/** \addtogroup VertexTracker Vertex Trackers * \brief Type: **SiVertexBarrel**. * \author W. Armstrong * \ingroup trackers * * * \code * \endcode * * @{ */ #include "DD4hep/DetFactoryHelper.h" #include "DD4hep/Printout.h" #include "DD4hep/Shapes.h" #include "DDRec/Surface.h" #include "DDRec/DetectorData.h" #include "XML/Layering.h" #include "Acts/Plugins/DD4hep/ActsExtension.hpp" #include "Acts/Surfaces/PlanarBounds.hpp" #include "Acts/Surfaces/RectangleBounds.hpp" #include "Acts/Surfaces/TrapezoidBounds.hpp" #include "Acts/Definitions/Units.hpp" using namespace std; using namespace dd4hep; using namespace dd4hep::rec; using namespace dd4hep::detail; static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens) { typedef vector<PlacedVolume> Placements; xml_det_t x_det = e; Material air = description.air(); int det_id = x_det.id(); string det_name = x_det.nameStr(); DetElement sdet(det_name, det_id); //Assembly assembly(det_name); map<string, Volume> volumes; map<string, Placements> sensitives; map<string, xml_h> xmleles; PlacedVolume pv; dd4hep::xml::Dimension dimensions(x_det.dimensions()); Acts::ActsExtension* detWorldExt = new Acts::ActsExtension(); detWorldExt->addType("barrel", "detector"); sdet.addExtension<Acts::ActsExtension>(detWorldExt); Tube topVolumeShape(dimensions.rmin(), dimensions.rmax(), dimensions.length() * 0.5); Volume assembly(det_name,topVolumeShape,air); sens.setType("tracker"); // loop over the modules for (xml_coll_t mi(x_det, _U(module)); mi; ++mi) { xml_comp_t x_mod = mi; xml_comp_t m_env = x_mod.child(_U(frame)); string m_nam = x_mod.nameStr(); xmleles[m_nam] = x_mod; // triangular volume envelope double frame_thickness = m_env.thickness(); double frame_width = m_env.width(); double frame_height = getAttrOrDefault<double>(m_env, _U(height), 5.0 * mm); double tanth = frame_height/(frame_width/2.0); double frame_height2 = frame_height-frame_thickness-frame_thickness/tanth; double frame_width2 = 2.0*frame_height2/tanth; Trd1 moduleframe_part1(frame_width / 2, 0.001 * mm, m_env.length() / 2, frame_height / 2); Trd1 moduleframe_part2(frame_width2/2, 0.001 * mm, m_env.length() / 2, frame_height2/2); SubtractionSolid moduleframe(moduleframe_part1, moduleframe_part2,Position(0.0,frame_thickness,0.0)); Volume v_module(m_nam+"_vol", moduleframe, description.material(m_env.materialStr())); v_module.setVisAttributes(description, m_env.visStr()); // module assembly Assembly m_vol( m_nam ); m_vol.placeVolume(v_module, Position(0.0,0.0,frame_height/2)); int ncomponents = 0; int sensor_number = 1; if (volumes.find(m_nam) != volumes.end()) { printout(ERROR, "SiTrackerBarrel", "Logics error in building modules."); throw runtime_error("Logics error in building modules."); } volumes[m_nam] = m_vol; m_vol.setVisAttributes(description.visAttributes(x_mod.visStr())); for (xml_coll_t ci(x_mod, _U(module_component)); ci; ++ci, ++ncomponents) { xml_comp_t x_comp = ci; xml_comp_t x_pos = x_comp.position(false); xml_comp_t x_rot = x_comp.rotation(false); string c_nam = _toString(ncomponents, "component%d"); Box c_box(x_comp.width() / 2, x_comp.length() / 2, x_comp.thickness() / 2); Volume c_vol(c_nam, c_box, description.material(x_comp.materialStr())); if (x_pos && x_rot) { Position c_pos(x_pos.x(0), x_pos.y(0), x_pos.z(0)); RotationZYX c_rot(x_rot.z(0), x_rot.y(0), x_rot.x(0)); pv = m_vol.placeVolume(c_vol, Transform3D(c_rot, c_pos)); } else if (x_rot) { pv = m_vol.placeVolume(c_vol, RotationZYX(x_rot.z(0), x_rot.y(0), x_rot.x(0))); } else if (x_pos) { pv = m_vol.placeVolume(c_vol, Position(x_pos.x(0), x_pos.y(0), x_pos.z(0))); } else { pv = m_vol.placeVolume(c_vol); } c_vol.setRegion(description, x_comp.regionStr()); c_vol.setLimitSet(description, x_comp.limitsStr()); c_vol.setVisAttributes(description, x_comp.visStr()); if (x_comp.isSensitive()) { pv.addPhysVolID(_U(sensor), sensor_number++); c_vol.setSensitiveDetector(sens); sensitives[m_nam].push_back(pv); } } } // now build the layers for (xml_coll_t li(x_det, _U(layer)); li; ++li) { xml_comp_t x_layer = li; xml_comp_t x_barrel = x_layer.child(_U(barrel_envelope)); xml_comp_t x_layout = x_layer.child(_U(rphi_layout)); xml_comp_t z_layout = x_layer.child(_U(z_layout)); // Get the <z_layout> element. int lay_id = x_layer.id(); string m_nam = x_layer.moduleStr(); string lay_nam = _toString(x_layer.id(), "layer%d"); Tube lay_tub(x_barrel.inner_r()+0.1*mm, x_barrel.outer_r()-0.1*mm, x_barrel.z_length() / 2); Volume lay_vol(lay_nam, lay_tub, air); // Create the layer envelope volume. lay_vol.setVisAttributes(description.visAttributes(x_layer.visStr())); double phi0 = x_layout.phi0(); // Starting phi of first module. double phi_tilt = x_layout.phi_tilt(); // Phi tilt of a module. double rc = x_layout.rc(); // Radius of the module center. int nphi = x_layout.nphi(); // Number of modules in phi. double rphi_dr = x_layout.dr(); // The delta radius of every other module. double phi_incr = (M_PI * 2) / nphi; // Phi increment for one module. double phic = phi0; // Phi of the module center. double z0 = z_layout.z0(); // Z position of first module in phi. double nz = z_layout.nz(); // Number of modules to place in z. double z_dr = z_layout.dr(); // Radial displacement parameter, of every other module. Volume module_env = volumes[m_nam]; DetElement lay_elt(sdet, _toString(x_layer.id(), "layer%d"), lay_id); Placements& sensVols = sensitives[m_nam]; // the local coordinate systems of modules in dd4hep and acts differ // see http://acts.web.cern.ch/ACTS/latest/doc/group__DD4hepPlugins.html Acts::ActsExtension* layerExtension = new Acts::ActsExtension(); layerExtension->addType("sensitive cylinder", "layer"); //layerExtension->addType("axes", "definitions", "XzY"); lay_elt.addExtension<Acts::ActsExtension>(layerExtension); // Z increment for module placement along Z axis. // Adjust for z0 at center of module rather than // the end of cylindrical envelope. double z_incr = nz > 1 ? (2.0 * z0) / (nz - 1) : 0.0; // Starting z for module placement along Z axis. double module_z = -z0; int module = 1; // Loop over the number of modules in phi. for (int ii = 0; ii < nphi; ii++) { double dx = z_dr * std::cos(phic + phi_tilt); // Delta x of module position. double dy = z_dr * std::sin(phic + phi_tilt); // Delta y of module position. double x = rc * std::cos(phic); // Basic x module position. double y = rc * std::sin(phic); // Basic y module position. // Loop over the number of modules in z. for (int j = 0; j < nz; j++) { string module_name = _toString(module, "module%d"); DetElement mod_elt(lay_elt, module_name, module); Transform3D tr(RotationZYX(0, ((M_PI / 2) - phic - phi_tilt), -M_PI / 2), Position(x, y, module_z)); pv = lay_vol.placeVolume(module_env, tr); pv.addPhysVolID("module", module); mod_elt.setPlacement(pv); for (size_t ic = 0; ic < sensVols.size(); ++ic) { PlacedVolume sens_pv = sensVols[ic]; DetElement comp_de(mod_elt, std::string("de_") + sens_pv.volume().name(), module); comp_de.setPlacement(sens_pv); Acts::ActsExtension* moduleExtension = new Acts::ActsExtension(); comp_de.addExtension<Acts::ActsExtension>(moduleExtension); comp_de.setAttributes(description, sens_pv.volume(), x_layer.regionStr(), x_layer.limitsStr(), xml_det_t(xmleles[m_nam]).visStr()); } /// Increase counters etc. module++; // Adjust the x and y coordinates of the module. x += dx; y += dy; // Flip sign of x and y adjustments. dx *= -1; dy *= -1; // Add z increment to get next z placement pos. module_z += z_incr; } phic += phi_incr; // Increment the phi placement of module. rc += rphi_dr; // Increment the center radius according to dr parameter. rphi_dr *= -1; // Flip sign of dr parameter. module_z = -z0; // Reset the Z placement parameter for module. } // Create the PhysicalVolume for the layer. pv = assembly.placeVolume(lay_vol); // Place layer in mother pv.addPhysVolID("layer", lay_id); // Set the layer ID. lay_elt.setAttributes(description, lay_vol, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr()); lay_elt.setPlacement(pv); } sdet.setAttributes(description, assembly, x_det.regionStr(), x_det.limitsStr(), x_det.visStr()); assembly.setVisAttributes(description.invisible()); pv = description.pickMotherVolume(sdet).placeVolume(assembly); pv.addPhysVolID("system", det_id); // Set the subdetector system ID. pv.addPhysVolID("barrel", 1); // Flag this as a barrel subdetector. sdet.setPlacement(pv); return sdet; } //@} // clang-format off DECLARE_DETELEMENT(BarrelTrackerWithFrame, create_detector) DECLARE_DETELEMENT(athena_SiVertexTracker, create_detector) DECLARE_DETELEMENT(athena_SiBarrelTracker, create_detector) DECLARE_DETELEMENT(refdet_SiVertexBarrel, create_detector)