Skip to content
Snippets Groups Projects
Commit 0a37d080 authored by Tooba Ali's avatar Tooba Ali
Browse files

add error bars in truth_reconstruction plots

parent cc3c0397
Branches
No related tags found
1 merge request!199Draft: Use of JUGGLER_N_EVENTS=10000
......@@ -92,10 +92,52 @@ particle = config.split('-')[0].strip()
particle_dict = {'e':[boolean_electron,'Electrons'],'pi':[boolean_pion,'Pions']}
####################################################################################################
#Ratio
####################################################################################################
def error_bars(plot_x, plot_y, x_range):
fig = plt.figure()
fig.set_figwidth(15)
fig.set_figheight(6)
x_axis_range = x_range
if i == 0 or title == 'difference vs momentum':
xbins = np.geomspace(x_axis_range[0],x_axis_range[-1],12)
else:
xbins = 11
plt.xlim(x_axis_range)
if np.any(plot_x):
plot_x, plot_y = zip(*sorted(zip(plot_x, plot_y)))
n, xedges = np.histogram(plot_x, bins=xbins, range = x_axis_range)
sum_y, xedges = np.histogram(plot_x, bins=xbins, range = x_axis_range, weights=plot_y)
mean = sum_y / n
mean_list = np.zeros(len(plot_y))
start = 0
for index in range(len(n)):
mean_list[start:start+n[index]] = mean[index]
start = start+n[index]
sum_yy, xedges = np.histogram(plot_x, bins=xbins, range = x_axis_range, weights=(plot_y-mean_list)**2)
std = np.sqrt(sum_yy/(n-1))
no_nan_std = std[np.invert(np.isnan(std))]
if np.any(no_nan_std):
min_std = no_nan_std.min()
if i == 0 and title == 'ratio':
plt.ylim(1-(min_std*10),1+(min_std*10))
else:
plt.ylim(0-(min_std*10),0+(min_std*10))
else:
min_std = np.nan
plt.scatter(plot_x, plot_y, s = ssize)
bin_Midpoint = (xedges[1:] + xedges[:-1])/2
bin_HalfWidth = (xedges[1:] - xedges[:-1])/2
plt.errorbar(bin_Midpoint, mean, yerr=std, xerr=bin_HalfWidth ,fmt='None', ecolor = 'orange', elinewidth = 1)
return bin_Midpoint, mean, bin_HalfWidth, std, min_std
def same_length_lists(plot_x, plot_y):
X_length = ak.count(plot_x,axis=None)
Y_length = ak.count(plot_y,axis=None)
if X_length > Y_length:
F_boolean = np.ones_like(plot_y) == 1
else:
F_boolean = np.ones_like(plot_x) == 1
return F_boolean
for i in range(len(MC_list)): #Repeat the following steps for each variable (momentum,theta,phi,eta)
MCparts = MC_list[i] #MCParticles events to be plotted on x-axis
RCparts = RC_list[i] #ReconstructedParticles events
......@@ -113,18 +155,16 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (mom
ak.Array(RCparts[boolean_photon])]
X_plot = list(np.zeros(len(X_list)))
Y_plot = list(np.zeros(len(X_list)))
Y_error = list(np.zeros(len(X_list)))
####################################################################################################
#Ratio
####################################################################################################
for j in range(len(X_list)): #Repeat the following steps for each particle (pions,protons,electrons,neutrons,photons)
X = X_list[j]
Y = Y_list[j]
X_len = ak.count(X,axis=None)
Y_len = ak.count(Y,axis=None)
if X_len > Y_len:
F_boolean = np.ones_like(Y) == 1
else:
F_boolean = np.ones_like(X) == 1
X_s = np.array(ak.flatten(X[F_boolean])) #Filtered lists
Y_s = np.array(ak.flatten(Y[F_boolean]))
F_boolean = same_length_lists(X_list[j],Y_list[j])
X_s = np.array(ak.flatten(X_list[j][F_boolean])) #Filtered lists
Y_s = np.array(ak.flatten(Y_list[j][F_boolean]))
if i == 0: #Momentum
ratio = np.array((ak.Array(Y_s)/ak.Array(X_s)))
else: #Angle difference
......@@ -180,6 +220,75 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (mom
plt.savefig(os.path.join(r_path, '%s_%s_%s.png' % (title_list_n[i],title,config)))
plt.close()
particle_nlist = ['All','Pions','Protons','Electrons','Neutrons','Photons']
for j in range(len(X_list)):#Repeat the following steps for each particle (pions,protons,electrons,neutrons,photons)
if i == 1: #theta
Y_error[j] = error_bars(X_plot[j], Y_plot[j], [-np.pi,0])
else:
Y_error[j] = error_bars(X_plot[j], Y_plot[j], x_range)
plt.title('%s %s %s\n %s %s events\n DETECTOR_CONFIG: %s'%(title_list[i],title,particle_nlist[j],config,Nevents,Dconfig))
# plt.savefig(os.path.join(r_path, 'error_bars_%s_%s_%s_%s.png' % (title_list[i],title,particle_nlist[j],config)))
if i == 0:
if np.any(Y_plot[j]):
plt.yscale('log')
plt.xscale('log')
if i == 1:
plt.xlim(-np.pi,0)
plt.close()
fig = plt.figure()
gs = fig.add_gridspec(3, 2, wspace=0)
(ax1, ax2), (ax3, ax4),(ax5, ax6) = gs.subplots(sharex=True, sharey=True)
# if i == 1: # for theta
# X_plot[0],X_plot[1],X_plot[2],X_plot[3],X_plot[4],X_plot[5] = -X_plot[0],-X_plot[1],-X_plot[2],-X_plot[3],-X_plot[4],-X_plot[5]
ax1.scatter(X_plot[0], Y_plot[0], s = ssize)
ax2.scatter(X_plot[1], Y_plot[1], s = ssize)
ax3.scatter(X_plot[2], Y_plot[2], s = ssize)
ax4.scatter(X_plot[3], Y_plot[3], s = ssize)
ax5.scatter(X_plot[4], Y_plot[4], s = ssize)
ax6.scatter(X_plot[5], Y_plot[5], s = ssize)
ax1.errorbar(Y_error[0][0], Y_error[0][1], yerr=Y_error[0][3], xerr=Y_error[0][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax2.errorbar(Y_error[1][0], Y_error[1][1], yerr=Y_error[1][3], xerr=Y_error[1][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax3.errorbar(Y_error[2][0], Y_error[2][1], yerr=Y_error[2][3], xerr=Y_error[2][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax4.errorbar(Y_error[3][0], Y_error[3][1], yerr=Y_error[3][3], xerr=Y_error[3][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax5.errorbar(Y_error[4][0], Y_error[4][1], yerr=Y_error[4][3], xerr=Y_error[4][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax6.errorbar(Y_error[5][0], Y_error[5][1], yerr=Y_error[5][3], xerr=Y_error[5][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
if i == 0: # for momentum
ax1.set_ylabel('rc/mc') #ratio
ax3.set_ylabel('rc/mc')
ax5.set_ylabel('rc/mc')
title ='ratio'
ax1.set_yscale('log')
ax1.set_xscale('log')
ax1.set_ylim(1-(Y_error[0][4]*10),1+(Y_error[0][4]*10))
else: # for angles
ax1.set_ylabel('rc-mc') #difference
ax3.set_ylabel('rc-mc')
ax5.set_ylabel('rc-mc')
title ='difference'
ax1.set_ylim(0-(Y_error[0][4]*10),0+(Y_error[0][4]*10))
ax2.set_title('Pions')
ax3.set_title('Protons')
ax4.set_title('Electrons')
ax5.set_title('Neutrons')
ax6.set_title('Photons')
if i == 3: #Eta
ax1.set_xlim(-5.5,5.5)
if i == 1: #Theta
ax1.set_xlim(-np.pi,0)
ax5.set_xlabel('- %s mc'%(title_list[i]))
ax6.set_xlabel('- %s mc'%(title_list[i]))
x_range = [0,np.pi]
else:
ax5.set_xlabel('%s mc'%(title_list[i]))
ax6.set_xlabel('%s mc'%(title_list[i]))
x_range = list(ax1.get_xlim())
fig.set_figwidth(20)
fig.set_figheight(10)
ax1.set_title('%s %s with error bars %s %s events\n DETECTOR_CONFIG: %s'%(title_list[i],title,config,Nevents,Dconfig))
plt.savefig(os.path.join(r_path, '%s_error_%s_%s.png' % (title_list_n[i],title,config)))
plt.close()
###################################################################################################
#Ratio vs momentum
......@@ -222,6 +331,51 @@ for i in range(len(MC_list)): #Repeat the following steps for each variable (mom
fig.set_figheight(10)
ax1.set_title('%s Difference Vs Momentum %s %s events\n DETECTOR_CONFIG: %s'%(title_list[i],config,Nevents,Dconfig))
plt.savefig(os.path.join(r_path, '%s_difference_vs_momentum_%s.png' % (title_list_n[i],config)))
plt..close()
title ='difference vs momentum'
particle_nlist = ['All','Pions','Protons','Electrons','Neutrons','Photons']
for j in range(len(X_list)):#Repeat the following steps for each particle (pions,protons,electrons,neutrons,photons)
Y_error[j] = error_bars(X_plot[j], Y_plot[j], x_range)
plt.title('%s %s %s\n %s %s events\n DETECTOR_CONFIG: %s'%(title_list[i],title,particle_nlist[j],config,Nevents,Dconfig))
# plt.savefig(os.path.join(r_path, 'error_bars_%s_%s_%s_%s.png' % (title_list[i],title,particle_nlist[j],config)))
plt.xscale('log')
plt.show()
plt.close()
fig = plt.figure()
gs = fig.add_gridspec(3, 2, wspace=0)
(ax1, ax2), (ax3, ax4),(ax5, ax6) = gs.subplots(sharex=True, sharey=True)
ax1.scatter(X_plot[0], Y_plot[0], s = ssize)
ax2.scatter(X_plot[1], Y_plot[1], s = ssize)
ax3.scatter(X_plot[2], Y_plot[2], s = ssize)
ax4.scatter(X_plot[3], Y_plot[3], s = ssize)
ax5.scatter(X_plot[4], Y_plot[4], s = ssize)
ax6.scatter(X_plot[5], Y_plot[5], s = ssize)
ax1.errorbar(Y_error[0][0], Y_error[0][1], yerr=Y_error[0][3], xerr=Y_error[0][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax2.errorbar(Y_error[1][0], Y_error[1][1], yerr=Y_error[1][3], xerr=Y_error[1][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax3.errorbar(Y_error[2][0], Y_error[2][1], yerr=Y_error[2][3], xerr=Y_error[2][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax4.errorbar(Y_error[3][0], Y_error[3][1], yerr=Y_error[3][3], xerr=Y_error[3][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax5.errorbar(Y_error[4][0], Y_error[4][1], yerr=Y_error[4][3], xerr=Y_error[4][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
ax6.errorbar(Y_error[5][0], Y_error[5][1], yerr=Y_error[5][3], xerr=Y_error[5][2] ,fmt='None', ecolor = 'orange', elinewidth = 1)
# for angles
ax1.set_ylabel('rc-mc') #difference
ax3.set_ylabel('rc-mc')
ax5.set_ylabel('rc-mc')
ax5.set_xlabel('Momentum mc')
ax6.set_xlabel('Momentum mc')
ax1.set_xscale('log')
ax1.set_ylim(0-(Y_error[0][4]*10),0+(Y_error[0][4]*10))
ax2.set_title('Pions')
ax3.set_title('Protons')
ax4.set_title('Electrons')
ax5.set_title('Neutrons')
ax6.set_title('Photons')
fig.set_figwidth(20)
fig.set_figheight(10)
ax1.set_title('%s %s with error bars %s %s events\n DETECTOR_CONFIG: %s'%(title_list[i],title,config,Nevents,Dconfig))
plt.savefig(os.path.join(r_path, '%s_difference_vs_momentum_error_%s.png' % (title_list_n[i],config)))
plt.close()
###################################################################################################
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment