Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// main45.cc is a part of the PYTHIA event generator.
// Copyright (C) 2020 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Author: Stefan Prestel <stefan.prestel@thep.lu.se>.
// Keywords: LHE file; hepmc;
// This program (main45.cc) illustrates how a file with HepMC3 events can be
// generated by Pythia8. See main44.cc for how to ouput HepMC2 events instead.
// Note: both main44.cc and main45.cc can use the same main44.cmnd input card.
#include "Pythia8/Pythia.h"
#include "Pythia8Plugins/HepMC3.h"
#include <unistd.h>
using namespace Pythia8;
//==========================================================================
// Example main programm to illustrate merging.
int main( int argc, char* argv[] ){
// Check that correct number of command-line arguments
if (argc != 2) {
cerr << " Unexpected number of command-line arguments ("<<argc<<"). \n"
<< " You are expected to provide the arguments" << endl
<< " 1. Output file for HepMC events" << endl
<< " Program stopped. " << endl;
return 1;
}
// Beam energies, minimal Q2, number of events to generate.
double eProton = 250.;
double eElectron = 10.0;
double Q2min = 5.;
int nEvent = 10000;
// Generator. Shorthand for event.
Pythia pythia;
Event& event = pythia.event;
// Set up incoming beams, for frame with unequal beam energies.
pythia.readString("Beams:frameType = 2");
// BeamA = proton.
pythia.readString("Beams:idA = 2212");
pythia.settings.parm("Beams:eA", eProton);
// BeamB = electron.
pythia.readString("Beams:idB = 11");
pythia.settings.parm("Beams:eB", eElectron);
// Set up DIS process within some phase space.
// Neutral current (with gamma/Z interference).
pythia.readString("WeakBosonExchange:ff2ff(t:gmZ) = on");
// Uncomment to allow charged current.
//pythia.readString("WeakBosonExchange:ff2ff(t:W) = on");
// Phase-space cut: minimal Q2 of process.
pythia.settings.parm("PhaseSpace:Q2Min", Q2min);
// Set dipole recoil on. Necessary for DIS + shower.
pythia.readString("SpaceShower:dipoleRecoil = on");
// Allow emissions up to the kinematical limit,
// since rate known to match well to matrix elements everywhere.
pythia.readString("SpaceShower:pTmaxMatch = 2");
// QED radiation off lepton not handled yet by the new procedure.
pythia.readString("PDF:lepton = off");
pythia.readString("TimeShower:QEDshowerByL = off");
// Initialize.
pythia.init();
// Interface for conversion from Pythia8::Event to HepMC one.
HepMC3::Pythia8ToHepMC3 toHepMC;
// Specify file where HepMC events will be stored.
HepMC3::WriterAscii ascii_io(argv[1]);
cout << endl << endl << endl;
// Histograms.
double Wmax = sqrt(4.* eProton * eElectron);
Hist Qhist("Q [GeV]", 100, 0., 50.);
Hist Whist("W [GeV]", 100, 0., Wmax);
Hist xhist("x", 100, 0., 1.);
Hist yhist("y", 100, 0., 1.);
Hist pTehist("pT of scattered electron [GeV]", 100, 0., 50.);
Hist pTrhist("pT of radiated parton [GeV]", 100, 0., 50.);
Hist pTdhist("ratio pT_parton/pT_electron", 100, 0., 5.);
double sigmaTotal(0.), errorTotal(0.);
bool wroteRunInfo = false;
// Get the inclusive x-section by summing over all process x-sections.
double xs = 0.;
for (int i=0; i < pythia.info.nProcessesLHEF(); ++i)
xs += pythia.info.sigmaLHEF(i);
// Begin event loop.
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {
if (!pythia.next()) continue;
double sigmaSample = 0., errorSample = 0.;
// Four-momenta of proton, electron, virtual photon/Z^0/W^+-.
Vec4 pProton = event[1].p();
Vec4 peIn = event[4].p();
Vec4 peOut = event[6].p();
Vec4 pPhoton = peIn - peOut;
// Q2, W2, Bjorken x, y.
double Q2 = - pPhoton.m2Calc();
double W2 = (pProton + pPhoton).m2Calc();
double x = Q2 / (2. * pProton * pPhoton);
double y = (pProton * pPhoton) / (pProton * peIn);
// Fill kinematics histograms.
Qhist.fill( sqrt(Q2) );
Whist.fill( sqrt(W2) );
xhist.fill( x );
yhist.fill( y );
pTehist.fill( event[6].pT() );
// pT spectrum of partons being radiated in shower.
for (int i = 0; i < event.size(); ++i) if (event[i].statusAbs() == 43) {
pTrhist.fill( event[i].pT() );
pTdhist.fill( event[i].pT() / event[6].pT() );
}
// Get event weight(s).
double evtweight = pythia.info.weight();
// Do not print zero-weight events.
if ( evtweight == 0. ) continue;
// Create a GenRunInfo object with the necessary weight names and write
// them to the HepMC3 file only once.
if (!wroteRunInfo) {
shared_ptr<HepMC3::GenRunInfo> genRunInfo;
genRunInfo = make_shared<HepMC3::GenRunInfo>();
vector<string> weight_names = pythia.info.weightNameVector();
genRunInfo->set_weight_names(weight_names);
ascii_io.set_run_info(genRunInfo);
ascii_io.write_run_info();
wroteRunInfo = true;
}
// Construct new empty HepMC event.
HepMC3::GenEvent hepmcevt;
// Work with weighted (LHA strategy=-4) events.
double normhepmc = 1.;
if (abs(pythia.info.lhaStrategy()) == 4)
normhepmc = 1. / double(1e9*nEvent);
// Work with unweighted events.
else
normhepmc = xs / double(1e9*nEvent);
// Set event weight
//hepmcevt.weights().push_back(evtweight*normhepmc);
// Fill HepMC event
toHepMC.fill_next_event( pythia, &hepmcevt );
// Add the weight of the current event to the cross section.
sigmaTotal += evtweight*normhepmc;
sigmaSample += evtweight*normhepmc;
errorTotal += pow2(evtweight*normhepmc);
errorSample += pow2(evtweight*normhepmc);
// Report cross section to hepmc
shared_ptr<HepMC3::GenCrossSection> xsec;
xsec = make_shared<HepMC3::GenCrossSection>();
// First add object to event, then set cross section. This order ensures
// that the lengths of the cross section and the weight vector agree.
hepmcevt.set_cross_section( xsec );
xsec->set_cross_section( sigmaTotal*1e9, pythia.info.sigmaErr()*1e9 );
// Write the HepMC event to file. Done with it.
ascii_io.write_event(hepmcevt);
// End of event loop. Statistics and histograms.
}
pythia.stat();
cout << Qhist << Whist << xhist << yhist << pTehist << pTrhist << pTdhist;
return 0;
}