Newer
Older
///////////////////////////////////////////////////////////////////////////////
// //
// THcHodoscope
// //
// Class for a generic hodoscope consisting of multiple //
// planes with multiple paddles with phototubes on both ends. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "THcHodoscope.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TMath.h"
#include "THaTrackProj.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( const char* name, const char* description,
THaApparatus* apparatus ) :
THaNonTrackingDetector(name,description,apparatus)
{
// Constructor
fTWalkPar = 0;
fTrackProj = new TClonesArray( "THaTrackProj", 5 );
}
//_____________________________________________________________________________
THcHodoscope::THcHodoscope( ) :
THaNonTrackingDetector()
{
// Constructor
fTWalkPar = NULL;
fTrackProj = NULL;
fRA_c = fRA_p = fRA = fLA_c = fLA_p = fLA = NULL;
fRT_c = fRT = fLT_c = fLT = NULL;
fRGain = fLGain = fRPed = fLPed = fROff = fLOff = NULL;
fTrigOff = fTime = fdTime = fYt = fYa = NULL;
fHitPad = NULL;
}
//_____________________________________________________________________________
THaAnalysisObject::EStatus THcHodoscope::Init( const TDatime& date )
{
static const char* const here = "Init()";
// Extra initialization for scintillators: set up DataDest map
if( THaNonTrackingDetector::Init( date ) )
return fStatus;
const DataDest tmp[NDEST] = {
{ &fRTNhit, &fRANhit, fRT, fRT_c, fRA, fRA_p, fRA_c, fROff, fRPed, fRGain },
{ &fLTNhit, &fLANhit, fLT, fLT_c, fLA, fLA_p, fLA_c, fLOff, fLPed, fLGain }
};
memcpy( fDataDest, tmp, NDEST*sizeof(DataDest) );
// Should probably put this in ReadDatabase as we will know the
// maximum number of hits after setting up the detector map
THcHitList::InitHitList(fDetMap, "THcHodoscopeHit", 100);
if( gHcDetectorMap->FillMap("detectorname",fDetMap) < 0 ) {
Error( Here(here), "Error filling detectormap for %s.",
"detectorname");
return kInitError;
}
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
return fStatus = kOK;
}
//_____________________________________________________________________________
Int_t THcHodoscope::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
static const char* const here = "ReadDatabase()";
const int LEN = 200;
char buf[LEN];
Int_t nelem;
// Read data from database
FILE* fi = OpenFile( date );
if( !fi ) return kFileError;
while ( ReadComment( fi, buf, LEN ) ) {}
fscanf ( fi, "%d", &nelem ); // Number of paddles
fgets ( buf, LEN, fi );
// Reinitialization only possible for same basic configuration
if( fIsInit && nelem != fNelem ) {
Error( Here(here), "Cannot re-initalize with different number of paddles. "
"(was: %d, now: %d). Detector not re-initialized.", fNelem, nelem );
fclose(fi);
return kInitError;
}
fNelem = nelem;
// Read detector map. Unless a model-number is given
// for the detector type, this assumes that the first half of the entries
// are for ADCs and the second half, for TDCs.
while ( ReadComment( fi, buf, LEN ) ) {}
int i = 0;
fDetMap->Clear();
while (1) {
int pos;
Int_t first_chan, model;
Int_t crate, slot, first, last;
fgets ( buf, LEN, fi );
sscanf( buf, "%d%d%d%d%d%n", &crate, &slot, &first, &last, &first_chan, &pos );
if( crate < 0 ) break;
model=atoi(buf+pos); // if there is no model number given, set to zero
if( fDetMap->AddModule( crate, slot, first, last, first_chan, model ) < 0 ) {
Error( Here(here), "Too many DetMap modules (maximum allowed - %d).",
THaDetMap::kDetMapSize);
fclose(fi);
return kInitError;
}
}
while ( ReadComment( fi, buf, LEN ) ) {}
Float_t x,y,z;
fscanf ( fi, "%f%f%f", &x, &y, &z ); // Detector's X,Y,Z coord
fgets ( buf, LEN, fi );
fOrigin.SetXYZ( x, y, z );
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
fscanf ( fi, "%f%f%f", fSize, fSize+1, fSize+2 ); // Sizes of det on X,Y,Z
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
Float_t angle;
fscanf ( fi, "%f", &angle ); // Rotation angle of detector
fgets ( buf, LEN, fi );
const Float_t degrad = TMath::Pi()/180.0;
tan_angle = TMath::Tan(angle*degrad);
sin_angle = TMath::Sin(angle*degrad);
cos_angle = TMath::Cos(angle*degrad);
DefineAxes(angle*degrad);
// Dimension arrays
if( !fIsInit ) {
// Calibration data
fLOff = new Double_t[ fNelem ];
fROff = new Double_t[ fNelem ];
fLPed = new Double_t[ fNelem ];
fRPed = new Double_t[ fNelem ];
fLGain = new Double_t[ fNelem ];
fRGain = new Double_t[ fNelem ];
fTrigOff = new Double_t[ fNelem ];
// Per-event data
fLT = new Double_t[ fNelem ];
fLT_c = new Double_t[ fNelem ];
fRT = new Double_t[ fNelem ];
fRT_c = new Double_t[ fNelem ];
fLA = new Double_t[ fNelem ];
fLA_p = new Double_t[ fNelem ];
fLA_c = new Double_t[ fNelem ];
fRA = new Double_t[ fNelem ];
fRA_p = new Double_t[ fNelem ];
fRA_c = new Double_t[ fNelem ];
fNTWalkPar = 2*fNelem; // 1 paramter per paddle
fTWalkPar = new Double_t[ fNTWalkPar ];
fHitPad = new Int_t[ fNelem ];
fTime = new Double_t[ fNelem ]; // analysis indexed by paddle (yes, inefficient)
fdTime = new Double_t[ fNelem ];
fAmpl = new Double_t[ fNelem ];
fYt = new Double_t[ fNelem ];
fYa = new Double_t[ fNelem ];
fIsInit = true;
}
memset(fTrigOff,0,fNelem*sizeof(fTrigOff[0]));
// Set DEFAULT values here
// TDC resolution (s/channel)
fTdc2T = 0.1e-9; // seconds/channel
fResolution = fTdc2T; // actual timing resolution
// Speed of light in the scintillator material
fCn = 1.7e+8; // meters/second
// Attenuation length
fAttenuation = 0.7; // inverse meters
// Time-walk correction parameters
fAdcMIP = 1.e10; // large number for offset, so reference is effectively disabled
// timewalk coefficients for tw = coeff*(1./sqrt(ADC-Ped)-1./sqrt(ADCMip))
for (int i=0; i<fNTWalkPar; i++) fTWalkPar[i]=0;
// trigger-timing offsets (s)
for (int i=0; i<fNelem; i++) fTrigOff[i]=0;
DBRequest list[] = {
{ "TDC_offsetsL", fLOff, kDouble, fNelem },
{ "TDC_offsetsR", fROff, kDouble, fNelem },
{ "ADC_pedsL", fLPed, kDouble, fNelem },
{ "ADC_pedsR", fRPed, kDouble, fNelem },
{ "ADC_coefL", fLGain, kDouble, fNelem },
{ "ADC_coefR", fRGain, kDouble, fNelem },
{ "TDC_res", &fTdc2T },
{ "TransSpd", &fCn },
{ "AdcMIP", &fAdcMIP },
{ "NTWalk", &fNTWalkPar, kInt },
{ "Timewalk", fTWalkPar, kDouble, 2*fNelem },
{ "ReTimeOff", fTrigOff, kDouble, fNelem },
{ "AvgRes", &fResolution },
{ "Atten", &fAttenuation },
{ 0 }
};
#if 0
if ( gHaDB && gHaDB->LoadValues(GetPrefix(),list,date) ) {
goto exit; // the new database existed -- we're finished
}
#endif
// otherwise, gHaDB is unavailable, use the old file database
// Read in the timing/adc calibration constants
// For fine-tuning of these data, we seek to a matching time stamp, or
// if no time stamp found, to a "configuration" section. Examples:
//
// [ 2002-10-10 15:30:00 ]
// #comment line goes here
// <left TDC offsets>
// <right TDC offsets>
// <left ADC peds>
// <rigth ADC peds>
// <left ADC coeff>
// <right ADC coeff>
//
// if below aren't present, 'default' values are used
// <TDC resolution: seconds/channel>
// <speed-of-light in medium m/s>
// <attenuation length m^-1>
// <ADC of MIP>
// <number of timewalk parameters>
// <timewalk paramters>
//
//
// or
//
// [ config=highmom ]
// comment line
// ...etc.
//
if( SeekDBdate( fi, date ) == 0 && fConfig.Length() > 0 &&
SeekDBconfig( fi, fConfig.Data() )) {}
while ( ReadComment( fi, buf, LEN ) ) {}
// Read calibration data
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fLOff+i); // Left Pads TDC offsets
fgets ( buf, LEN, fi ); // finish line
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fROff+i); // Right Pads TDC offsets
fgets ( buf, LEN, fi ); // finish line
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fLPed+i); // Left Pads ADC Pedest-s
fgets ( buf, LEN, fi ); // finish line, etc.
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf(fi,"%lf",fRPed+i); // Right Pads ADC Pedes-s
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf (fi,"%lf",fLGain+i); // Left Pads ADC Coeff-s
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
for (i=0;i<fNelem;i++)
fscanf (fi,"%lf",fRGain+i); // Right Pads ADC Coeff-s
fgets ( buf, LEN, fi );
while ( ReadComment( fi, buf, LEN ) ) {}
// Here on down, look ahead line-by-line
// stop reading if a '[' is found on a line (corresponding to the next date-tag)
// read in TDC resolution (s/channel)
if ( ! fgets(buf, LEN, fi) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fTdc2T);
fResolution = 3.*fTdc2T; // guess at timing resolution
while ( ReadComment( fi, buf, LEN ) ) {}
// Speed of light in the scintillator material
if ( !fgets(buf, LEN, fi) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fCn);
// Attenuation length (inverse meters)
while ( ReadComment( fi, buf, LEN ) ) {}
if ( !fgets ( buf, LEN, fi ) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fAttenuation);
while ( ReadComment( fi, buf, LEN ) ) {}
// Time-walk correction parameters
if ( !fgets(buf, LEN, fi) || strchr(buf,'[') ) goto exit;
sscanf(buf,"%lf",&fAdcMIP);
while ( ReadComment( fi, buf, LEN ) ) {}
// timewalk parameters
{
int cnt=0;
while ( cnt<fNTWalkPar && fgets( buf, LEN, fi ) && ! strchr(buf,'[') ) {
char *ptr = buf;
int pos=0;
while ( cnt < fNTWalkPar && sscanf(ptr,"%lf%n",&fTWalkPar[cnt],&pos)>0 ) {
ptr += pos;
cnt++;
}
}
}
while ( ReadComment( fi, buf, LEN ) ) {}
// trigger timing offsets
{
int cnt=0;
while ( cnt<fNelem && fgets( buf, LEN, fi ) && ! strchr(buf,'[') ) {
char *ptr = buf;
int pos=0;
while ( cnt < fNelem && sscanf(ptr,"%lf%n",&fTrigOff[cnt],&pos)>0 ) {
ptr += pos;
cnt++;
}
}
}
exit:
fclose(fi);
if ( fDebug > 1 ) {
cout << '\n' << GetPrefix() << " calibration parameters: " << endl;;
for ( DBRequest *li = list; li->name; li++ ) {
cout << " " << li->name;
int maxc = li->nelem;
if (maxc==0)maxc=1;
for (int i=0; i<maxc; i++) {
if (li->type==kDouble) cout << " " << ((Double_t*)li->var)[i];
if (li->type==kInt) cout << " " << ((Int_t*)li->var)[i];
}
cout << endl;
}
}
return kOK;
}
//_____________________________________________________________________________
Int_t THcHodoscope::DefineVariables( EMode mode )
{
// Initialize global variables and lookup table for decoder
if( mode == kDefine && fIsSetup ) return kOK;
fIsSetup = ( mode == kDefine );
// Register variables in global list
RVarDef vars[] = {
{ "nlthit", "Number of Left paddles TDC times", "fLTNhit" },
{ "nrthit", "Number of Right paddles TDC times", "fRTNhit" },
{ "nlahit", "Number of Left paddles ADCs amps", "fLANhit" },
{ "nrahit", "Number of Right paddles ADCs amps", "fRANhit" },
{ "lt", "TDC values left side", "fLT" },
{ "lt_c", "Corrected times left side", "fLT_c" },
{ "rt", "TDC values right side", "fRT" },
{ "rt_c", "Corrected times right side", "fRT_c" },
{ "la", "ADC values left side", "fLA" },
{ "la_p", "Corrected ADC values left side", "fLA_p" },
{ "la_c", "Corrected ADC values left side", "fLA_c" },
{ "ra", "ADC values right side", "fRA" },
{ "ra_p", "Corrected ADC values right side", "fRA_p" },
{ "ra_c", "Corrected ADC values right side", "fRA_c" },
{ "nthit", "Number of paddles with l&r TDCs", "fNhit" },
{ "t_pads", "Paddles with l&r coincidence TDCs", "fHitPad" },
{ "y_t", "y-position from timing (m)", "fYt" },
{ "y_adc", "y-position from amplitudes (m)", "fYa" },
{ "time", "Time of hit at plane (s)", "fTime" },
{ "dtime", "Est. uncertainty of time (s)", "fdTime" },
{ "dedx", "dEdX-like deposited in paddle", "fAmpl" },
{ "troff", "Trigger offset for paddles", "fTrigOff"},
{ "trn", "Number of tracks for hits", "GetNTracks()" },
{ "trx", "x-position of track in det plane", "fTrackProj.THaTrackProj.fX" },
{ "try", "y-position of track in det plane", "fTrackProj.THaTrackProj.fY" },
{ "trpath", "TRCS pathlen of track to det plane","fTrackProj.THaTrackProj.fPathl" },
{ "trdx", "track deviation in x-position (m)", "fTrackProj.THaTrackProj.fdX" },
{ "trpad", "paddle-hit associated with track", "fTrackProj.THaTrackProj.fChannel" },
{ 0 }
};
return DefineVarsFromList( vars, mode );
}
//_____________________________________________________________________________
THcHodoscope::~THcHodoscope()
{
// Destructor. Remove variables from global list.
if( fIsSetup )
RemoveVariables();
if( fIsInit )
DeleteArrays();
if (fTrackProj) {
fTrackProj->Clear();
delete fTrackProj; fTrackProj = 0;
}
}
//_____________________________________________________________________________
void THcHodoscope::DeleteArrays()
{
// Delete member arrays. Used by destructor.
delete [] fRA_c; fRA_c = NULL;
delete [] fRA_p; fRA_p = NULL;
delete [] fRA; fRA = NULL;
delete [] fLA_c; fLA_c = NULL;
delete [] fLA_p; fLA_p = NULL;
delete [] fLA; fLA = NULL;
delete [] fRT_c; fRT_c = NULL;
delete [] fRT; fRT = NULL;
delete [] fLT_c; fLT_c = NULL;
delete [] fLT; fLT = NULL;
delete [] fRGain; fRGain = NULL;
delete [] fLGain; fLGain = NULL;
delete [] fRPed; fRPed = NULL;
delete [] fLPed; fLPed = NULL;
delete [] fROff; fROff = NULL;
delete [] fLOff; fLOff = NULL;
delete [] fTWalkPar; fTWalkPar = NULL;
delete [] fTrigOff; fTrigOff = NULL;
delete [] fHitPad; fHitPad = NULL;
delete [] fTime; fTime = NULL;
delete [] fdTime; fdTime = NULL;
delete [] fYt; fYt = NULL;
delete [] fYa; fYa = NULL;
}
//_____________________________________________________________________________
inline
void THcHodoscope::ClearEvent()
{
// Reset per-event data.
const int lf = fNelem*sizeof(Double_t);
fLTNhit = 0; // Number of Left paddles TDC times
memset( fLT, 0, lf ); // Left paddles TDCs
memset( fLT_c, 0, lf ); // Left paddles corrected times
fRTNhit = 0; // Number of Right paddles TDC times
memset( fRT, 0, lf ); // Right paddles TDCs
memset( fRT_c, 0, lf ); // Right paddles corrected times
fLANhit = 0; // Number of Left paddles ADC amps
memset( fLA, 0, lf ); // Left paddles ADCs
memset( fLA_p, 0, lf ); // Left paddles ADC minus pedestal
memset( fLA_c, 0, lf ); // Left paddles corrected ADCs
fRANhit = 0; // Number of Right paddles ADC smps
memset( fRA, 0, lf ); // Right paddles ADCs
memset( fRA_p, 0, lf ); // Right paddles ADC minus pedestal
memset( fRA_c, 0, lf ); // Right paddles corrected ADCs
fNhit = 0;
memset( fHitPad, 0, fNelem*sizeof(fHitPad[0]) );
memset( fTime, 0, lf );
memset( fdTime, 0, lf );
memset( fYt, 0, lf );
memset( fYa, 0, lf );
fTrackProj->Clear();
}
//_____________________________________________________________________________
Int_t THcHodoscope::Decode( const THaEvData& evdata )
{
// Get the hitlist (fRawHitList) for this event
return nhits;
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
}
//_____________________________________________________________________________
Int_t THcHodoscope::ApplyCorrections( void )
{
// Apply the ADC/TDC corrections to get the 'REAL' relevant
// TDC and ADC values. No tracking needs to have been done yet.
//
// Permits the dividing up of the decoding step (events could come from
// a different source) to the applying of corrections. For ease when
// trying to optimize calibrations
//
Int_t nlt=0, nrt=0, nla=0, nra=0;
for (Int_t i=0; i<fNelem; i++) {
if (fLA[i] != 0.) {
fLA_p[i] = fLA[i] - fLPed[i];
fLA_c[i] = fLA_p[i]*fLGain[i];
nla++;
}
if (fRA[i] != 0.) {
fRA_p[i] = fRA[i] - fRPed[i];
fRA_c[i] = fRA_p[i]*fRGain[i];
nra++;
}
if (fLT[i] != 0.) {
fLT_c[i] = (fLT[i] - fLOff[i])*fTdc2T - TimeWalkCorrection(i,kLeft);
nlt++;
}
if (fRT[i] != 0.) {
fRT_c[i] = (fRT[i] - fROff[i])*fTdc2T - TimeWalkCorrection(i,kRight);
nrt++;
}
}
// returns FALSE (0) if all matches up
return !(fLTNhit==nlt && fLANhit==nla && fRTNhit==nrt && fRANhit==nra );
}
//_____________________________________________________________________________
Double_t THcHodoscope::TimeWalkCorrection(const Int_t& paddle,
const ESide side)
{
// Calculate the time-walk correction. The timewalk might be
// dependent upon the specific PMT, so information about exactly
// which PMT fired is required.
Double_t adc=0;
if (side == kLeft)
adc = fLA_p[paddle];
else
adc = fRA_p[paddle];
if (fNTWalkPar<=0 || !fTWalkPar) return 0.; // uninitialized return safe 0
// get the ADC value above the pedestal
if ( adc <=0. ) return 0.;
// we have an arbitrary timing offset, and will declare here that
// for a MIP ( peak ~2000 ADC channels ) the timewalk correction is 0
Double_t ref = fAdcMIP;
Double_t tw(0), tw_ref(0.);
int npar = fNTWalkPar/(2*fNelem);
Double_t *par = &(fTWalkPar[npar*(side*fNelem+paddle)]);
tw = par[0]*pow(adc,-.5);
tw_ref = par[0]*pow(ref,-.5);
return tw-tw_ref;
}
//_____________________________________________________________________________
Int_t THcHodoscope::CoarseProcess( TClonesArray& /* tracks */ )
{
// Calculation of coordinates of particle track cross point with scint
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::CoarseTrack() are used.
//
// Apply corrections and reconstruct the complete hits.
//
static const Double_t sqrt2 = TMath::Sqrt(2.);
ApplyCorrections();
// count the number of paddles with complete TDC hits
// Fill in information available from timing
fNhit = 0;
for (int i=0; i<fNelem; i++) {
if (fLT[i]>0 && fRT[i]>0) {
fHitPad[fNhit++] = i;
fTime[i] = .5*(fLT_c[i]+fRT_c[i])-fSize[1]/fCn;
fdTime[i] = fResolution/sqrt2;
fYt[i] = .5*fCn*(fRT_c[i]-fLT_c[i]);
}
// rough calculation of position from ADC reading
if (fLA_c[i]>0&&fRA_c[i]>0) {
fYa[i] = TMath::Log(fLA_c[i]/fRA_c[i])/(2.*fAttenuation);
// rough dE/dX-like quantity, not correcting for track angle
fAmpl[i] = TMath::Sqrt(fLA_c[i]*fRA_c[i]*TMath::Exp(fAttenuation*2*fSize[1]))
/ fSize[2];
}
}
return 0;
}
//_____________________________________________________________________________
Int_t THcHodoscope::FineProcess( TClonesArray& tracks )
{
// Reconstruct coordinates of particle track cross point with scintillator
// plane, and copy the data into the following local data structure:
//
// Units of measurements are meters.
// Calculation of coordinates of particle track cross point with scint
// plane in the detector coordinate system. For this, parameters of track
// reconstructed in THaVDC::FineTrack() are used.
int n_track = tracks.GetLast()+1; // Number of reconstructed tracks
Double_t dpadx = (2.*fSize[0])/(fNelem); // width of a paddle
// center of paddle '0'
Double_t padx0 = -dpadx*(fNelem-1)*.5;
for ( int i=0; i<n_track; i++ ) {
THaTrack* theTrack = static_cast<THaTrack*>( tracks[i] );
Double_t pathl=kBig, xc=kBig, yc=kBig, dx=kBig;
Int_t pad=-1;
if ( ! CalcTrackIntercept(theTrack, pathl, xc, yc) ) { // failed to hit
new ( (*fTrackProj)[i] )
THaTrackProj(xc,yc,pathl,dx,pad,this);
continue;
}
// xc, yc are the positions of the track intercept
// _RELATIVE TO THE DETECTOR PLANE's_ origin.
//
// look through set of complete hits for closest match
// loop through due to possible poor matches
dx = kBig;
for ( Int_t j=0; j<fNhit; j++ ) {
Double_t dx2 = ( padx0 + fHitPad[j]*dpadx) - xc;
if (TMath::Abs(dx2) < TMath::Abs(dx) ) {
pad = fHitPad[j];
dx = dx2;
}
else if (pad>=0) break; // stop after finding closest in X
}
// record information, found or not
new ( (*fTrackProj)[i] )
THaTrackProj(xc,yc,pathl,dx,pad,this);
}
return 0;
}
ClassImp(THcHodoscope)
////////////////////////////////////////////////////////////////////////////////