Newer
Older

Sylvester Joosten
committed
#include "benchmark.hh"
#include "mt.h"
#include "plot.h"
#include "util.h"
#include <ROOT/RDataFrame.hxx>
#include <cmath>
#include <fmt/color.h>
#include <fmt/core.h>

Sylvester Joosten
committed
#include <fstream>

Sylvester Joosten
committed
#include <nlohmann/json.hpp>
#include <string>
#include <vector>
// Run VM invariant-mass-based benchmarks on an input reconstruction file for
// a desired vector meson (e.g. jpsi) and a desired decay particle (e.g. muon)
// Output figures are written to our output prefix (which includes the output
// file prefix), and labeled with our detector name.
// TODO: I think it would be better to pass small json configuration file to
// the test, instead of this ever-expanding list of function arguments.

Sylvester Joosten
committed
int vm_mass(const std::string& config_name) {
// read our configuration
std::ifstream config_file{config_name};
nlohmann::json config;
config_file >> config;
const std::string rec_file = config["rec_file"];
const std::string vm_name = config["vm_name"];
const std::string decay_name = config["decay"];
const std::string detector = config["detector"];
std::string output_prefix = config["output_prefix"];
const std::string test_tag = config["test_tag"];
fmt::print(fmt::emphasis::bold | fg(fmt::color::forest_green),
"Running VM invariant mass analysis...\n");
fmt::print(" - Vector meson: {}\n", vm_name);
fmt::print(" - Decay particle: {}\n", decay_name);
fmt::print(" - Detector package: {}\n", detector);
fmt::print(" - output prefix: {}\n", output_prefix);

Sylvester Joosten
committed
// create our test definition
// test_tag

Sylvester Joosten
committed
eic::util::Test vm_mass_resolution_test{

Sylvester Joosten
committed
{{"name",
fmt::format("{}_{}_{}_mass_resolution", test_tag, vm_name, decay_name)},
{"title",
fmt::format("{} -> {} Invariant Mass Resolution", vm_name, decay_name)},
{"description", "Invariant Mass Resolution calculated from raw "
"tracking data using a Gaussian fit."},
{"quantity", "resolution"},
{"target", ".1"}}};
// Run this in multi-threaded mode if desired
ROOT::EnableImplicitMT(kNumThreads);
// The particles we are looking for. E.g. J/psi decaying into e+e-
const double vm_mass = util::get_pdg_mass(vm_name);
const double decay_mass = util::get_pdg_mass(decay_name);
// Ensure our output prefix always ends on a dot, a slash or a dash
if (output_prefix.back() != '.' && output_prefix.back() != '/' &&
output_prefix.back() != '-') {
output_prefix += "-";
}
// Open our input file file as a dataframe
ROOT::RDataFrame d{"events", rec_file};

Sylvester Joosten
committed
// utility lambda functions to bind the vector meson and decay particle
// types
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
auto momenta_from_tracking =
[decay_mass](const std::vector<eic::TrackParametersData>& tracks) {
return util::momenta_from_tracking(tracks, decay_mass);
};
auto find_decay_pair =
[vm_mass](const std::vector<ROOT::Math::PxPyPzMVector>& parts) {
return util::find_decay_pair(parts, vm_mass);
};
// Define analysis flow
auto d_im =
d.Define("p_rec", momenta_from_tracking, {"outputTrackParameters"})
.Define("N", "p_rec.size()")
.Define("p_sim", util::momenta_from_simulation, {"mcparticles2"})
.Define("decay_pair_rec", find_decay_pair, {"p_rec"})
.Define("decay_pair_sim", find_decay_pair, {"p_sim"})
.Define("mass_rec", util::get_im, {"decay_pair_rec"})
.Define("mass_sim", util::get_im, {"decay_pair_sim"});
// Define output histograms
auto h_im_rec = d_im.Histo1D(
{"h_im_rec", ";m_{ll'} (GeV);#", 100, -1.1, vm_mass + 5}, "mass_rec");
auto h_im_sim = d_im.Histo1D(
{"h_im_sim", ";m_{ll'} (GeV);#", 100, -1.1, vm_mass + 5}, "mass_sim");
// Plot our histograms.
// TODO: to start I'm explicitly plotting the histograms, but want to
// factorize out the plotting code moving forward.
{
TCanvas c{"canvas", "canvas", 800, 800};
gPad->SetLogx(false);
gPad->SetLogy(false);
auto& h0 = *h_im_sim;
auto& h1 = *h_im_rec;
// histogram style
h0.SetLineColor(plot::kMpBlue);
h0.SetLineWidth(2);
h1.SetLineColor(plot::kMpOrange);
h1.SetLineWidth(2);
// axes
h0.GetXaxis()->CenterTitle();
h0.GetYaxis()->CenterTitle();
// draw everything
h0.DrawClone("hist");
h1.DrawClone("hist same");
// FIXME hardcoded beam configuration
plot::draw_label(10, 100, detector, vm_name, "Invariant mass");
TText* tptr;
auto t = new TPaveText(.6, .8417, .9, .925, "NB NDC");
t->SetFillColorAlpha(kWhite, 0);
t->SetTextFont(43);
t->SetTextSize(25);
tptr = t->AddText("simulated");
tptr->SetTextColor(plot::kMpBlue);
tptr = t->AddText("reconstructed");
tptr->SetTextColor(plot::kMpOrange);
t->Draw();
// Print canvas to output file
c.Print(fmt::format("{}vm_mass.png", output_prefix).c_str());
}

Sylvester Joosten
committed
// TODO we're not actually doing an IM fit yet, so for now just return an
// error for the test result
vm_mass_resolution_test.error(-1);
// write out our test data
eic::util::write_test(vm_mass_resolution_test,
fmt::format("{}vm_mass.json", output_prefix));

Sylvester Joosten
committed