Newer
Older
//*-- Author : Julie Roche, November 2010
// this is a modified version of THaGOHelicity.C
////////////////////////////////////////////////////////////////////////
//
// THcHelicity
//
// Helicity of the beam from QWEAK electronics in delayed mode
// +1 = plus, -1 = minus, 0 = unknown
//
// Also supports in-time mode with delay = 0
//
////////////////////////////////////////////////////////////////////////
#include "THcHelicity.h"
#include "THaApparatus.h"
#include "THaEvData.h"
#include "THcGlobals.h"
#include "THcParmList.h"
#include "TH1F.h"
#include "TMath.h"
#include <iostream>
using namespace std;
//_____________________________________________________________________________
THcHelicity::THcHelicity( const char* name, const char* description,
THaApparatus* app ):
hcana::ConfigLogging<THaHelicityDet>( name, description, app ),
fnQrt(-1), fHelDelay(8), fMAXBIT(30)
{
// for( Int_t i = 0; i < NHIST; ++i )
// fHisto[i] = 0;
// memset(fHbits, 0, sizeof(fHbits));
}
//_____________________________________________________________________________
THcHelicity::THcHelicity()
: hcana::ConfigLogging<THaHelicityDet>(),fnQrt(-1), fHelDelay(8), fMAXBIT(30)
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
{
// Default constructor for ROOT I/O
// for( Int_t i = 0; i < NHIST; ++i )
// fHisto[i] = 0;
}
//_____________________________________________________________________________
THcHelicity::~THcHelicity()
{
DefineVariables( kDelete );
// for( Int_t i = 0; i < NHIST; ++i ) {
// delete fHisto[i];
// }
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHelicity::Init(const TDatime& date) {
// Call `Setup` before everything else.
Setup(GetName(), GetTitle());
fFirstEvProcessed = kFALSE;
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
// Call initializer for base class.
// This also calls `ReadDatabase` and `DefineVariables`.
EStatus status = THaDetector::Init(date);
if (status) {
fStatus = status;
return fStatus;
}
fStatus = kOK;
return fStatus;
}
//_____________________________________________________________________________
void THcHelicity::Setup(const char* name, const char* description) {
// Prefix for parameters in `param` file.
string kwPrefix = string(GetApparatus()->GetName()) + "_" + name;
std::transform(kwPrefix.begin(), kwPrefix.end(), kwPrefix.begin(), ::tolower);
fKwPrefix = kwPrefix;
}
//_____________________________________________________________________________
Int_t THcHelicity::ReadDatabase( const TDatime& date )
{
_logger->info("In THcHelicity::ReadDatabase");
//cout << "In THcHelicity::ReadDatabase" << endl;
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Read general HelicityDet database values (e.g. fSign)
// Int_t st = THaHelicityDet::ReadDatabase( date );
// if( st != kOK )
// return st;
// Read readout parameters (ROC addresses etc.)
Int_t st = THcHelicityReader::ReadDatabase( GetDBFileName(), GetPrefix(),
date, fQWEAKDebug );
if( st != kOK )
return st;
fSign = 1; // Default helicity sign
fRingSeed_reported_initial = 0; // Initial see that should predict reported
// helicity of first quartet.
fFirstCycle = -1; // First Cycle that starts a quad (0 to 3)
fFreq = 29.5596;
fHelDelay=8;
DBRequest list[]= {
// {"_hsign", &fSign, kInt, 0, 1},
{"helicity_delay", &fHelDelay, kInt, 0, 1},
{"helicity_freq", &fFreq, kDouble, 0, 1},
// {"helicity_seed", &fRingSeed_reported_initial, kInt, 0, 1},
// {"helicity_cycle", &fFirstCycle, kInt, 0, 1},
{0}
};
gHcParms->LoadParmValues(list, "");
fMAXBIT=30;
fTIPeriod = 250000000.0/fFreq;
// maximum of event in the pattern, for now we are working with quartets
// Int_t localpattern[4]={1,-1,-1,1};
// careful, the first value here should always +1
// for(int i=0;i<fQWEAKNPattern;i++)
// {
// fPatternSequence.push_back(localpattern[i]);
// }
HWPIN=kTRUE;
fQuartet[0]=fQuartet[1]=fQuartet[2]=fQuartet[3]=0;
if (fFirstCycle>=0 && fRingSeed_reported_initial!=0) {
// Set the seed for predicted reported and predicted actual
} else {
// Initialize mode to find quartets and then seed
}
return kOK;
}
//_____________________________________________________________________________
void THcHelicity::MakePrefix()
{
THaDetector::MakePrefix();
}
//_____________________________________________________________________________
Int_t THcHelicity::DefineVariables( EMode mode )
{
// Initialize global variables
_logger->info("Called THcHelicity::DefineVariables with mode == {}", mode);
//cout << "Called THcHelicity::DefineVariables with mode == "
// << mode << endl;
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Define standard variables from base class
THaHelicityDet::DefineVariables( mode );
const RVarDef var[] = {
{ "nqrt", "position of cycle in quartet", "fnQrt" },
{ "hel", "actual helicity for event", "fActualHelicity" },
{ "helrep", "reported helicity for event", "fReportedHelicity" },
{ "helpred", "predicted reported helicity for event", "fPredictedHelicity" },
{ "mps", "In MPS blanking period", "fMPS"},
{ 0 }
};
//cout << "Calling THcHelicity DefineVarsFromList" << endl;
_logger->info("Calling THcHelicity DefineVarsFromList");
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
return DefineVarsFromList( var, mode );
}
//_____________________________________________________________________________
void THcHelicity::PrintEvent(Int_t evtnum)
{
cout<<" ++++++ THcHelicity::Print ++++++\n";
cout<<" +++++++++++++++++++++++++++++++++++++\n";
return;
}
//_____________________________________________________________________________
Int_t THcHelicity::Begin( THaRunBase* )
{
THcHelicityReader::Begin();
// fHisto[0] = new TH1F("hel.seed","hel.seed",32,-1.5,30.5);
// fHisto[1] = new TH1F("hel.error.code","hel.error.code",35,-1.5,33.5);
return 0;
}
//_____________________________________________________________________________
//void THcHelicity::FillHisto()
//{
// fHisto[0]->Fill(fRing_NSeed);
// fHisto[1]->Fill(fErrorCode);
// return;
//}
//_____________________________________________________________________________
void THcHelicity::SetErrorCode(Int_t error)
{
// used as a control for the helciity computation
// 2^0: if the reported number of events in a pattern is larger than fQWEAKNPattern
// 2^1: if the offset between the ring reported value and TIR value is not fOffsetTIRvsRing
// 2^2: if the reported time in the ring is 0
// 2^3: if the predicted reported helicity doesn't match the reported helicity in the ring
// 2^4: if the helicity cannot be computed using the SetHelicity routine
// 2^5: if seed is being gathered
if(fErrorCode==0)
fErrorCode=(1<<error);
// only one reported error at the time
return;
}
//_____________________________________________________________________________
void THcHelicity::Clear( Option_t* opt )
{
// Clear event-by-event data
THaHelicityDet::Clear(opt);
THcHelicityReader::Clear(opt);
fEvtype = 0;
fQrt=0;
fErrorCode=0;
return;
}
//_____________________________________________________________________________
Int_t THcHelicity::Decode( const THaEvData& evdata )
{
// Decode Helicity data.
// Return 1 if helicity was assigned, 0 if not, <0 if error.
Int_t err = ReadData( evdata ); // from THcHelicityReader class
if( err ) {
Error( Here("THcHelicity::Decode"), "Error decoding helicity data." );
return err;
}
fReportedHelicity = (fIsHelp?(fIsHelm?kUnknown:kPlus):(fIsHelm?kMinus:kUnknown));
fMPS = fIsMPS?1:0;
if(fHelDelay == 0) { // If no delay actual=reported (but zero if in MPS)
fActualHelicity = fIsMPS?kUnknown:fReportedHelicity;
return 0;
}
if(fFirstEvProcessed) { // Normal processing
Int_t missed = 0;
// Double_t elapsed_time = (fTITime - fFirstEvTime)/250000000.0;
if(fIsMPS) {
fFoundMPS = kTRUE;
Int_t missed = TMath::Nint(floor((fTITime-fLastMPSTime)/fTIPeriod));
// cout << fTITime/250000000.0 << " " << fNCycle << " MPS " << fReportedHelicity <<endl;
if(missed <= 1) {
fLastMPSTime = fTITime;
fIsNewCycle = kTRUE;
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
} // If there is a skip, pass it off to next non MPS event
// Need to also check here for missed MPS's
// cout << "Found MPS" << endl;
// check for Nint((time-last)/period) > 1
} else if (fFoundMPS) { //
if(fTITime - fLastMPSTime > fTIPeriod) { // We missed MPS periods
Int_t missed = TMath::Nint(floor((fTITime-fLastMPSTime)/fTIPeriod));
if(missed > 1) {
// cout << "Missed " << missed << " MPSes" << endl;
Int_t newNCycle = fNCycle + missed -1; // How many cycles really missed
Int_t quartets_missed = (newNCycle-fFirstCycle)/4 - (fNCycle-fFirstCycle)/4;
for(Int_t i=0;i<quartets_missed;i++) { // Advance the seeds.
fRingSeed_reported = RanBit30(fRingSeed_reported);
fRingSeed_actual = RanBit30(fRingSeed_actual);
}
// cout << "Cycles " << fNCycle << " " << newNCycle << " " << fFirstCycle
// << " skipped " << quartets_missed << " quartets" << endl;
fNCycle = newNCycle;
// Need to reset fQuartet to reflect where we are based on the current
// reported helicity. So we don't fail quartet testing.
// But only do this if we are calibrated.
if(fNBits >= fMAXBIT) {
if (((fNCycle - fFirstCycle)%2)==1) {
// fQuartet[2] = fQuartet[3] = -fQuartet[0];
// fQuartet[1] = fQuartet[0];
fQuartet[0] = fReportedHelicity;
fQuartet[1] = fQuartet[2] = -fQuartet[0];
} else {
// fQuartet[1] = fQuartet[2] = -fQuartet[0];
// fQuartet[3] = fQuartet[0];
fQuartet[0] = fQuartet[1] = -fReportedHelicity;
fQuartet[2] = -fQuartet[1];
}
} else {
fQuartet[0] = fReportedHelicity;
fQuartet[1] = 0;
}
}
fLastMPSTime += missed*fTIPeriod;
fIsNewCycle = kTRUE;
fLastReportedHelicity = fReportedHelicity;
}
if(fIsNewCycle) {
fQuartet[3]=fQuartet[2]; fQuartet[2]=fQuartet[1]; fQuartet[1]=fQuartet[0];
fQuartet[0]=fReportedHelicity;
fNCycle++;
if((fNCycle-fFirstCycle)%4 == 3) {// Test if last in a quartet
if((abs(fQuartet[0]+fQuartet[3]-fQuartet[1]-fQuartet[2])==4)) {
if(!fFoundQuartet) {
// fFirstCycle = fNCycle - 3;
_logger->info("Quartet potentially found, starting at cycle {} - event {}", fFirstCycle, evdata.GetEvNum());
//cout << "Quartet potentially found, starting at cycle " << fFirstCycle << " - event "
// << evdata.GetEvNum() << endl;
fFoundQuartet = kTRUE;
}
} else {
if(fNCycle - fFirstCycle > 4) { // Not at start of run. Reset
_logger->warn("Lost quartet sync at cycle {} - event {}", fNCycle,evdata.GetEvNum());
_logger->warn("{} {} {} {}",fQuartet[0],fQuartet[1],fQuartet[2],fQuartet[3]);
//cout << "Lost quartet sync at cycle " << fNCycle << " - event " << evdata.GetEvNum()
// << endl;
//cout << fQuartet[0] << " " << fQuartet[1] << " " << fQuartet[2] << " " << fQuartet[3]
// << endl;
fFirstCycle += 4*((fNCycle-fFirstCycle)/4); // Update, but don't change phase
}
fFoundQuartet = kFALSE;
fNBits = 0;
_logger->info("Searching for first of a quartet at cycle {} - event {}", fFirstCycle, evdata.GetEvNum());
//cout << "Searching for first of a quartet at cycle "
// << " " << fFirstCycle << " - event " << evdata.GetEvNum() << endl;
//cout << fQuartet[0] << " " << fQuartet[1] << " " << fQuartet[2] << " " << fQuartet[3]
// << endl;
_logger->info("{} {} {} {}", fQuartet[0], fQuartet[1], fQuartet[2], fQuartet[3]);
fFirstCycle++;
}
}
// Load the actual helicity. Calibrate if not calibrated.
fActualHelicity = kUnknown;
LoadHelicity(fReportedHelicity, fNCycle, missed);
fLastReportedHelicity = fReportedHelicity;
fIsNewCycle = kFALSE;
// cout << fTITime/250000000.0 << " " << fNCycle << " " << fReportedHelicity << endl;
// cout << fNCycle << ": " << fReportedHelicity << " "
// << fPredictedHelicity << " " << fActualHelicity << endl;
}
// Ignore until a MPS Is found
}
} else {
//cout << "Initializing" << endl;
_logger->info("Initializing Helicity");
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
fLastReportedHelicity = fReportedHelicity;
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
fFirstEvTime = fTITime;
fLastEvTime = fTITime;
fLastMPSTime = fTITime; // Not necessarily during the MPS
fNCycle = 0;
fFirstEvProcessed = kTRUE;
fFoundMPS = kFALSE;
fFoundQuartet = kFALSE;
fIsNewCycle = kFALSE;
fNBits = 0;
}
return 0;
}
//_____________________________________________________________________________
Int_t THcHelicity::End( THaRunBase* )
{
// End of run processing. Write histograms.
THcHelicityReader::End();
// for( Int_t i = 0; i < NHIST; ++i )
// fHisto[i]->Write();
return 0;
}
//_____________________________________________________________________________
void THcHelicity::SetDebug( Int_t level )
{
// Set debug level of this detector as well as the THcHelicityReader
// helper class.
THaHelicityDet::SetDebug( level );
fQWEAKDebug = level;
}
//_____________________________________________________________________________
void THcHelicity::LoadHelicity(Int_t reportedhelicity, Int_t cyclecount, Int_t missedcycles)
{
// static const char* const here = "THcHelicity::LoadHelicity";
int quartetphase = (cyclecount-fFirstCycle)%4;
fnQrt = quartetphase;
if(missedcycles > 1) { // If we missed windows
if(fNBits< fMAXBIT) { // and we haven't gotten the seed, start over
fNBits = 0;
return;
}
}
if(!fFoundQuartet) { // Wait until we have found quad phase before starting
return; // to calibrate
}
if(quartetphase == 0) { // Start of a quad
if(fNBits < fMAXBIT) {
if(fNBits == 0) {
_logger->info("Start calibrating at cycle {}" ,cyclecount );
//cout << "Start calibrating at cycle " << cyclecount << endl;
fRingSeed_reported = 0;
}
if(fReportedHelicity == kPlus) {
fRingSeed_reported = ((fRingSeed_reported<<1) | 1) & 0x3FFFFFFF;
} else {
fRingSeed_reported = (fRingSeed_reported<<1) & 0x3FFFFFFF;
}
fNBits++;
if(fReportedHelicity == kUnknown) {
fNBits = 0;
fRingSeed_reported = 0;
} else if (fNBits==fMAXBIT) {
_logger->info("Seed Found {} at cycle {} with first cycle {}" , fRingSeed_reported , cyclecount , fFirstCycle );
//cout << "Seed Found " << hex << fRingSeed_reported << dec << " at cycle " << cyclecount << " with first cycle " << fFirstCycle << endl;
Int_t backseed = GetSeed30(fRingSeed_reported);
_logger->info("Seed at cycle {} should be {}", fFirstCycle , backseed);
//cout << "Seed at cycle " << fFirstCycle << " should be " << hex << backseed << dec << endl;
}
fActualHelicity = kUnknown;
} else if (fNBits >= fMAXBIT) {
fRingSeed_reported = RanBit30(fRingSeed_reported);
if(fNBits==fMAXBIT) {
fRingSeed_actual = fRingSeed_reported;
for(Int_t i=0;i<fHelDelay/4; i++) {
fRingSeed_actual = RanBit30(fRingSeed_actual);
}
fNBits++;
} else {
fRingSeed_actual = RanBit30(fRingSeed_actual);
}
fActualHelicity = (fRingSeed_actual&1)?kPlus:kMinus;
fPredictedHelicity = (fRingSeed_reported&1)?kPlus:kMinus;
// if(fTITime/250000000.0 > 380.0) cout << fTITime/250000000.0 << " " << fNCycle << " " << hex <<
// fRingSeed_reported << " " << fRingSeed_actual << dec << endl;
if(fReportedHelicity != fPredictedHelicity) {
_logger->warn("Helicity prediction failed {} {} {}", fReportedHelicity, fPredictedHelicity, fActualHelicity);
//cout << "Helicity prediction failed " << fReportedHelicity << " "
// << fPredictedHelicity << " " << fActualHelicity << endl;
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
fNBits = 0; // Need to reaquire seed
fActualHelicity = kUnknown;
fPredictedHelicity = kUnknown;
}
}
fQuartetStartHelicity = fActualHelicity;
fQuartetStartPredictedHelicity = fPredictedHelicity;
} else { // Not the beginning of a quad
if(fNBits>=fMAXBIT) {
fActualHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartHelicity:-fQuartetStartHelicity;
fPredictedHelicity = (quartetphase==0||quartetphase==3)?
fQuartetStartPredictedHelicity:-fQuartetStartPredictedHelicity;
}
}
return;
}
//_____________________________________________________________________________
Int_t THcHelicity::RanBit30(Int_t ranseed)
{
UInt_t bit7 = (ranseed & 0x00000040) != 0;
UInt_t bit28 = (ranseed & 0x08000000) != 0;
UInt_t bit29 = (ranseed & 0x10000000) != 0;
UInt_t bit30 = (ranseed & 0x20000000) != 0;
UInt_t newbit = (bit30 ^ bit29 ^ bit28 ^ bit7) & 0x1;
if(ranseed<=0) {
if(fQWEAKDebug>1)
std::cerr<<"ranseed must be greater than zero!"<<"\n";
newbit = 0;
}
ranseed = ( (ranseed<<1) | newbit ) & 0x3FFFFFFF;
//here ranseed is changed
if(fQWEAKDebug>1)
{
cout<< "THcHelicity::RanBit30, newbit="<<newbit<<"\n";
}
return ranseed;
}
//_____________________________________________________________________________
Int_t THcHelicity::GetSeed30(Int_t currentseed)
/* Back track the seed by 30 samples */
{
#if 1
Int_t seed = currentseed;
for(Int_t i=0;i<30;i++) {
UInt_t bit1 = (seed & 0x00000001) != 0;
UInt_t bit8 = (seed & 0x00000080) != 0;
UInt_t bit29 = (seed & 0x10000000) != 0;
UInt_t bit30 = (seed & 0x20000000) != 0;
UInt_t newbit30 = (bit30 ^ bit29 ^ bit8 ^ bit1) & 0x1;
seed = (seed >> 1) | (newbit30<<29);
}
#else
Int_t bits = currentseed;
Int_t seed=0;
for(Int_t i=0;i<30;i++) {
Int_t val;
// XOR at virtual position 0 and 29
if(i==0) {
val = ((bits & (1<<(i)))!=0) ^ ((bits & (1<<(i+29)))!=0);
} else {
val = ((bits & (1<<(i)))!=0) ^ ((seed & (1<<(i-1)))!=0);
}
if(i<=1) {
val = ((bits & (1<<(1-i)))!=0) ^ val;
} else {
val = ((seed & (1<<(i-2)))!=0) ^ val;
}
if(i<=22) {
val = ((bits & (1<<(i-22)))!=0) ^ val;
} else {
val = ((seed & (1<<(i-23)))!=0) ^ val;
}
seed |= (val<<i);
}
#endif
return seed;
}
ClassImp(THcHelicity)