Newer
Older
from Gaudi.Configuration import *
from Configurables import ApplicationMgr, AuditorSvc, EICDataSvc, PodioOutput, GeoSvc
from GaudiKernel import SystemOfUnits as units
from GaudiKernel.SystemOfUnits import MeV, GeV, mm, cm, mrad
detector_name = "athena"
if "JUGGLER_DETECTOR" in os.environ :
detector_name = str(os.environ["JUGGLER_DETECTOR"])
detector_path = ""
if "DETECTOR_PATH" in os.environ :
detector_path = str(os.environ["DETECTOR_PATH"])
compact_path = os.path.join(detector_path, detector_name)
# RICH reconstruction
qe_data = [(1.0, 0.25), (7.5, 0.25),]
# CAL reconstruction
# get sampling fractions from system environment variable
ci_ecal_sf = float(os.environ.get("CI_ECAL_SAMP_FRAC", 0.253))
cb_hcal_sf = float(os.environ.get("CB_HCAL_SAMP_FRAC", 0.038))
ci_hcal_sf = float(os.environ.get("CI_HCAL_SAMP_FRAC", 0.025))
ce_hcal_sf = float(os.environ.get("CE_HCAL_SAMP_FRAC", 0.025))
# input arguments from calibration file
with open('config/emcal_barrel_calibration.json') as f:
calib_data = json.load(f)['electron']
print(calib_data)
img_barrel_sf = float(calib_data['sampling_fraction_img'])
scifi_barrel_sf = float(calib_data['sampling_fraction_scfi'])
# input and output
input_sims = [f.strip() for f in str.split(os.environ["JUGGLER_SIM_FILE"], ",") if f.strip()]
output_rec = str(os.environ["JUGGLER_REC_FILE"])
n_events = int(os.environ["JUGGLER_N_EVENTS"])
# services
services = []
# auditor service
services.append(AuditorSvc("AuditorSvc", Auditors=['ChronoAuditor', 'MemStatAuditor']))
# geometry service
services.append(GeoSvc("GeoSvc", detectors=["{}.xml".format(compact_path)], OutputLevel=WARNING))
services.append(EICDataSvc("EventDataSvc", inputs=input_sims, OutputLevel=WARNING))
# juggler components
from Configurables import PodioInput
from Configurables import Jug__Base__InputCopier_dd4pod__Geant4ParticleCollection_dd4pod__Geant4ParticleCollection_ as MCCopier
from Configurables import Jug__Base__InputCopier_dd4pod__CalorimeterHitCollection_dd4pod__CalorimeterHitCollection_ as CalCopier
from Configurables import Jug__Base__InputCopier_dd4pod__TrackerHitCollection_dd4pod__TrackerHitCollection_ as TrkCopier
from Configurables import Jug__Base__InputCopier_dd4pod__PhotoMultiplierHitCollection_dd4pod__PhotoMultiplierHitCollection_ as PMTCopier
from Configurables import Jug__Fast__MC2SmearedParticle as MC2DummyParticle
from Configurables import Jug__Fast__ParticlesWithTruthPID as ParticlesWithTruthPID
from Configurables import Jug__Fast__SmearedFarForwardParticles as FFSmearedParticles
from Configurables import Jug__Fast__MatchClusters as MatchClusters
from Configurables import Jug__Fast__ClusterMerger as ClusterMerger
from Configurables import Jug__Fast__TruthEnergyPositionClusterMerger as EnergyPositionClusterMerger
from Configurables import Jug__Digi__PhotoMultiplierDigi as PhotoMultiplierDigi
from Configurables import Jug__Digi__CalorimeterHitDigi as CalHitDigi
from Configurables import Jug__Digi__SiliconTrackerDigi as TrackerDigi
from Configurables import Jug__Reco__TrackerHitReconstruction as TrackerHitReconstruction
from Configurables import Jug__Reco__TrackingHitsCollector2 as TrackingHitsCollector
from Configurables import Jug__Reco__TrackerSourceLinker as TrackerSourceLinker
from Configurables import Jug__Reco__TrackParamTruthInit as TrackParamTruthInit
from Configurables import Jug__Reco__TrackParamClusterInit as TrackParamClusterInit
from Configurables import Jug__Reco__TrackParamVertexClusterInit as TrackParamVertexClusterInit
from Configurables import Jug__Reco__CKFTracking as CKFTracking
from Configurables import Jug__Reco__ParticlesFromTrackFit as ParticlesFromTrackFit
from Configurables import Jug__Reco__TrajectoryFromTrackFit as TrajectoryFromTrackFit
from Configurables import Jug__Reco__FarForwardParticles as FFRecoRP
from Configurables import Jug__Reco__FarForwardParticlesOMD as FFRecoOMD
from Configurables import Jug__Reco__CalorimeterHitReco as CalHitReco
from Configurables import Jug__Reco__CalorimeterHitsMerger as CalHitsMerger
from Configurables import Jug__Reco__CalorimeterIslandCluster as IslandCluster
from Configurables import Jug__Reco__ImagingPixelReco as ImCalPixelReco
from Configurables import Jug__Reco__ImagingTopoCluster as ImagingCluster
from Configurables import Jug__Reco__ClusterRecoCoG as RecoCoG
from Configurables import Jug__Reco__ImagingClusterReco as ImagingClusterReco
from Configurables import Jug__Reco__PhotoMultiplierReco as PhotoMultiplierReco
from Configurables import Jug__Reco__PhotoRingClusters as PhotoRingClusters
from Configurables import Jug__Reco__ParticleCollector as ParticleCollector
# branches needed from simulation root file
sim_coll = [
"mcparticles",
"EcalEndcapNHits",
"EcalEndcapPHits",
"EcalBarrelHits",
"EcalBarrelScFiHits",
"HcalBarrelHits",
"HcalEndcapPHits",
"HcalEndcapNHits",
"TrackerEndcapHits",
"TrackerBarrelHits",
"GEMTrackerEndcapHits",
"VertexBarrelHits",
"VertexEndcapHits",
"DRICHHits",
"MRICHHits"
]
# list of algorithms
algorithms = []
# input
podin = PodioInput("PodioReader", collections=sim_coll)
algorithms.append(podin)
# Generated particles
dummy = MC2DummyParticle("dummy",
inputParticles="mcparticles",
outputParticles="GeneratedParticles",
smearing=0)
algorithms.append(dummy)
# Crystal Endcap Ecal
ce_ecal_daq = dict(
dynamicRangeADC=5.*units.GeV,
capacityADC=32768,
pedestalMean=400,
pedestalSigma=3)
ce_ecal_digi = CalHitDigi("ce_ecal_digi",
inputHitCollection="EcalEndcapNHits",
outputHitCollection="EcalEndcapNRawHits",
energyResolutions=[0., 0.02, 0.],
**ce_ecal_daq)
algorithms.append(ce_ecal_digi)
ce_ecal_reco = CalHitReco("ce_ecal_reco",
inputHitCollection=ce_ecal_digi.outputHitCollection,
outputHitCollection="EcalEndcapNRecHits",
thresholdFactor=4, # 4 sigma cut on pedestal sigma
readoutClass="EcalEndcapNHits",
sectorField="sector",
**ce_ecal_daq)
algorithms.append(ce_ecal_reco)
ce_ecal_cl = IslandCluster("ce_ecal_cl",
inputHitCollection=ce_ecal_reco.outputHitCollection,
outputProtoClusterCollection="EcalEndcapNProtoClusters",
splitCluster=False,
minClusterHitEdep=1.0*units.MeV, # discard low energy hits
minClusterCenterEdep=30*units.MeV,
sectorDist=5.0*units.cm,
dimScaledLocalDistXY=[1.8, 1.8]) # dimension scaled dist is good for hybrid sectors with different module size
algorithms.append(ce_ecal_cl)
ce_ecal_clreco = RecoCoG("ce_ecal_clreco",
inputHitCollection=ce_ecal_cl.inputHitCollection,
inputProtoClusterCollection=ce_ecal_cl.outputProtoClusterCollection,
outputClusterCollection="EcalEndcapNClusters",
samplingFraction=0.998, # this accounts for a small fraction of leakage
logWeightBase=4.6)
algorithms.append(ce_ecal_clreco)
ce_ecal_clmerger = ClusterMerger("ce_ecal_clmerger",
inputClusters = ce_ecal_clreco.outputClusterCollection,
outputClusters = "EcalEndcapNMergedClusters",
outputRelations = "EcalEndcapNMergedClusterRelations")
algorithms.append(ce_ecal_clmerger)
# Endcap Sampling Ecal
ci_ecal_daq = dict(
dynamicRangeADC=50.*units.MeV,
capacityADC=32768,
pedestalMean=400,
pedestalSigma=10)
ci_ecal_digi = CalHitDigi("ci_ecal_digi",
inputHitCollection="EcalEndcapPHits",
outputHitCollection="EcalEndcapPRawHits",
**ci_ecal_daq)
algorithms.append(ci_ecal_digi)
ci_ecal_reco = CalHitReco("ci_ecal_reco",
inputHitCollection=ci_ecal_digi.outputHitCollection,
outputHitCollection="EcalEndcapPRecHits",
thresholdFactor=5.0,
**ci_ecal_daq)
algorithms.append(ci_ecal_reco)
# merge hits in different layer (projection to local x-y plane)
ci_ecal_merger = CalHitsMerger("ci_ecal_merger",
inputHitCollection=ci_ecal_reco.outputHitCollection,
outputHitCollection="EcalEndcapPRecMergedHits",
fields=["fiber_x", "fiber_y"],
fieldRefNumbers=[1, 1],
# fields=["layer", "slice"],
# fieldRefNumbers=[1, 0],
readoutClass="EcalEndcapPHits")
algorithms.append(ci_ecal_merger)
ci_ecal_cl = IslandCluster("ci_ecal_cl",
inputHitCollection=ci_ecal_merger.outputHitCollection,
outputProtoClusterCollection="EcalEndcapPProtoClusters",
splitCluster=False,
minClusterCenterEdep=10.*units.MeV,
localDistXY=[10*units.mm, 10*units.mm])
algorithms.append(ci_ecal_cl)
ci_ecal_clreco = RecoCoG("ci_ecal_clreco",
inputHitCollection=ci_ecal_cl.inputHitCollection,
inputProtoClusterCollection=ci_ecal_cl.outputProtoClusterCollection,
outputClusterCollection="EcalEndcapPClusters",
logWeightBase=6.2,
samplingFraction=ci_ecal_sf)
algorithms.append(ci_ecal_clreco)
ci_ecal_clmerger = ClusterMerger("ci_ecal_clmerger",
inputClusters = ci_ecal_clreco.outputClusterCollection,
outputClusters = "EcalEndcapPMergedClusters",
outputRelations = "EcalEndcapPMergedClusterRelations")
algorithms.append(ci_ecal_clmerger)
# Central Barrel Ecal (Imaging Cal.)
img_barrel_daq = dict(
dynamicRangeADC=3*units.MeV,
capacityADC=8192,
pedestalMean=400,
pedestalSigma=20) # about 6 keV
img_barrel_digi = CalHitDigi("img_barrel_digi",
inputHitCollection="EcalBarrelHits",
outputHitCollection="EcalBarrelImagingRawHits",
energyResolutions=[0., 0.02, 0.], # 2% flat resolution
**img_barrel_daq)
algorithms.append(img_barrel_digi)
img_barrel_reco = ImCalPixelReco("img_barrel_reco",
inputHitCollection=img_barrel_digi.outputHitCollection,
outputHitCollection="EcalBarrelImagingRecHits",
thresholdFactor=3, # about 20 keV
readoutClass="EcalBarrelHits", # readout class
layerField="layer", # field to get layer id
sectorField="module", # field to get sector id
**img_barrel_daq)
algorithms.append(img_barrel_reco)
img_barrel_cl = ImagingCluster("img_barrel_cl",
inputHitCollection=img_barrel_reco.outputHitCollection,
outputProtoClusterCollection="EcalBarrelImagingProtoClusters",
localDistXY=[2.*units.mm, 2*units.mm], # same layer
layerDistEtaPhi=[10*units.mrad, 10*units.mrad], # adjacent layer
neighbourLayersRange=2, # id diff for adjacent layer
sectorDist=3.*units.cm) # different sector
algorithms.append(img_barrel_cl)
img_barrel_clreco = ImagingClusterReco("img_barrel_clreco",
samplingFraction=img_barrel_sf,
inputHitCollection=img_barrel_cl.inputHitCollection,
inputProtoClusterCollection=img_barrel_cl.outputProtoClusterCollection,
outputClusterCollection="EcalBarrelImagingClusters",
outputLayerCollection="EcalBarrelImagingLayers")
algorithms.append(img_barrel_clreco)
# Central ECAL SciFi
scfi_barrel_daq = dict(
dynamicRangeADC=50.*MeV,
capacityADC=32768,
pedestalMean=400,
pedestalSigma=10)
scfi_barrel_digi = CalHitDigi("scfi_barrel_digi",
inputHitCollection="EcalBarrelScFiHits",
outputHitCollection="EcalBarrelScFiRawHits",
**scfi_barrel_daq)
algorithms.append(scfi_barrel_digi)
scfi_barrel_reco = CalHitReco("scfi_barrel_reco",
inputHitCollection=scfi_barrel_digi.outputHitCollection,
outputHitCollection="EcalBarrelScFiRecHits",
thresholdFactor=5.0,
readoutClass="EcalBarrelScFiHits",
layerField="layer",
sectorField="module",
localDetFields=["system", "module"], # use local coordinates in each module (stave)
**scfi_barrel_daq)
algorithms.append(scfi_barrel_reco)
# merge hits in different layer (projection to local x-y plane)
scfi_barrel_merger = CalHitsMerger("scfi_barrel_merger",
inputHitCollection=scfi_barrel_reco.outputHitCollection,
outputHitCollection="EcalBarrelScFiMergedHits",
fields=["fiber"],
fieldRefNumbers=[1],
readoutClass="EcalBarrelScFiHits")
algorithms.append(scfi_barrel_merger)
scfi_barrel_cl = IslandCluster("scfi_barrel_cl",
inputHitCollection=scfi_barrel_merger.outputHitCollection,
outputProtoClusterCollection="EcalBarrelScFiProtoClusters",
splitCluster=False,
minClusterCenterEdep=10.*MeV,
localDistXZ=[30*mm, 30*mm])
algorithms.append(scfi_barrel_cl)
scfi_barrel_clreco = RecoCoG("scfi_barrel_clreco",
inputHitCollection=scfi_barrel_cl.inputHitCollection,
inputProtoClusterCollection=scfi_barrel_cl.outputProtoClusterCollection,
outputClusterCollection="EcalBarrelScFiClusters",
logWeightBase=6.2,
samplingFraction= scifi_barrel_sf)
algorithms.append(scfi_barrel_clreco)
## barrel cluster merger
barrel_clus_merger = EnergyPositionClusterMerger("barrel_clus_merger",
inputMCParticles = "mcparticles",
inputEnergyClusters = scfi_barrel_clreco.outputClusterCollection,
inputPositionClusters = img_barrel_clreco.outputClusterCollection,
outputClusters = "EcalBarrelMergedClusters",
outputRelations = "EcalBarrelMergedClusterRelations")
algorithms.append(barrel_clus_merger)
# Central Barrel Hcal
cb_hcal_daq = dict(
dynamicRangeADC=50.*units.MeV,
capacityADC=32768,
pedestalMean=400,
pedestalSigma=10)
cb_hcal_digi = CalHitDigi("cb_hcal_digi",
inputHitCollection="HcalBarrelHits",
outputHitCollection="HcalBarrelRawHits",
**cb_hcal_daq)
algorithms.append(cb_hcal_digi)
cb_hcal_reco = CalHitReco("cb_hcal_reco",
inputHitCollection=cb_hcal_digi.outputHitCollection,
outputHitCollection="HcalBarrelRecHits",
thresholdFactor=5.0,
readoutClass="HcalBarrelHits",
layerField="layer",
sectorField="module",
**cb_hcal_daq)
algorithms.append(cb_hcal_reco)
cb_hcal_merger = CalHitsMerger("cb_hcal_merger",
inputHitCollection=cb_hcal_reco.outputHitCollection,
outputHitCollection="HcalBarrelMergedHits",
readoutClass="HcalBarrelHits",
fields=["layer", "slice"],
fieldRefNumbers=[1, 0])
algorithms.append(cb_hcal_merger)
cb_hcal_cl = IslandCluster("cb_hcal_cl",
inputHitCollection=cb_hcal_merger.outputHitCollection,
outputProtoClusterCollection="HcalBarrelProtoClusters",
splitCluster=False,
minClusterCenterEdep=30.*units.MeV,
localDistXY=[15.*units.cm, 15.*units.cm])
algorithms.append(cb_hcal_cl)
cb_hcal_clreco = RecoCoG("cb_hcal_clreco",
inputHitCollection=cb_hcal_cl.inputHitCollection,
inputProtoClusterCollection=cb_hcal_cl.outputProtoClusterCollection,
outputClusterCollection="HcalBarrelClusters",
logWeightBase=6.2,
samplingFraction=cb_hcal_sf)
algorithms.append(cb_hcal_clreco)
# Hcal Hadron Endcap
ci_hcal_daq = dict(
dynamicRangeADC=50.*units.MeV,
capacityADC=32768,
pedestalMean=400,
pedestalSigma=10)
ci_hcal_digi = CalHitDigi("ci_hcal_digi",
inputHitCollection="HcalEndcapPHits",
outputHitCollection="HcalEndcapPRawHits",
**ci_hcal_daq)
algorithms.append(ci_hcal_digi)
ci_hcal_reco = CalHitReco("ci_hcal_reco",
inputHitCollection=ci_hcal_digi.outputHitCollection,
outputHitCollection="HcalEndcapPRecHits",
thresholdFactor=5.0,
**ci_hcal_daq)
algorithms.append(ci_hcal_reco)
ci_hcal_merger = CalHitsMerger("ci_hcal_merger",
inputHitCollection=ci_hcal_reco.outputHitCollection,
outputHitCollection="HcalEndcapPMergedHits",
readoutClass="HcalEndcapPHits",
fields=["layer", "slice"],
fieldRefNumbers=[1, 0])
algorithms.append(ci_hcal_merger)
ci_hcal_cl = IslandCluster("ci_hcal_cl",
inputHitCollection=ci_hcal_merger.outputHitCollection,
outputProtoClusterCollection="HcalEndcapPProtoClusters",
splitCluster=False,
minClusterCenterEdep=30.*units.MeV,
localDistXY=[15.*units.cm, 15.*units.cm])
algorithms.append(ci_hcal_cl)
ci_hcal_clreco = RecoCoG("ci_hcal_clreco",
inputHitCollection=ci_hcal_cl.inputHitCollection,
inputProtoClusterCollection=ci_hcal_cl.outputProtoClusterCollection,
outputClusterCollection="HcalEndcapPClusters",
logWeightBase=6.2,
samplingFraction=ci_hcal_sf)
algorithms.append(ci_hcal_clreco)
# Hcal Electron Endcap
ce_hcal_daq = dict(
dynamicRangeADC=50.*units.MeV,
capacityADC=32768,
pedestalMean=400,
pedestalSigma=10)
ce_hcal_digi = CalHitDigi("ce_hcal_digi",
inputHitCollection="HcalEndcapNHits",
outputHitCollection="HcalEndcapNRawHits",
**ce_hcal_daq)
algorithms.append(ce_hcal_digi)
ce_hcal_reco = CalHitReco("ce_hcal_reco",
inputHitCollection=ce_hcal_digi.outputHitCollection,
outputHitCollection="HcalEndcapNRecHits",
thresholdFactor=5.0,
**ce_hcal_daq)
algorithms.append(ce_hcal_reco)
ce_hcal_merger = CalHitsMerger("ce_hcal_merger",
inputHitCollection=ce_hcal_reco.outputHitCollection,
outputHitCollection="HcalEndcapNMergedHits",
readoutClass="HcalEndcapNHits",
fields=["layer", "slice"],
fieldRefNumbers=[1, 0])
algorithms.append(ce_hcal_merger)
ce_hcal_cl = IslandCluster("ce_hcal_cl",
inputHitCollection=ce_hcal_merger.outputHitCollection,
outputProtoClusterCollection="HcalEndcapNProtoClusters",
splitCluster=False,
minClusterCenterEdep=30.*units.MeV,
localDistXY=[15.*units.cm, 15.*units.cm])
algorithms.append(ce_hcal_cl)
ce_hcal_clreco = RecoCoG("ce_hcal_clreco",
inputHitCollection=ce_hcal_cl.inputHitCollection,
inputProtoClusterCollection=ce_hcal_cl.outputProtoClusterCollection,
outputClusterCollection="HcalEndcapNClusters",
logWeightBase=6.2,
samplingFraction=ce_hcal_sf)
algorithms.append(ce_hcal_clreco)
# Tracking
trk_b_digi = TrackerDigi("trk_b_digi",
inputHitCollection="TrackerBarrelHits",
outputHitCollection="TrackerBarrelRawHits",
timeResolution=8)
algorithms.append(trk_b_digi)
trk_ec_digi = TrackerDigi("trk_ec_digi",
inputHitCollection="TrackerEndcapHits",
outputHitCollection="TrackerEndcapRawHits",
timeResolution=8)
algorithms.append(trk_ec_digi)
vtx_b_digi = TrackerDigi("vtx_b_digi",
inputHitCollection="VertexBarrelHits",
outputHitCollection="VertexBarrelRawHits",
timeResolution=8)
algorithms.append(vtx_b_digi)
vtx_ec_digi = TrackerDigi("vtx_ec_digi",
inputHitCollection="VertexEndcapHits",
outputHitCollection="VertexEndcapRawHits",
timeResolution=8)
algorithms.append(vtx_ec_digi)
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
gem_ec_digi = TrackerDigi("gem_ec_digi",
inputHitCollection="GEMTrackerEndcapHits",
outputHitCollection="GEMTrackerEndcapRawHits",
timeResolution=10)
algorithms.append(gem_ec_digi)
# Tracker and vertex reconstruction
trk_b_reco = TrackerHitReconstruction("trk_b_reco",
inputHitCollection = trk_b_digi.outputHitCollection,
outputHitCollection="TrackerBarrelRecHits")
algorithms.append(trk_b_reco)
trk_ec_reco = TrackerHitReconstruction("trk_ec_reco",
inputHitCollection = trk_ec_digi.outputHitCollection,
outputHitCollection="TrackerEndcapRecHits")
algorithms.append(trk_ec_reco)
vtx_b_reco = TrackerHitReconstruction("vtx_b_reco",
inputHitCollection = vtx_b_digi.outputHitCollection,
outputHitCollection="VertexBarrelRecHits")
algorithms.append(vtx_b_reco)
vtx_ec_reco = TrackerHitReconstruction("vtx_ec_reco",
inputHitCollection = vtx_ec_digi.outputHitCollection,
outputHitCollection="VertexEndcapRecHits")
algorithms.append(vtx_ec_reco)
gem_ec_reco = TrackerHitReconstruction("gem_ec_reco",
inputHitCollection=gem_ec_digi.outputHitCollection,
outputHitCollection="GEMTrackerEndcapRecHits")
algorithms.append(gem_ec_reco)
# Tracking hit collector
trk_hit_col = TrackingHitsCollector("trk_hit_col",
inputTrackingHits=[
str(trk_b_reco.outputHitCollection),
str(trk_ec_reco.outputHitCollection),
str(vtx_b_reco.outputHitCollection),
str(vtx_ec_reco.outputHitCollection),
str(gem_ec_reco.outputHitCollection) ],
trackingHits="trackingHits")
algorithms.append(trk_hit_col)
# Hit Source linker
sourcelinker = TrackerSourceLinker("trk_srcslnkr",
inputHitCollection = trk_hit_col.trackingHits,
outputSourceLinks = "TrackSourceLinks",
outputMeasurements = "TrackMeasurements")
algorithms.append(sourcelinker)
## Track param init
truth_trk_init = TrackParamTruthInit("truth_trk_init",
inputMCParticles="mcparticles",
outputInitialTrackParameters="InitTrackParams")
algorithms.append(truth_trk_init)
# Tracking algorithms
trk_find_alg = CKFTracking("trk_find_alg",
inputSourceLinks = sourcelinker.outputSourceLinks,
inputMeasurements = sourcelinker.outputMeasurements,
inputInitialTrackParameters = truth_trk_init.outputInitialTrackParameters,
outputTrajectories = "trajectories")
algorithms.append(trk_find_alg)
parts_from_fit = ParticlesFromTrackFit("parts_from_fit",
inputTrajectories = trk_find_alg.outputTrajectories,
outputParticles = "outputParticles",
outputTrackParameters = "outputTrackParameters")
algorithms.append(parts_from_fit)
trajs_from_fit = TrajectoryFromTrackFit("trajs_from_fit",
inputTrajectories = trk_find_alg.outputTrajectories,
outputTrajectoryParameters = "outputTrajectoryParameters")
algorithms.append(trajs_from_fit)
# Event building
parts_with_truth_pid = ParticlesWithTruthPID("parts_with_truth_pid",
inputMCParticles = "mcparticles",
inputTrackParameters = parts_from_fit.outputTrackParameters,
outputParticles = "ReconstructedChargedParticles")
algorithms.append(parts_with_truth_pid)
match_clusters = MatchClusters("match_clusters",
inputMCParticles = "mcparticles",
inputParticles = parts_with_truth_pid.outputParticles,
inputEcalClusters = [
str(ce_ecal_clmerger.outputClusters),
str(barrel_clus_merger.outputClusters),
str(ci_ecal_clmerger.outputClusters)
],
inputHcalClusters = [
str(ce_hcal_clreco.outputClusterCollection),
str(cb_hcal_clreco.outputClusterCollection),
str(ci_hcal_clreco.outputClusterCollection)
],
outputParticles = "ReconstructedParticles")
algorithms.append(match_clusters)
## Far Forward for now stored separately
fast_ff = FFSmearedParticles("fast_ff",
inputMCParticles = "mcparticles",
outputParticles = "ReconstructedFFParticles",
enableZDC = True,
enableB0 = True,
enableRP = True,
enableOMD = True,
ionBeamEnergy = 100,
crossingAngle = -0.025)
algorithms.append(fast_ff)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
# DRICH
drich_digi = PhotoMultiplierDigi("drich_digi",
inputHitCollection="DRICHHits",
outputHitCollection="DRICHRawHits",
quantumEfficiency=[(a*units.eV, b) for a, b in qe_data])
algorithms.append(drich_digi)
drich_reco = PhotoMultiplierReco("drich_reco",
inputHitCollection=drich_digi.outputHitCollection,
outputHitCollection="DRICHRecHits")
algorithms.append(drich_reco)
# FIXME
#drich_cluster = PhotoRingClusters("drich_cluster",
# inputHitCollection=pmtreco.outputHitCollection,
# #inputTrackCollection="ReconstructedParticles",
# outputClusterCollection="ForwardRICHClusters")
# MRICH
mrich_digi = PhotoMultiplierDigi("mrich_digi",
inputHitCollection="MRICHHits",
outputHitCollection="MRICHRawHits",
quantumEfficiency=[(a*units.eV, b) for a, b in qe_data])
algorithms.append(mrich_digi)
mrich_reco = PhotoMultiplierReco("mrich_reco",
inputHitCollection=mrich_digi.outputHitCollection,
outputHitCollection="MRICHRecHits")
algorithms.append(mrich_reco)
# FIXME
#mrich_cluster = PhotoRingClusters("drich_cluster",
# inputHitCollection=pmtreco.outputHitCollection,
# #inputTrackCollection="ReconstructedParticles",
# outputClusterCollection="ForwardRICHClusters")
# Output
podout = PodioOutput("out", filename=output_rec)
podout.outputCommands = [
"keep *",
"keep *Clusters",
"drop *ProtoClusters",
"drop outputParticles",
"drop InitTrackParams",
] + [
"drop " + c for c in sim_coll
] + [
"keep mcparticles"
]
algorithms.append(podout)
ApplicationMgr(
TopAlg = algorithms,
EvtSel = 'NONE',
EvtMax = n_events,
ExtSvc = services,
OutputLevel = WARNING,
AuditAlgorithms = True