Skip to content
Snippets Groups Projects
BarrelTrackerWithFrame_geo.cpp 9.77 KiB
Newer Older
/** \addtogroup VertexTracker Vertex Trackers
 * \brief Type: **SiVertexBarrel**.
 * \author W. Armstrong
 * \ingroup trackers
 *
 *
 * \code
 * \endcode
 *
 * @{
 */
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/Printout.h"
#include "DD4hep/Shapes.h"
#include "DDRec/Surface.h"
#include "DDRec/DetectorData.h"
#include "XML/Layering.h"
#include "Acts/Plugins/DD4hep/ActsExtension.hpp"
#include "Acts/Surfaces/PlanarBounds.hpp"
#include "Acts/Surfaces/RectangleBounds.hpp"
#include "Acts/Surfaces/TrapezoidBounds.hpp"
#include "Acts/Definitions/Units.hpp"


using namespace std;
using namespace dd4hep;
using namespace dd4hep::rec;
using namespace dd4hep::detail;

static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens) {
  typedef vector<PlacedVolume> Placements;
  xml_det_t                    x_det    = e;
  Material                     air      = description.air();
  int                          det_id   = x_det.id();
  string                       det_name = x_det.nameStr();
  DetElement                   sdet(det_name, det_id);
  //Assembly                     assembly(det_name);
  map<string, Volume>          volumes;
  map<string, Placements>      sensitives;
  map<string, xml_h>      xmleles;
  PlacedVolume                 pv;
  dd4hep::xml::Dimension dimensions(x_det.dimensions());

  Acts::ActsExtension* detWorldExt = new Acts::ActsExtension();
  detWorldExt->addType("barrel", "detector");
  sdet.addExtension<Acts::ActsExtension>(detWorldExt);
  Tube topVolumeShape(dimensions.rmin(), dimensions.rmax(), dimensions.length() * 0.5);
  Volume assembly(det_name,topVolumeShape,air);


  sens.setType("tracker");

  // loop over the modules
  for (xml_coll_t mi(x_det, _U(module)); mi; ++mi) {
    xml_comp_t x_mod = mi;
    xml_comp_t m_env = x_mod.child(_U(frame));
    string     m_nam = x_mod.nameStr();
    xmleles[m_nam]  = x_mod;

    // triangular volume envelope
    double frame_thickness = m_env.thickness();
    double frame_width     = m_env.width();
    double frame_height    = getAttrOrDefault<double>(m_env, _U(height), 5.0 * mm);
    double tanth           = frame_height/(frame_width/2.0);
    double frame_height2   = frame_height-frame_thickness-frame_thickness/tanth;
    double frame_width2    = 2.0*frame_height2/tanth;

    Trd1 moduleframe_part1(frame_width / 2, 0.001 * mm, m_env.length() / 2,
                           frame_height / 2);
    Trd1 moduleframe_part2(frame_width2/2, 0.001 * mm,
                           m_env.length() / 2, frame_height2/2);
    SubtractionSolid moduleframe(moduleframe_part1, moduleframe_part2,Position(0.0,frame_thickness,0.0));
    Volume v_module(m_nam+"_vol", moduleframe, description.material(m_env.materialStr()));
    v_module.setVisAttributes(description, m_env.visStr());

    // module assembly
    Assembly m_vol( m_nam );
    m_vol.placeVolume(v_module, Position(0.0,0.0,frame_height/2));

    int ncomponents   = 0;
    int sensor_number = 1;

    if (volumes.find(m_nam) != volumes.end()) {
      printout(ERROR, "SiTrackerBarrel", "Logics error in building modules.");
      throw runtime_error("Logics error in building modules.");
    }
    volumes[m_nam] = m_vol;
    m_vol.setVisAttributes(description.visAttributes(x_mod.visStr()));

    for (xml_coll_t ci(x_mod, _U(module_component)); ci; ++ci, ++ncomponents) {
      xml_comp_t x_comp = ci;
      xml_comp_t x_pos = x_comp.position(false);
      xml_comp_t x_rot = x_comp.rotation(false);
      string c_nam = _toString(ncomponents, "component%d");
      Box c_box(x_comp.width() / 2, x_comp.length() / 2, x_comp.thickness() / 2);
      Volume c_vol(c_nam, c_box, description.material(x_comp.materialStr()));

      if (x_pos && x_rot) {
        Position c_pos(x_pos.x(0), x_pos.y(0), x_pos.z(0));
        RotationZYX c_rot(x_rot.z(0), x_rot.y(0), x_rot.x(0));
        pv = m_vol.placeVolume(c_vol, Transform3D(c_rot, c_pos));
      } else if (x_rot) {
        pv = m_vol.placeVolume(c_vol, RotationZYX(x_rot.z(0), x_rot.y(0), x_rot.x(0)));
      } else if (x_pos) {
        pv = m_vol.placeVolume(c_vol, Position(x_pos.x(0), x_pos.y(0), x_pos.z(0)));
      } else {
        pv = m_vol.placeVolume(c_vol);
      }
      c_vol.setRegion(description, x_comp.regionStr());
      c_vol.setLimitSet(description, x_comp.limitsStr());
      c_vol.setVisAttributes(description, x_comp.visStr());
      if (x_comp.isSensitive()) {
        pv.addPhysVolID(_U(sensor), sensor_number++);
        c_vol.setSensitiveDetector(sens);
        sensitives[m_nam].push_back(pv);
      }
    }
  }

  // now build the layers
  for (xml_coll_t li(x_det, _U(layer)); li; ++li) {
    xml_comp_t x_layer = li;
    xml_comp_t x_barrel = x_layer.child(_U(barrel_envelope));
    xml_comp_t x_layout = x_layer.child(_U(rphi_layout));
    xml_comp_t z_layout = x_layer.child(_U(z_layout));  // Get the <z_layout> element.
    int lay_id = x_layer.id();
    string m_nam = x_layer.moduleStr();
    string lay_nam = _toString(x_layer.id(), "layer%d");
    Tube lay_tub(x_barrel.inner_r()+0.1*mm, x_barrel.outer_r()-0.1*mm, x_barrel.z_length() / 2);
    Volume lay_vol(lay_nam, lay_tub, air);  // Create the layer envelope volume.
    lay_vol.setVisAttributes(description.visAttributes(x_layer.visStr()));
    double phi0 = x_layout.phi0();          // Starting phi of first module.
    double phi_tilt = x_layout.phi_tilt();  // Phi tilt of a module.
    double rc = x_layout.rc();              // Radius of the module center.
    int nphi = x_layout.nphi();             // Number of modules in phi.
    double rphi_dr = x_layout.dr();         // The delta radius of every other module.
    double phi_incr = (M_PI * 2) / nphi;    // Phi increment for one module.
    double phic = phi0;                     // Phi of the module center.
    double z0 = z_layout.z0();              // Z position of first module in phi.
    double nz = z_layout.nz();              // Number of modules to place in z.
    double z_dr = z_layout.dr();            // Radial displacement parameter, of every other module.
    Volume module_env = volumes[m_nam];
    DetElement lay_elt(sdet, _toString(x_layer.id(), "layer%d"), lay_id);
    Placements& sensVols = sensitives[m_nam];
    // the local coordinate systems of modules in dd4hep and acts differ
    // see http://acts.web.cern.ch/ACTS/latest/doc/group__DD4hepPlugins.html
    Acts::ActsExtension* layerExtension = new Acts::ActsExtension();
    layerExtension->addType("sensitive cylinder", "layer");
    //layerExtension->addType("axes", "definitions", "XzY");
    lay_elt.addExtension<Acts::ActsExtension>(layerExtension);

    // Z increment for module placement along Z axis.
    // Adjust for z0 at center of module rather than
    // the end of cylindrical envelope.
    double z_incr = nz > 1 ? (2.0 * z0) / (nz - 1) : 0.0;
    // Starting z for module placement along Z axis.
    double module_z = -z0;
    int module = 1;

    // Loop over the number of modules in phi.
    for (int ii = 0; ii < nphi; ii++) {
      double dx = z_dr * std::cos(phic + phi_tilt);  // Delta x of module position.
      double dy = z_dr * std::sin(phic + phi_tilt);  // Delta y of module position.
      double x = rc * std::cos(phic);                // Basic x module position.
      double y = rc * std::sin(phic);                // Basic y module position.

      // Loop over the number of modules in z.
      for (int j = 0; j < nz; j++) {
        string module_name = _toString(module, "module%d");
        DetElement mod_elt(lay_elt, module_name, module);

        Transform3D tr(RotationZYX(0, ((M_PI / 2) - phic - phi_tilt), -M_PI / 2),
                       Position(x, y, module_z));

        pv = lay_vol.placeVolume(module_env, tr);
        pv.addPhysVolID("module", module);
        mod_elt.setPlacement(pv);
        for (size_t ic = 0; ic < sensVols.size(); ++ic) {
          PlacedVolume sens_pv = sensVols[ic];
          DetElement comp_de(mod_elt, std::string("de_") + sens_pv.volume().name(), module);
          comp_de.setPlacement(sens_pv);
          Acts::ActsExtension* moduleExtension = new Acts::ActsExtension();
          comp_de.addExtension<Acts::ActsExtension>(moduleExtension);
          comp_de.setAttributes(description, sens_pv.volume(), x_layer.regionStr(), x_layer.limitsStr(),
                                xml_det_t(xmleles[m_nam]).visStr());
        }

        /// Increase counters etc.
        module++;
        // Adjust the x and y coordinates of the module.
        x += dx;
        y += dy;
        // Flip sign of x and y adjustments.
        dx *= -1;
        dy *= -1;
        // Add z increment to get next z placement pos.
        module_z += z_incr;
      }
      phic += phi_incr;  // Increment the phi placement of module.
      rc += rphi_dr;     // Increment the center radius according to dr parameter.
      rphi_dr *= -1;     // Flip sign of dr parameter.
      module_z = -z0;    // Reset the Z placement parameter for module.
    }
    // Create the PhysicalVolume for the layer.
    pv = assembly.placeVolume(lay_vol);  // Place layer in mother
    pv.addPhysVolID("layer", lay_id);    // Set the layer ID.
    lay_elt.setAttributes(description, lay_vol, x_layer.regionStr(), x_layer.limitsStr(),
                          x_layer.visStr());
    lay_elt.setPlacement(pv);
  }
  sdet.setAttributes(description, assembly, x_det.regionStr(), x_det.limitsStr(), x_det.visStr());
  assembly.setVisAttributes(description.invisible());
  pv = description.pickMotherVolume(sdet).placeVolume(assembly);
  pv.addPhysVolID("system", det_id);  // Set the subdetector system ID.
  pv.addPhysVolID("barrel", 1);       // Flag this as a barrel subdetector.
  sdet.setPlacement(pv);
  return sdet;
}

//@}
// clang-format off
DECLARE_DETELEMENT(BarrelTrackerWithFrame, create_detector)
DECLARE_DETELEMENT(athena_SiVertexTracker, create_detector)
DECLARE_DETELEMENT(athena_SiBarrelTracker, create_detector)
DECLARE_DETELEMENT(refdet_SiVertexBarrel, create_detector)