prefix[2];
prefix[0]='g';
prefix[1]='\0';
DBRequest list[]={
{"NumBCMs",&fNumBCMs, kInt},
{0}
};
gHcParms->LoadParmValues((DBRequest*)&list, prefix);
//cout << " NUmber of BCMs = " << fNumBCMs << endl;
//
fBCM_Gain = new Double_t[fNumBCMs];
fBCM_Offset = new Double_t[fNumBCMs];
fBCM_delta_charge= new Double_t[fNumBCMs];
string bcm_namelist;
DBRequest list2[]={
{"BCM_Gain", fBCM_Gain, kDouble, (UInt_t) fNumBCMs},
{"BCM_Offset", fBCM_Offset, kDouble,(UInt_t) fNumBCMs},
{"BCM_Names", &bcm_namelist, kString},
{"BCM_Current_threshold", &fbcm_Current_Threshold, kDouble,0, 1},
{"BCM_Current_threshold_index", &fbcm_Current_Threshold_Index, kInt,0,1},
fbcm_Current_Threshold = 0.0;
fbcm_Current_Threshold_Index = 0;
gHcParms->LoadParmValues((DBRequest*)&list2, prefix);
vector<string> bcm_names = vsplit(bcm_namelist);
fBCM_Name = new char* [fNumBCMs];
for(Int_t i=0;i<fNumBCMs;i++) {
fBCM_Name[i] = new char[bcm_names[i].length()+1];
strcpy(fBCM_Name[i], bcm_names[i].c_str());
// cout << fBCM_Gain[i] << " " << fBCM_Offset[i] << " " << fBCM_Name[i] << endl;
}
fTotalTime=0.;
fPrevTotalTime=0.;
fDeltaTime=-1.;
for(Int_t i=0;i<fNumBCMs;i++) {
fBCM_delta_charge[i]=0.;
}
//
//
return kOK;
}
void THcScalerEvtHandler::SetDelayedType(int evtype) {
/**
* \brief Delay analysis of this event type to end.
*
* Final scaler events generated in readout list end routines may not
* come in order in the data stream. If the event type of a end routine
* scaler event is set, then the event contents will be saved and analyzed
* at the end of the analysis so that time ordering of scaler events is preserved.
*/
fDelayedType = evtype;
}
Int_t THcScalerEvtHandler::Analyze(THaEvData *evdata)
{
Int_t lfirst=1;
if ( !IsMyEvent(evdata->GetEvType()) ) return -1;
if (fDebugFile) {
*fDebugFile << endl << "---------------------------------- "<<endl<<endl;
*fDebugFile << "\nEnter THcScalerEvtHandler for fName = "<<fName<<endl;
EvDump(evdata);
}
if (lfirst && !fScalerTree) {
lfirst = 0; // Can't do this in Init for some reason
TString sname1 = "TS";
TString sname2 = sname1 + fName;
TString sname3 = fName + " Scaler Data";
if (fDebugFile) {
*fDebugFile << "\nAnalyze 1st time for fName = "<<fName<<endl;
*fDebugFile << sname2 << " " <<sname3<<endl;
}
fScalerTree = new TTree(sname2.Data(),sname3.Data());
fScalerTree->SetAutoSave(200000000);
TString name, tinfo;
name = "evcount";
tinfo = name + "/D";
fScalerTree->Branch(name.Data(), &evcountR, tinfo.Data(), 4000);
name = scalerloc[i]->name;
tinfo = name + "/D";
fScalerTree->Branch(name.Data(), &dvars[i], tinfo.Data(), 4000);
}
} // if (lfirst && !fScalerTree)
UInt_t *rdata = (UInt_t*) evdata->GetRawDataBuffer();
if( evdata->GetEvType() == fDelayedType) { // Save this event for processing later
Int_t evlen = evdata->GetEvLength();
UInt_t *datacopy = new UInt_t[evlen];
fDelayedEvents.push_back(datacopy);
for(Int_t i=0;i<evlen;i++) {
datacopy[i] = rdata[i];
}
return 1;
} else { // A normal event
if (fDebugFile) *fDebugFile<<"\n\nTHcScalerEvtHandler :: Debugging event type "<<dec<<evdata->GetEvType()<<endl<<endl;
return AnalyzeBuffer(rdata);
}
}
Int_t THcScalerEvtHandler::AnalyzeBuffer(UInt_t* rdata)
{
// Parse the data, load local data arrays.
UInt_t *p = (UInt_t*) rdata;
UInt_t *plast = p+*p; // Index to last word in the bank
ifound=0;
while(p<plast) {
p++; // point to header
if (fDebugFile) {
*fDebugFile << "Bank: " << hex << *p << dec << " len: " << *(p-1) << endl;
if((*p & 0xff00) == 0x1000) { // Bank Containing banks
p++; // Now pointing to a bank in the bank
} else if (((*p & 0xff00) == 0x100) && (*p != 0xC0000100)) {
// Bank containing integers. Look for scalers
// This is either ROC bank containing integers or
// a bank within a ROC containing data from modules of a single type
// Look for scaler data
// Assume that very first word is a scaler header
// At any point in the bank where the word is not a matching
// header, we stop.
UInt_t tag = (*p>>16) & 0xffff;
UInt_t *pnext = p+*(p-1); // Next bank
p++; // First data word
// Skip over banks that can't contain scalers
// If SetOnlyBanks(kTRUE) called, fRocSet will be empty
// so only bank tags matching module types will be considered.
if(fRocSet.find(tag)==fRocSet.end()
&& fModuleSet.find(tag)==fModuleSet.end()) {
p = pnext; // Fall through to end of this else if
}
// Look for normalization scaler module first.
if(fNormIdx >= 0) {
UInt_t *psave = p;
while(p < pnext) {
if(scalers[fNormIdx]->IsSlot(*p)) {
scalers[fNormIdx]->Decode(p);
ifound = 1;
break;
}
p += scalers[fNormIdx]->GetNumChan() + 1;
}
p = psave;
}
while(p < pnext) {
Int_t nskip = 0;
if(fDebugFile) {
*fDebugFile << "Scaler Header: " << hex << *p << dec;
}
for(size_t j=0; j<scalers.size(); j++) {
if(scalers[j]->IsSlot(*p)) {
nskip = scalers[j]->GetNumChan() + 1;
if((Int_t) j != fNormIdx) {
if(fDebugFile) {
*fDebugFile << " found (" << j << ") skip " << nskip << endl;
}
scalers[j]->Decode(p);
ifound = 1;
}
break;
}
}
if(nskip == 0) {
if(fDebugFile) {
*fDebugFile << endl;
}
p = pnext;
} else {
p = p+*(p-1); // Skip to next bank
}
}
if (fDebugFile) {
*fDebugFile << "Finished with decoding. "<<endl;
*fDebugFile << " Found flag = "<<ifound<<endl;
}
// HMS has headers which are different from SOS, but both are
// event type 0 and come here. If you found no headers, return.
if (!ifound) return 0;
// The correspondance between dvars and the scaler and the channel
// will be driven by a scaler.map file -- later
Double_t scal_current=0;
fTotalTime = scalers[fNormIdx]->GetData(fClockChan)/fClockFreq;
fDeltaTime= fTotalTime - fPrevTotalTime;
fPrevTotalTime=fTotalTime;
Int_t nscal=0;
for (size_t i = 0; i < scalerloc.size(); i++) {
size_t ivar = scalerloc[i]->ivar;
size_t isca = scalerloc[i]->iscaler;
size_t ichan = scalerloc[i]->ichan;
if (fDebugFile) *fDebugFile << "Debug dvarsFirst "<<i<<" "<<ivar<<" "<<isca<<" "<<ichan<<endl;
if ((ivar < scalerloc.size()) &&
(isca < scalers.size()) &&
(ichan < MAXCHAN)){
if(fUseFirstEvent){
if (scalerloc[ivar]->ikind == ICOUNT){
dvars[ivar] = scalers[isca]->GetData(ichan);
scal_present_read.push_back(dvars[ivar]);
scal_prev_read.push_back(0.0);
dvarsFirst[ivar] = 0;
}
if (scalerloc[ivar]->ikind == ITIME){
dvars[ivar] =fTotalTime;
dvarsFirst[ivar] = 0;
}
if (scalerloc[ivar]->ikind == IRATE) {
dvars[ivar] = (scalers[isca]->GetData(ichan))/fDeltaTime;
dvarsFirst[ivar] = dvars[ivar];
//printf("%s %f\n",scalerloc[ivar]->name.Data(),scalers[isca]->GetRate(ichan)); //checks
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE){
Int_t bcm_ind=0;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if (scalerloc[ivar]->ikind == ICURRENT) {
dvars[ivar]=((scalers[isca]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
if (bcm_ind == fbcm_Current_Threshold_Index) scal_current= dvars[ivar];
}
if (scalerloc[ivar]->ikind == ICHARGE) {
fBCM_delta_charge[bcm_ind]=fDeltaTime*((scalers[isca]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
dvars[ivar]+=fBCM_delta_charge[bcm_ind];
}
// printf("1st event %i index %i fBCMname %s scalerloc %s offset %f gain %f computed %f\n",evcount, bcm_ind, fBCM_Name[bcm_ind],scalerloc[ivar]->name.Data(),fBCM_Offset[bcm_ind],fBCM_Gain[bcm_ind],dvars[ivar]);
}
if (fDebugFile) *fDebugFile << " dvarsFirst "<<scalerloc[ivar]->ikind<<" "<<dvarsFirst[ivar]<<endl;
} else { //ifnotusefirstevent
if (scalerloc[ivar]->ikind == ICOUNT) {
dvarsFirst[ivar] = scalers[isca]->GetData(ichan) ;
scal_present_read.push_back(dvarsFirst[ivar]);
scal_prev_read.push_back(0.0);
}
if (scalerloc[ivar]->ikind == ITIME){
dvarsFirst[ivar] = fTotalTime;
}
dvarsFirst[ivar] = (scalers[isca]->GetData(ichan))/fDeltaTime;
//printf("%s %f\n",scalerloc[ivar]->name.Data(),scalers[isca]->GetRate(ichan)); //checks
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE)
{
Int_t bcm_ind=0;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if (scalerloc[ivar]->ikind == ICURRENT) {
dvarsFirst[ivar]=((scalers[isca]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
if (bcm_ind == fbcm_Current_Threshold_Index) scal_current= dvars[ivar];
}
if (scalerloc[ivar]->ikind == ICHARGE) {
fBCM_delta_charge[bcm_ind]=fDeltaTime*((scalers[isca]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
dvarsFirst[ivar]+=fBCM_delta_charge[bcm_ind];
}
printf("1st event %i index %i fBCM name %s scalerloc %s offset %f gain %f getrate%f\n", evcount, bcm_ind, fBCM_Name[bcm_ind],scalerloc[ivar]->name.Data(),fBCM_Offset[bcm_ind],fBCM_Gain[bcm_ind],dvarsFirst[ivar]);
}
if (fDebugFile) *fDebugFile << " dvarsFirst "<<scalerloc[ivar]->ikind<<" "<<dvarsFirst[ivar]<<endl;
}
}
else {
cout << "THcScalerEvtHandler:: ERROR:: incorrect index "<<ivar<<" "<<isca<<" "<<ichan<<endl;
}
}else{ //evcount=/=0
if (fDebugFile) *fDebugFile << "Debug dvars "<<i<<" "<<ivar<<" "<<isca<<" "<<ichan<<endl;
if ((ivar < scalerloc.size()) &&
(isca < scalers.size()) &&
(ichan < MAXCHAN)) {
if (scalerloc[ivar]->ikind == ICOUNT) {
dvars[ivar] = scalers[isca]->GetData(ichan)-dvarsFirst[ivar];
scal_present_read[nscal]=dvars[ivar];
nscal++;
}
if (scalerloc[ivar]->ikind == ITIME) {
dvars[ivar] = fTotalTime;
}
dvars[ivar] = (scalers[isca]->GetData(ichan)-scal_prev_read[nscal-1])/fDeltaTime;
// printf("%s %f\n",scalerloc[ivar]->name.Data(),scalers[isca]->GetRate(ichan));//checks
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE)
{
Int_t bcm_ind=0;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if (scalerloc[ivar]->ikind == ICURRENT) {
dvars[ivar]=((scalers[isca]->GetData(ichan)-scal_prev_read[nscal-1])/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
if (bcm_ind == fbcm_Current_Threshold_Index) scal_current= dvars[ivar];
}
if (scalerloc[ivar]->ikind == ICHARGE) {
fBCM_delta_charge[bcm_ind]=fDeltaTime*((scalers[isca]->GetData(ichan)-scal_prev_read[nscal-1])/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
dvars[ivar]+=fBCM_delta_charge[bcm_ind];
}
// printf("event %i index %i fBCMname %s scalerloc %s offset %f gain %f computed %f\n",evcount, bcm_ind, fBCM_Name[bcm_ind],scalerloc[ivar]->name.Data(),fBCM_Offset[bcm_ind],fBCM_Gain[bcm_ind],dvars[ivar]);
}
if (fDebugFile) *fDebugFile << " dvars "<<scalerloc[ivar]->ikind<<" "<<dvars[ivar]<<endl;
} else {
cout << "THcScalerEvtHandler:: ERROR:: incorrect index "<<ivar<<" "<<isca<<" "<<ichan<<endl;
}
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
//
for (size_t i = 0; i < scalerloc.size(); i++) {
size_t ivar = scalerloc[i]->ivar;
size_t isca = scalerloc[i]->iscaler;
size_t ichan = scalerloc[i]->ichan;
if (scalerloc[ivar]->ikind == ICUT+ICOUNT){
if ( scal_current > fbcm_Current_Threshold) {
dvars[ivar] += (scalers[isca]->GetData(ichan)-dvars_prev_read[ivar]);
}
dvars_prev_read[ivar] = scalers[isca]->GetData(ichan);
}
if (scalerloc[ivar]->ikind == ICUT+ICHARGE){
Int_t bcm_ind=0;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if ( scal_current > fbcm_Current_Threshold) {
dvars[ivar] += fBCM_delta_charge[bcm_ind];
}
}
if (scalerloc[ivar]->ikind == ICUT+ITIME){
if ( scal_current > fbcm_Current_Threshold) {
dvars[ivar] += fDeltaTime;
}
}
}
//
evcount = evcount + 1;
evcountR = evcount;
//
for (size_t j=0; j<scal_prev_read.size(); j++) scal_prev_read[j]=scal_present_read[j];
//
for (size_t j=0; j<scalers.size(); j++) scalers[j]->Clear("");
if (fDebugFile) *fDebugFile << "scaler tree ptr "<<fScalerTree<<endl;
if (fScalerTree) fScalerTree->Fill();
return 1;
}
THaAnalysisObject::EStatus THcScalerEvtHandler::Init(const TDatime& date)
{
//
ReadDatabase(date);
const int LEN = 200;
char cbuf[LEN];
fStatus = kOK;
fNormIdx = -1;
fDelayedEvents.clear();
cout << "Howdy ! We are initializing THcScalerEvtHandler !! name = "
<< fName << endl;
if(eventtypes.size()==0) {
eventtypes.push_back(0); // Default Event Type
}
TString dfile;
dfile = fName + "scaler.txt";
// Parse the map file which defines what scalers exist and the global variables.
TString sname0 = "Scalevt";
TString sname;
sname = fName+sname0;
FILE *fi = OpenFile(sname.Data(), date);
if ( !fi ) {
cout << "Cannot find db file for "<<fName<<" scaler event handler"<<endl;
return kFileError;
}
size_t minus1 = -1;
size_t pos1;
string scomment = "#";
string svariable = "variable";
string smap = "map";
vector<string> dbline;
while( fgets(cbuf, LEN, fi) != NULL) {
std::string sin(cbuf);
std::string sinput(sin.substr(0,sin.find_first_of("#")));
if (fDebugFile) *fDebugFile << "string input "<<sinput<<endl;
dbline = vsplit(sinput);
if (dbline.size() > 0) {
pos1 = FindNoCase(dbline[0],scomment);
if (pos1 != minus1) continue;
pos1 = FindNoCase(dbline[0],svariable);
if (pos1 != minus1 && dbline.size()>4) {
string sdesc = "";
for (size_t j=5; j<dbline.size(); j++) sdesc = sdesc+" "+dbline[j];
UInt_t isca = atoi(dbline[1].c_str());
UInt_t ichan = atoi(dbline[2].c_str());
UInt_t ikind = atoi(dbline[3].c_str());
if (fDebugFile)
*fDebugFile << "add var "<<dbline[1]<<" desc = "<<sdesc<<" isca= "<<isca<<" "<<ichan<<" "<<ikind<<endl;
TString tsname(dbline[4].c_str());
TString tsdesc(sdesc.c_str());
AddVars(tsname,tsdesc,isca,ichan,ikind);
// add extra scaler which is cut on the current
if (ikind == ICOUNT ||ikind == ITIME ||ikind == ICHARGE ) {
tsname=tsname+"Cut";
AddVars(tsname,tsdesc,isca,ichan,ICUT+ikind);
}
}
pos1 = FindNoCase(dbline[0],smap);
if (fDebugFile) *fDebugFile << "map ? "<<dbline[0]<<" "<<smap<<" "<<pos1<<" "<<dbline.size()<<endl;
if (pos1 != minus1 && dbline.size()>6) {
Int_t imodel, icrate, islot, inorm;
UInt_t header, mask;
char cdum[20];
sscanf(sinput.c_str(),"%s %d %d %d %x %x %d \n",cdum,&imodel,&icrate,&islot, &header, &mask, &inorm);
if ((fNormIdx >= 0) && (fNormIdx != inorm)) cout << "THcScalerEvtHandler::WARN: contradictory norm index "<<fNormIdx<<" "<<inorm<<endl;
Int_t clkchan = -1;
Double_t clkfreq = 1;
if (dbline.size()>8) {
clkchan = atoi(dbline[7].c_str());
clkfreq = 1.0*atoi(dbline[8].c_str());
}
if (fDebugFile) {
*fDebugFile << "map line "<<dec<<imodel<<" "<<icrate<<" "<<islot<<endl;
*fDebugFile <<" header 0x"<<hex<<header<<" 0x"<<mask<<dec<<" "<<inorm<<" "<<clkchan<<" "<<clkfreq<<endl;
}
switch (imodel) {
case 560:
scalers.push_back(new Scaler560(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 1151:
scalers.push_back(new Scaler1151(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 3800:
scalers.push_back(new Scaler3800(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 3801:
scalers.push_back(new Scaler3801(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 9001: // TI Scalers
scalers.push_back(new Scaler9001(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 9250: // FADC250 Scalers
scalers.push_back(new Scaler9250(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
}
if (scalers.size() > 0) {
UInt_t idx = scalers.size()-1;
// Headers must be unique over whole event, not
// just within a ROC
scalers[idx]->SetHeader(header, mask);
if (clkchan >= 0) {
scalers[idx]->SetClock(defaultDT, clkchan, clkfreq);
cout << "Setting scaler clock ... channel = "<<clkchan<<" ... freq = "<<clkfreq<<endl;
if (fDebugFile) *fDebugFile <<"Setting scaler clock ... channel = "<<clkchan<<" ... freq = "<<clkfreq<<endl;
fNormIdx = idx;
}
}
}
}
}
// can't compare UInt_t to Int_t (compiler warning), so do this
nscalers=0;
for (size_t i=0; i<scalers.size(); i++) nscalers++;
// need to do LoadNormScaler after scalers created and if fNormIdx found
if (fDebugFile) *fDebugFile <<"fNormIdx = "<<fNormIdx<<endl;
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
if ((fNormIdx >= 0) && fNormIdx < nscalers) {
for (Int_t i = 0; i < nscalers; i++) {
if (i==fNormIdx) continue;
scalers[i]->LoadNormScaler(scalers[fNormIdx]);
}
}
#ifdef HARDCODED
// This code is superseded by the parsing of a map file above. It's another way ...
if (fName == "Left") {
AddVars("TSbcmu1", "BCM x1 counts", 1, 4, ICOUNT);
AddVars("TSbcmu1r","BCM x1 rate", 1, 4, IRATE);
AddVars("TSbcmu3", "BCM u3 counts", 1, 5, ICOUNT);
AddVars("TSbcmu3r", "BCM u3 rate", 1, 5, IRATE);
} else {
AddVars("TSbcmu1", "BCM x1 counts", 0, 4, ICOUNT);
AddVars("TSbcmu1r","BCM x1 rate", 0, 4, IRATE);
AddVars("TSbcmu3", "BCM u3 counts", 0, 5, ICOUNT);
AddVars("TSbcmu3r", "BCM u3 rate", 0, 5, IRATE);
}
#endif
DefVars();
#ifdef HARDCODED
// This code is superseded by the parsing of a map file above. It's another way ...
if (fName == "Left") {
scalers.push_back(new Scaler1151(1,0));
scalers.push_back(new Scaler3800(1,1));
scalers.push_back(new Scaler3800(1,2));
scalers.push_back(new Scaler3800(1,3));
scalers[0]->SetHeader(0xabc00000, 0xffff0000);
scalers[1]->SetHeader(0xabc10000, 0xffff0000);
scalers[2]->SetHeader(0xabc20000, 0xffff0000);
scalers[3]->SetHeader(0xabc30000, 0xffff0000);
scalers[0]->LoadNormScaler(scalers[1]);
scalers[1]->SetClock(4, 7, 1024);
scalers[2]->LoadNormScaler(scalers[1]);
scalers[3]->LoadNormScaler(scalers[1]);
} else {
scalers.push_back(new Scaler3800(2,0));
scalers.push_back(new Scaler3800(2,0));
scalers.push_back(new Scaler1151(2,1));
scalers.push_back(new Scaler1151(2,2));
scalers[0]->SetHeader(0xceb00000, 0xffff0000);
scalers[1]->SetHeader(0xceb10000, 0xffff0000);
scalers[2]->SetHeader(0xceb20000, 0xffff0000);
scalers[3]->SetHeader(0xceb30000, 0xffff0000);
scalers[0]->SetClock(4, 7, 1024);
scalers[1]->LoadNormScaler(scalers[0]);
scalers[2]->LoadNormScaler(scalers[0]);
scalers[3]->LoadNormScaler(scalers[0]);
}
#endif
if(fDebugFile) *fDebugFile << "THcScalerEvtHandler:: Name of scaler bank "<<fName<<endl;
if(fDebugFile) {
*fDebugFile << "Scaler # "<<i<<endl;
scalers[i]->SetDebugFile(fDebugFile);
scalers[i]->DebugPrint(fDebugFile);
}
}
return kOK;
}
void THcScalerEvtHandler::AddVars(TString name, TString desc, UInt_t iscal,
UInt_t ichan, UInt_t ikind)
{
// need to add fName here to make it a unique variable. (Left vs Right HRS, for example)
TString name1 = fName + name;
TString desc1 = fName + desc;
HCScalerLoc *loc = new HCScalerLoc(name1, desc1, iscal, ichan, ikind);
loc->ivar = scalerloc.size(); // ivar will be the pointer to the dvars array.
scalerloc.push_back(loc);
}
void THcScalerEvtHandler::DefVars()
{
// called after AddVars has finished being called.
Nvars = scalerloc.size();
if (Nvars == 0) return;
dvars_prev_read = new Double_t[Nvars]; // dvars is a member of this class
dvars = new Double_t[Nvars]; // dvars is a member of this class
dvarsFirst = new Double_t[Nvars]; // dvarsFirst is a member of this class
memset(dvars, 0, Nvars*sizeof(Double_t));
memset(dvars_prev_read, 0, Nvars*sizeof(Double_t));
memset(dvarsFirst, 0, Nvars*sizeof(Double_t));
if (gHaVars) {
if(fDebugFile) *fDebugFile << "THcScalerEVtHandler:: Have gHaVars "<<gHaVars<<endl;
} else {
cout << "No gHaVars ?! Well, that's a problem !!"<<endl;
return;
}
if(fDebugFile) *fDebugFile << "THcScalerEvtHandler:: scalerloc size "<<scalerloc.size()<<endl;
const Int_t* count = 0;
gHaVars->DefineByType(scalerloc[i]->name.Data(), scalerloc[i]->description.Data(),
&dvars[i], kDouble, count);
//gHaVars->DefineByType(scalerloc[i]->name.Data(), scalerloc[i]->description.Data(),
// &dvarsFirst[i], kDouble, count);
}
}
size_t THcScalerEvtHandler::FindNoCase(const string& sdata, const string& skey)
{
// Find iterator of word "sdata" where "skey" starts. Case insensitive.
string sdatalc, skeylc;
sdatalc = ""; skeylc = "";
for (string::const_iterator p =
sdata.begin(); p != sdata.end(); ++p) {
sdatalc += tolower(*p);
}
for (string::const_iterator p =
skey.begin(); p != skey.end(); ++p) {
skeylc += tolower(*p);
}
if (sdatalc.find(skeylc,0) == string::npos) return -1;
return sdatalc.find(skeylc,0);
};
ClassImp(THcScalerEvtHandler)