Skip to content
Snippets Groups Projects
G4PRIM_FORMAT_24.tex 48.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Whitney Armstrong's avatar
    Whitney Armstrong committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    \documentstyle[11pt]{article}  
    %\documentstyle{article}  
    %\pagestyle{empty}  
    %\parindent = 0pt  
    %\parskip= .20in
    
    \begin{document}
    
    \title{g4.prim format version 2.4\\
    for Fukui Renderer DAWN}
    \author{Satoshi Tanaka}
    \date{February 5, 1998}
    \maketitle
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \section{Introduction}   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    This document explains the ``g4.prim format'' which is able to describe  
    visualizable 3D (three-dimensional) scenes   
    transferred from GEANT4 with help of its visualization manager 
    and Fukui Renderer driver (DAWN driver).  
    In the following, we use the term ^^ ^^ 3D data'' meaning  
    a data to construct a 3D scene or a hint information for the construction,
    e.g., shape, color, body-coordinate definition, and bounding box of
    the whole scene.
    On the other hand, the term ^^ ^^ g4.prim-format data'' means  
    a set of 3D data plus several rendering commands to control DAWN.
    
    DAWN receives the g4.prim-format data from GEANT4  
    via the TCP/IP socket of the default port number 40701,  
    or via the named pipe by specifying -G and -g options, respectively:  
    
    \begin{verbatim}
         % dawn -G     (invoking DAWN with socket mode)
         % dawn -g     (invoking DAWN with named pipe mode)
    \end{verbatim}
    
    \noindent
    GEANT4 invokes DAWN with -G option by default,  
    and with -g option if the environmental variable  
    ``G4DAWN\_NAMED\_PIPE'' is set to 1.  
    How GEANT4 sends the g4.prim-format data to DAWN is demonstrated in 
    the test programs, ``\verb+g4test_inet.cc+'' and ``\verb+g4test_unix.cc+'', 
    included in the DAWN package.
    G4.prim-format data sent from GEANT4 are automatically saved  
    to a file with the name ``g4.prim" in current directory of DAWN.   
    
    G4.prim-format data can also be visualized  
    with the stand alone (off-line) use of DAWN, giving a g4.prim-format file name  
    from a command line as an argument.
    
    \begin{verbatim}
         % dawn g4.prim-format-filename
    \end{verbatim}
    
    The g4.prim format is designed with the following philosophy:  
    
    \begin{enumerate}
    \item  The format should be suitable to describe 3D data of GEANT4.
           For this purpose,  
           (i) it should support most of shapes defined in GEANT4  
           as built-in primitives, and   
           (ii) it should be able to describe both the CSG and B-Rep data.  
    \item  Attributes such as color should be described with the way of  
           state machine in order to avoid repetitive resetting of them.  
    \item The format should be able to describe rendering commands for
          DAWN as well as 3D data,  
          but the rendering commands should be clearly distinguishable  
          from 3D data.  
    \item The format should be suitable for effective data transfer  
          via local or wide area network. For this purpose,   
          it should be compact and be able to be translated into VRML format
          easily.
    \end{enumerate}
    
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \section{3D Data and rendering commands}   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    Each 3D data begins with a character '/' (slash).  
    For example, a $1\times{}1\times{}1$ box is described as:   
    
    \begin{verbatim}
         /Box  0.5 0.5 0.5
    \end{verbatim}
    
    \noindent
    where the 0.5's are half lengths of edges.
    On the other hand,  
    each rendering command for DAWN begins with a character '!' 
    (exclamation mark).  
    For example,  
    
    \begin{verbatim}
         !DrawAll
    \end{verbatim}
    \noindent
    is a command to request DAWN to flush drawing.  
    Each 3D data and rendering command need not
    begin at the first column of the line, i.e., 
    indentation is allowed.
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \section{Comment lines and blank lines}   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    A Line beginning with a character '\verb+#+' is regarded as a comment line.  
    The character '\verb+#+' must be put at the first column.
    (Indentation of comment lines are not allowed.)
    The first line of the whole data should be a comment line as  
    ^^ ^^ \verb+##G4.PRIM-FORMAT-2.4+''. 
    We call this line the ^^ ^^ header-comment line'' below.  
    
    Blank lines are acceptable except for the very first line of the whole date. 
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \section{Global structure of g4.prim format}   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    The g4.prim format consists of three blocks:  
    (1) preamble (2) modeling block, and  
    (3) terminating block
    
    %-----------------------------
    \subsection{Preamble}   
    %-----------------------------
    
    The preamble is of the following form:  
    
    \begin{verbatim}
    ##G4.PRIM-FORMAT-2.4
    /BoundingBox  xmin ymin zmin xmax ymax zmax   
    !SetCamera  
    !OpenDevice
    \end{verbatim}
    
    \noindent
    The first line of a g4.prim-format data must be the header-comment line 
    as ^^ ^^ \verb+##G4.PRIM-FORMAT-2.4+''.
    The line, \verb+/BoundingBox ... +  
    defines a bounding box which determines extension of the described 3D scene.  
    Real numbers \verb+xmin+, \verb+ymin+ and \verb+zmin+ are minimum  
    x, y, and z world coordinates of the 3D scene,  
    while \verb+xmax+, \verb+ymax+ and \verb+zmax+ are maximum.  
    DAWN uses this information for automatic camera positioning,  
    automatic drawing of coordinate axes, etc.  
    \vspace{.20in}
    
    \noindent  
    {\bf{}Example:}  
    
    \begin{verbatim}
    ##G4.PRIM-FORMAT-2.4
    /BoundingBox -1.0 -2.5 -5.0 1.0 2.5 5.0
    !SetCamera
    !OpenDevice
    \end{verbatim}
    
    %-----------------------------
    \subsection{Modeling block}  
    %-----------------------------
    
    The modeling block begins with a line \ \verb+!BeginModeling+,   
    and ends with a line                  \ \verb+!EndModeling+.
    Three kinds of 3D data are described between them.
    
    \noindent  
    \begin{enumerate}
    \item 3D primitives, i.e, shapes and polylines
    \item Current body coordinates used to locate 3D primitives
    \item Current attributes to be assigned to 3D primitives
    \item Markers to be set to arbitrary 3D positions
    \end{enumerate}
    
    \noindent
    The available 3D primitives, attributes, and markers  
    are listed later together with a detailed description of  
    their formats.
    
    The current body coordinates are defined by the following two 
    lines:
    
    \begin{verbatim}
    /Origin      Ox  Oy  Oz
    /BaseVector  e1.x  e1.y  e1.z  e2.x  e2.y  e2.z  
    \end{verbatim}
    
    \noindent
    where (\verb+Ox+, \verb+Oy+, \verb+Oz+) is the origin of   
    the current body coordinates.  
    Orientation of the current body coordinates is defined with  
    a set of base vectors, i.e.,  
    x-directional base vector (\verb+e1.x+, \verb+e1.y+, \verb+e1.z+)  
    and y-directional base vector (\verb+e2.x+, \verb+e2.y+, \verb+e2.z+).
    Z-directional base vector is defined as  
    (\verb+e1.x+, \verb+e1.y+, \verb+e1.z+) $\times$  
    (\verb+e2.x+, \verb+e2.y+, \verb+e2.z+).  
    The base vectors need not be normalized.  
    The origin and the base vectors are expressed in terms of the world
    coordinates.  
    (There is no concept of hierarchical coordinate transformation.)
    The default current body coordinates, which need not be
    explicitly described are:
    
    \begin{verbatim}
    /Origin      0.0 0.0 0.0  
    /BaseVector  1.0 0.0 0.0  0.0 1.0 0.0   
    \end{verbatim}
    
    \noindent 
    In other words, the default current body coordinates are identical 
    with the world coordinates.
    
    Attributes are able to be assigned to 3D primitives.  
    The most important one is color: \verb+/ColorRGB R G B+.
    For example, a red box is described by putting a line
    \verb+/ColorRGB 1.0 0.0 0.0+ before a line \verb+/Box ...+.  
    Each of R (red), G (green), and B (blue) components of color  
    should take a value between 0 and 1.  
    The default color which need not be explicitly  
    described is white, which is equivalent to \verb+/ColorRGB 1.0 1.0 1.0+.  
    Once current body coordinates or current attributes are set,  
    they remain effective until   
    they are explicitly described later again with other values.
    \vspace{.20in}
    
    \noindent  
    {\bf{}Example: Red $1\times{}4\times{}9$ box centered at position (1, 2, 3)}
    
    \begin{verbatim}
    !BeginModeling
    /Origin   1  2  3  
    /ColorRGB 1  0  0  
    /Box 0.5   2.0   4.5  
    !EndModeling
    \end{verbatim}
    
    
    %-----------------------------
    \subsection{Terminating block}
    %-----------------------------
    The terminating block describes a few rendering commands as follows.
    
    \begin{verbatim}
    !DrawAll
    !CloseDevice
    \end{verbatim}
    
    \noindent
    These commands request DAWN to flush drawing and close the current  
    visualizing device.
    
    %-----------------------------
    \subsection{A Real example of complete visualizable file}
    %-----------------------------
    
    The following is a visualizable example of a   
    red $1\times{}4\times{}9$ box centered at position   
    (1,2,3) of the world coordinate.
    
    \begin{verbatim}
    ##G4.PRIM-FORMAT-2.4
    #####################################
    # Red 1x4x9 box centered at (1,2,3) #
    #####################################
    /BoundingBox  0.5  0.0  -1.5   1.5   4.0   7.5
    !SetCamera
    !OpenDevice
    !BeginModeling
    /Origin   1.0  2.0  3.0
    /ColorRGB 1.0  0.0  0.0  
    /Box 0.5   2.0   4.5  
    !EndModeling
    !DrawAll
    !CloseDevice  
    \end{verbatim}
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \section{Formats of 3D primitives}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    In this section, we explain formats of available 3D primitives,  
    i.e., shapes and polylines, one by one.
    Note that current body coordinates are used in the description.
    For example, the x-axis means the one in the current body coordinates.
    All angles are described in units of radians.
    
    
    %------------------
    \subsection{/Box}
    %------------------
    
    \verb+/Box+ describes a box with edges parallel to the x, y, and z axes.
    Its center locates at the origin.
    \verb+/Box+ corresponds to class G4Box of GEANT4.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Box dx  dy  dz+\\
    \hline%---------------------------------------
    \verb+dx+     & half length of x-directional edges\\
    \hline%---------------------------------------
    \verb+dy+     & half length of y-directional edges\\
    \hline%---------------------------------------
    \verb+dz+     & half length of z-directional edges\\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%------------------
    %\subsection{/Brep \ldots\ \ /EndBrep}  
    %%------------------
    %\verb+/Brep+ \ldots{} \verb+/EndBrep+ describes a general polyhedron  
    %composed of a set of 3D polygons.  
    %It is equivalent to \verb+/Polyhedron+ \ldots{} \verb+/EndPolyhedron+,
    %but its format is different.
    %It is recommended to use \verb+/Polyhedron+ \ldots{} \verb+/EndPolyhedron+.
    %Concave polygons are available but not recommended.  
    %Lists of vertices and
    %facets are described between \verb+/Brep+ and \verb+/EndBrep+.  
    %The following is the format for a polyhedron with  
    %$N$ vertices and $M$ facets.
    %\vspace{.20in}
    %
    %\begin{tabular}{|c|l|}
    %\hline%---------------------------------------
    %Format & \verb+/Brep+\\
    %       & \verb+BeginVertex+\\
    %       & \verb+v1  x1 y1 z1+\\
    %       & \verb+v2  x2 y2 z2+\\
    %       & \ldots\ldots    \\
    %       & \verb+vN  xN yN zN+\\
    %       & \verb+EndVertex+\\
    %       & \verb+BeginFacet+\\
    %       & \verb+f1_v1 f1_v2 f1_v3 +\ldots{};\\
    %       & \verb+f2_v1 f2_v2 f2_v3 +\ldots{};\\
    %       & \ldots\ldots    \\
    %       & \verb+fM_v1 fM_v2 fM_v3 +\ldots{};\\
    %       & \verb+EndFacet+\\
    %       & \verb+/EndBrep+\\
    %\hline%----------------------------------------------------
    %\verb+BeginVertex ... EndVertex+  & sub-block to describe vertex positions\\
    %\hline%----------------------------------------------------
    %\verb+vi+   & integer vertex label of the i-th vertex\\
    %            & of the polyhedron ($1 \leq \verb+i+ \leq N$) \\
    %\hline%----------------------------------------------------
    %\verb+(xi, yi, zi)+ & 3D position of the i-th vertex \\
    %                    & of the polyhedron ($1 \leq \verb+i+ \leq N$) \\
    %\hline%----------------------------------------------------
    %\verb+BeginFacet ... EndFacet+  & sub-block to describe facets\\
    %\hline%----------------------------------------------------
    %\verb+fa_vj+         & the j-th vertex label of the a-th facet, \\
    %                     & whose absolute value must coincide with \\
    %		     & one of the vertex labels  
    %		       \{\verb+v1+, \verb+v2+, \ldots, \verb+vN+\}\\
    %\hline%----------------------------------------------------
    %\verb+fa_v1 fa_v2 fa_v3 ... ;+ & the a-th facet expressed by connecting \\
    %                   & vertex labels in counter-clock-wise order\\
    %                   & viewing from its front side.\\
    %                   & Edge \verb+fa_vi+---\verb+fa_vj+ is regarded as \\
    %                   & an invisible edge if \verb+fa_vj+ is negative. \\
    %		   & At least three vertices must be described.\\
    %\hline%----------------------------------------------------
    %\end{tabular}
    %\vspace{.20in}
    %
    %The following is a sample description of a   
    %red $1\times{}4\times{}9$ box.   
    %\vspace{.20in}
    %
    %\noindent  
    %{\bf{}Example: 1$\times{}4\times{}9$ box}
    %
    %\begin{verbatim}
    %##G4.PRIM-FORMAT-2.4
    %######################################
    %# 1x4x9 box with /Brep ... /EndBrep ##
    %######################################
    %
    %/Brep
    %BeginVertex
    %1 -0.500000000 -2.000000000 -4.500000000
    %2 0.500000000 -2.000000000 -4.500000000
    %3 -0.500000000 2.000000000 -4.500000000
    %4 0.500000000 2.000000000 -4.500000000
    %5 -0.500000000 -2.000000000 4.500000000
    %6 0.500000000 -2.000000000 4.500000000
    %7 -0.500000000 2.000000000 4.500000000
    %8 0.500000000 2.000000000 4.500000000
    %EndVertex
    %BeginFacet
    %3 4 2 1 ;
    %1 2 6 5 ;
    %2 4 8 6 ;
    %4 3 7 8 ;
    %3 1 5 7 ;
    %5 6 8 7 ;
    %EndFacet
    %/EndBrep
    %\end{verbatim}
    %
    %
    %An invisible edge is expressed by assigning a negative 
    %integer vertex label to its ending point.
    %For example, ``1 -2 6 5 ;'' describes a facet
    %1$\rightarrow$2$\rightarrow$6$\rightarrow$5$\rightarrow$1,
    %in which the edge connecting vertices 1 and 2 is invisible.
    %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    
    %------------------
    \subsection{/Column}
    %------------------
    \verb+/Column+ describes a solid cylinder.  
    Its height extends along the z axis.
    The     top    circle is on plane z = +dz,   
    and the bottom circle    on plane z = -dz.
    Centers of the top and bottom circles are   
    (0, 0, +dz) and  (0, 0, -dz), respectively.
    \verb+/Column+ is equivalent to \verb+/Tubs+   
    with full azimuthal angle ($2\pi$) and zero minimum radius.  
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Column  r dz +\\
    \hline%---------------------------------------
    \verb+r+   & radius of the top and bottom circles\\
    \hline%---------------------------------------
    \verb+dz+  & half height along the z axis\\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %------------------
    \subsection{/Cons}
    %------------------
    \verb+/Cons+ describes a tube or its segment in azimuthal angle  
    with varying minimum (inside) and maximum (outside) radii.
    It is a cone (segment) with its upper part cut away.
    Its height extends along the z axis.
    The     top    facet is on plane z = +dz,   
    and the bottom facet    on plane z = -dz.
    Centers of the top and bottom facets are   
    (0, 0, +dz) and  (0, 0, -dz), respectively.
    \verb+/Cons+ corresponds to class G4Cons of GEANT4.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Cons rmin1 rmax1 rmin2 rmax2 dz sphi dphi+\\
    \hline%---------------------------------------
    \verb+rmin1+  & minimum (inside) radius at z = -\verb+dz+\\
    \hline%---------------------------------------
    \verb+rmax1+  & maximum (outside) radius at z = -\verb+dz+\\
    \hline%---------------------------------------
    \verb+rmin2+  & minimum (inside)  radius at z = +\verb+dz+\\
    \hline%---------------------------------------
    \verb+rmax2+  & maximum (outside) radius at z = +\verb+dz+\\
    \hline%---------------------------------------
    \verb+dz+     & half height along the z axis\\
    \hline%---------------------------------------
    \verb+sphi+  &  starting azimuthal angle, $[-2\pi, +2\pi]$ \\
    \hline%---------------------------------------
    \verb+dphi+  &  extension of azimuthal angle, \verb+dphi+ = $[0, 2\pi]$, \\
                 &  \verb+sphi+ + \verb+dphi+ = $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %----------------------------
    \subsection{/Parallelepiped}  
    %----------------------------
    \verb+/Parallelepiped+ describes a parallelepiped,  
    which is the following skewed box.
    \begin{enumerate}
    \item The top and bottom facets are identical parallelograms.
    \item The top parallelogram is on plane     z = +dz  
          and the bottom parallelogram on plane z = -dz.
    \item The center locates at the origin.
    \item A line joining the centers of the top and bottom parallelograms is
          skewed by angles $\theta$ (polar angle) and $\phi$ (azimuthal angle).
    \item Two edges of the top (or bottom) parallelogram are parallel  
          to the x axis.   
          Their length is $2\times$ \verb+dx+, and
          distance between them, i.e., height of the parallelogram,  
          is $2\times$ \verb+dy+.
    \item The top (or bottom) parallelogram skews by angle $\alpha$ in the   
          x direction.
          That is, $\alpha$ is the angle formed the y axis and
          a line joining middle points of the two x-directional edges   
          mentioned above.
    \end{enumerate}
    \verb+/Parallelepiped+ corresponds to class G4Para of GEANT4.
    \vspace{.20in}
    
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Parallelepiped  dx dy dz+ \\
           & \verb+                 tanAlpha+\\
           & \verb+                 tanTheta_cosPhi+\\
           & \verb+                 tanTheta_sinPhi+\\
    \hline%---------------------------------------
    \verb+dx+     & half length of edges parallel to the x axis\\
    \hline%---------------------------------------
    \verb+dy+     & half height of the top and bottom parallelograms\\
                  & along the y axis \\
    \hline%---------------------------------------
    \verb+dz+     & half height of this parallelepiped along the z axis\\
    \hline%---------------------------------------
    \verb+tanAlpha+  & $\tan(\alpha)$\\
                     & \ \ $\alpha$: angle expressing skew of the top and bottom\\   
                     & \ \ parallelograms in the x direction.\\
    \hline%---------------------------------------
    \verb+tanTheta_cosPhi+  &  $\tan(\theta)\times\cos(\phi)$ \\
                       & \ \ Polar angle $\theta$ and azimuthal angle $\phi$\\
    		   & \ \ describes skewness of the line joining centers\\
                       & \ \ of the top and bottom parallelograms\\
    \hline%---------------------------------------
    \verb+tanTheta_sinPhi+  &  $\tan(\theta)\times\sin(\phi)$\\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %----------------------------
    \subsection{/PolyCone}  
    %----------------------------
    \verb+/PolyCone+ describes a rotational body around the z axis.
    The shape of \mbox{\verb+/PolyCone+} is piled-up \verb+/Cons+'s  
    in the z direction.
    \verb+/PolyCone+ corresponds to class G4BREPSolidPCone of GEANT4.
    But \verb+/PolyCone+ is not really used in GEANT4 visualization.
    \verb+/Polyhedron ... /EndPolyhedron+ is used instead.   
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/PolyCone  sphi  dphi  nz           + \\
           & \verb+           z[nz]  rmin[nz]  rmax[nz]+ \\
           & (A[n] abbreviates a list of n real numbers) \\
    \hline%---------------------------------------
    \verb+sphi+  & starting azimuthal angle, $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \verb+dphi+  &  extension of azimuthal angle, \verb+dphi+ = $[0, 2\pi]$\\
                 &  and \verb+sphi+ + \verb+dphi+ = $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \verb+nz+ & number of given z coordinates to define piled-up
                \verb+/Cons+'s:\\
              & \verb+nz+ is equal to the number of the piled-up
    	    \verb+/Cons+'s\\
    	  & plus one.\\
    \hline%---------------------------------------
    \verb+z[i]+  & z coordinate of the top plane of the i-th \verb+/Cons+.\\  
                 & The \verb+z[0]+ defines the bottom plane of the whole shape. \\
                 & i = 0,1,2, ..., \verb+nz+ -1.\\
    \hline%---------------------------------------
    \verb+rmin[i]+  & minimum (inside)  radius at z = z[i] \\
    \hline%---------------------------------------
    \verb+rmax[i]+  & maximum (outside) radius at z = z[i] \\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %----------------------------
    \subsection{/PolyGon}  
    %----------------------------
    \verb+/PolyGon+ is similar to \verb+/PolyCone+.
    The difference is that its side is not a curved surface, but 
    its side is really a set of explicitly given numbers of 3D polygons. 
    \verb+/PolyGon+ corresponds to class G4BREPSolidPolyhedra of GEANT4.
    But \verb+/PolyGon+ is not really used in GEANT4 visualization.   
    \verb+/Polyhedron ... /EndPolyhedron+ is used instead.   
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/PolyGon   sphi  dphi  nsides  nz+ \\
           & \verb+           z[nz]  rmin[nz]  rmax[nz]+ \\
           & (A[n] abbreviates a list of n real numbers) \\
    \hline%---------------------------------------
    \verb+nsides+   & accuracy of expressing curved side surfaces\\
    \hline%---------------------------------------
    others & same as \verb+/PolyCone+ \\
    \hline%---------------------------------------
    \end{tabular}
    
    %-------------------------------------------
    \subsection{/Polyhedron \ldots\ \ /EndPolyhedron}  
    %--------------------------------------------
    
    \verb+/Polyhedron+ \ldots{} \verb+/EndPolyhedron+
    describes a general polyhedron composed of a set of 3D polygons.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %It is equivalent to \verb+/Brep+ \ldots{} \verb+/EndBrep+,
    %but its format is different.
    %It is recommended to use \verb+/Polyhedron+ \ldots{} \verb+/EndPolyhedron+.
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    Concave polygons are available but not recommended.  
    Lists of vertices and
    facets are described between \verb+/Polyhedron+ and \verb+/EndPolyhedron+.  
    The following is the format for a polyhedron with  
    $N$ vertices and $M$ facets.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Polyhedron+\\
           & \verb+/Vertex  x1 y1 z1+\\
           & \verb+/Vertex  x2 y2 z2+\\
           & \ldots\ldots    \\
           & \verb+/Vertex  xN yN zN+\\
           & \verb+/Facet  f1_v1 f1_v2 f1_v3 +\ldots{}\\
           & \verb+/Facet  f2_v1 f2_v2 f2_v3 +\ldots{}\\
           & \ldots\ldots    \\
           & \verb+/Facet  fM_v1 fM_v2 fM_v3 +\ldots{}\\
           & \verb+/EndPolyhedron+\\
    \hline%----------------------------------------------------
    \verb+(xi, yi, zi)+ & 3D position of the i-th vertex \\
                        & of the polyhedron ($1 \leq \verb+i+ \leq N$). \\
                        & The integer label ^^ i'' is assigned to \\
    		    & vertices incrementally, beginning from 1.\\
    \hline%----------------------------------------------------
    \verb+fa_vj+         & the j-th vertex label of the a-th facet, \\
                         & whose absolute value must coincide with \\
    		     & one of the vertex labels  
    		       \{$1, 2, 3, \ldots, N$\}.\\
    \hline%----------------------------------------------------
    \verb+fa_v1 fa_v2 fa_v3 ... + & the a-th facet expressed by connecting \\
                       & vertex labels in counter-clock-wise order\\
                       & viewing from its front side.\\
                       & Edge \verb+fa_vi+---\verb+fa_vj+ is regarded as \\
                       & an invisible edge if \verb+fa_vj+ is negative. \\
    		   & At least three vertices must be described.\\
    \hline%----------------------------------------------------
    \end{tabular}
    \vspace{.20in}
    
    
    Note that positive-integer labels are incrementally and automatically
    assinged to vertices given by  \verb+/Vertex  ...+,   
    beginning from 1, not 0.
    
    An invisible edge is expressed by assigning a negative 
    integer vertex label to its ending point.
    For example, ``/Facet 1 -2 6 5 ;'' describes a facet
    1$\rightarrow$2$\rightarrow$6$\rightarrow$5$\rightarrow$1,
    in which the edge connecting vertices 1 and 2 is invisible.
    
    Vertex data (\verb+/Vertex ...+) and facet data (\verb+/Facet  ...+)
    can be described at any position with any order
    between \verb+/Polyhedron+ \ldots{} \verb+/EndPolyhedron+, 
    but it is recommended that all vertex data are described beforehand.  
    
    The following is a sample description of a   
    red $1\times{}4\times{}9$ box using
    \verb+/Polyhedron+ \ldots{}\verb+/EndPolyhedron+. 
    \vspace{.20in}
    
    \noindent  
    {\bf{}Example: 1$\times{}4\times{}9$ box}
    
    \begin{verbatim}
    ##G4.PRIM-FORMAT-2.4
    ##################################################
    # 1x4x9 box with /polyhedron ... /EndPolyhedron ##
    ##################################################
    
    /BoundingBox -0.5 -2.0 -4.5  0.5  2.0  4.5
    !SetCamera
    !OpenDevice 
    !BeginModeling
    
    /ColorRGB  1.0 0.0 0.0
    
    /Polyhedron
    /Vertex -0.500000000 -2.000000000 -4.500000000
    /Vertex  0.500000000 -2.000000000 -4.500000000
    /Vertex -0.500000000 2.000000000 -4.500000000
    /Vertex  0.500000000 2.000000000 -4.500000000
    /Vertex -0.500000000 -2.000000000 4.500000000
    /Vertex  0.500000000 -2.000000000 4.500000000
    /Vertex -0.500000000 2.000000000 4.500000000
    /Vertex  0.500000000 2.000000000 4.500000000
    /Facet 3 4 2 1 
    /Facet 1 2 6 5 
    /Facet 2 4 8 6 
    /Facet 4 3 7 8 
    /Facet 3 1 5 7 
    /Facet 5 6 8 7 
    /EndPolyhedron
    
    
    !EndModeling
    !DrawAll 
    !CloseDevice 
    \end{verbatim}
    
    
    
    %-------------------------------------------
    \subsection{/Polyline \ldots\ \ /EndPolyline}  
    %--------------------------------------------
    \verb+/Polyline ... /EndPolyline+ describes a polyline, i.e.,  
    a set of successive line segments.  
    A List of vertices is described between
    \verb+/Polyline+ and \verb+/EndPolyline+.
    The following is the format of describing a polyline with
    $N$ vertices, i.e., $N-1$ line segments.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Polyline+\\
           & \verb+/PLVertex x1 y1 z1+\\
           & \verb+/PLVertex x2 y2 z2+\\
           & \ldots\ldots    \\
           & \verb+/PLVertex xN yN zN+\\
           & \verb+/EndPolyline+\\
    \hline%----------------------------------------------------
    \verb+(xi, yi, zi)+ &  the i-th vertex position\\
    \hline%----------------------------------------------------
    \end{tabular}
    \vspace{.20in}
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %The key word \verb+/PLVertex+ can be replaced with \verb+PLVertex+ 
    %without the first letter ^^ /', though it is not recommended.
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    %------------------
    \subsection{/Sphere}  
    %------------------
    \verb+/Sphere+ describes a sphere.
    Its center locates at the origin.   
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%----------------------
    Format & \verb+/Sphere  r+\\
    \hline%----------------------
    \verb+r+      & radius\\
    \hline%----------------------
    \end{tabular}
    
    
    %------------------
    \subsection{/SphereSeg}  
    %------------------
    \verb+/SphereSeg+ describes a sphere segment in polar and/or azimuthal angles.  
    It corresponds to class G4Sphere of GEANT4.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/SphereSeg  rmin rmax stheta dtheta sphi dphi+\\
    \hline%---------------------------------------
    \verb+rmin+  & minimum (inside)  radius \\
    \hline%---------------------------------------
    \verb+rmax+  & maximum (outside) radius \\
    \hline%---------------------------------------
    \verb+stheta+  & starting polar angle, $[0, \pi$] \\
    \hline%---------------------------------------
    \verb+dtheta+  &  extension of polar angle, \verb+dtheta+ = $[0, \pi]$\\
                   &  and \verb+stheta+ + \verb+dtheta+ = $[0, \pi$] \\
    \hline%---------------------------------------
    \verb+sphi+  & starting azimuthal angle, $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \verb+dphi+  &  extension of azimuthal angle, \verb+dphi+ = $[0, 2\pi]$\\
                 &  and \verb+sphi+ + \verb+dphi+ = $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \end{tabular}
    
    %------------------
    \subsection{/Torus}
    %------------------
    \verb+/Torus+ describes a torus or its segment in azimuthal angle
    around the z axis.
    The curbed tube to form the torus has 
    a constant minimum inside radius (rmin) and a maximum outside radius (rmax).
    The circle drawn by the central line of the tube has a radius rtor,
    and center of this circle is the coordinate origin.
    \verb+/Torus+ corresponds to class G4Torus of GEANT4.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Torus rmin rmax rtor sphi dphi+\\
    \hline%---------------------------------------
    \verb+rmin+  & minimum (inside)  radius of tube \\
    \hline%---------------------------------------
    \verb+rmax+  & maximum (outside) radius of tube \\
    \hline%---------------------------------------
    \verb+rtor+  & radius of circle drawn by the central line of the tube\\
    \hline%---------------------------------------
    \verb+sphi+ & starting azimuthal angle of the above circle, \\
                & \verb+sphi+ = $[-2\pi, +2\pi$]\\
    \hline%---------------------------------------
    \verb+dphi+ & extension of azimuthal angle of the above circle,\\
    	    & \verb+dphi+ = $[0, 2\pi]$,\\
                &  \verb+sphi+ + \verb+dphi+ = $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %------------------
    \subsection{/Trap}
    %------------------
    \verb+/Trap+ is a skewed version of \verb+/Trd+, i.e.,   
    asymmetric pyramid with its upper part cut away.
    Its top and bottom facets are asymmetric trapezoids.   
    Its skew is expressed with direction of   
    a line joining the centers of the top and bottom trapezoids.  
    (Here we define a center of a trapezoid  by an intersection   
    point of two lines passing through middle points of opponent edges.)\ \   
    This line should pass through the origin.
    The     top    trapezoid is on plane z = +dz,   
    and the bottom trapezoid    on plane z = -dz.
    Note that there are 11 parameters, but only 9 are really independent.
    Meanings of some parameters are similar to those of \verb+/Parallelepiped+.
    \verb+/Trap+ corresponds to class G4Trap of GEANT4.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Trap dz theta phi h1 bl1 tl1 alpha1+ \\
           & \verb+                   h2 bl2 tl2 alpha2+ \\
    \hline%---------------------------------------
    \verb+dz+     & half height of this shape along the z axis \\
    \hline%---------------------------------------
    \verb+theta+  & polar angle of the line expressing skew \\
    \hline%---------------------------------------
    \verb+phi+    & azimuthal angle of the line expressing skew \\
    \hline%---------------------------------------
    \verb+h1+     & half height of the bottom trapezoid along the y axis \\
    \hline%---------------------------------------
    \verb+bl1+    & half length along the x direction of the side at \\
                  & minumum y of the bottom trapezoid\\
    \hline%---------------------------------------
    \verb+tl1+    & half length along the x direction of the side at \\
                  & maximum y of the bottom trapezoid \\
    \hline%---------------------------------------
    \verb+alpha1+ & angle formed the y axis and a line joining middle points \\
                  & of the two x-directional edges of the bottom trapezoid \\
    \hline%---------------------------------------
    \verb+h2+     & half height of the top trapezoid along the y axis \\
    \hline%---------------------------------------
    \verb+bl2+    & half length along the x direction of the side at \\
                  & minimum y of the top trapezoid \\
    \hline%---------------------------------------
    \verb+tl2+    & half length along the x direction of the side at \\
                  & maximum y of the top trapezoid \\
    \hline%---------------------------------------
    \verb+alpha2+ & angle formed the y axis and a line joining middle points \\
                  & of the two x-directional edges of the bottom trapezoid\\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %------------------
    \subsection{/Trd}
    %------------------
    \verb+/Trd+ describes a symmetric pyramid with its upper part cut away.
    Its properties are:
    
    \begin{enumerate}
    \item The top and bottom facets are rectangles with, in general, different sizes.
    \item Two edges of the top (or bottom) rectangles   
          are parallel to the x axis, and   
          the other two edges are parallel to the y axis.
    \item The     top    rectangle is  on plane  z = +dz,  
          and the bottom rectangle     on plane  z = -dz.
    \item Centers of the top and bottom rectangles are   
          (0, 0, +dz) and  (0, 0, -dz), respectively.
    \end{enumerate}
    \verb+/Trd+ corresponds to class G4Trd of GEANT4.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Trd  dx1 dx2 dy1 dy2 dz+\\
    \hline%---------------------------------------
    \verb+dx1+    & half length of x-parallel edges at z = -dz\\
    \hline%---------------------------------------
    \verb+dx2+    & half length of x-parallel edges at z = +dz\\
    \hline%---------------------------------------
    \verb+dy1+    & half length of y-parallel edges at z = -dz\\
    \hline%---------------------------------------
    \verb+dy2+    & half length of y-parallel edges at z = +dz\\
    \hline%---------------------------------------
    \verb+dz+     & half height along the z axis \\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %------------------
    \subsection{/Tubs}
    %------------------
    \verb+/Tubs+ describes a tube or its segment in azimuthal angle  
    with constant minimum (inside) and maximum (outside) radii.
    Its height extends along the z axis.
    The     top    facet is on plane z = +dz,   
    and the bottom facet    on plane z = -dz.
    Centers of the top and bottom facets are   
    (0, 0, +dz) and  (0, 0, -dz), respectively.
    \verb+/Tubs+ is equivalent to \verb+/Cons+    
    with \verb+rmin1+ = \verb+rmin2+ and \verb+rmax1+ = \verb+rmax2+.
    \verb+/Tubs+ corresponds to class G4Tubs of GEANT4.
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/Tubs rmin rmax dz sphi dphi+\\
    \hline%---------------------------------------
    \verb+rmin+  & minimum (inside)  radius \\
    \hline%---------------------------------------
    \verb+rmax+  & maximum (outside) radius \\
    \hline%---------------------------------------
    \verb+dz+    & half height along the z axis\\
    \hline%---------------------------------------
    \verb+sphi+  & starting azimuthal angle, $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \verb+dphi+  &  extension of azimuthal angle, \verb+dphi+ = $[0, 2\pi]$, \\
                 &  \verb+sphi+ + \verb+dphi+ = $[-2\pi, +2\pi$] \\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \section{Formats of attributes}
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    This section describes the formats of available attributes.
    Each attribute has an current value,  
    which is assigned to described 3D primitives automatically.  
    
    %---------------------
    \subsection{/ColorRGB}  
    %---------------------
    \verb+/ColorRGB+ describes current color.  
    For 3D shapes such as \verb+/Box+,  
    it is used as a set of diffusion reflection coefficients.  
    For polylines, it is regarded as their color directly.
    By default, \verb+/ColorRGB 1.0 1.0 1.0+ is set implicitly. 
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format & \verb+/ColorRGB  R  G  B+\\
    \hline%---------------------------------------
    (R, G, B) & red, green, and blue components of color. \\
              & R, G, B = [0,1] \\
    \hline%---------------------------------------
    \end{tabular}
    
    
    %----------------------------
    \subsection{/FontName}  
    %----------------------------
    \verb+/FontName+ sets a current font used by 
    \verb+/MarkText2D+ and \verb+/MarkText2DS+, and \verb+/Text2DS+. 
    Its argument should coincide with one of a font name supported by 
    a PostScript driver used for printing.
    Greek letters are also available by setting the argument to "Symbol".
    By default, \verb+/FontName Times-Roman+ is set implicitly. 
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}
    \hline%---------------------------------------
    Format     & \verb+/FontName  fontname+\\
    \hline%---------------------------------------
    fontname   &  string to specify font name \\
               &  (e.g. Times-Roman, Courier, Symbol) \\
    \hline%---------------------------------------
    \end{tabular}
    
    
    
    %-------------------------
    \subsection{/ForceWireframe}  
    %-------------------------
    \verb+/ForceWireframe+ is a boolean flag, which describes current 
    forcible wireframe mode.
    Its value is either 0 or 1.
    If it is set to 1, 3D shapes are visualized with 
    wireframe style forcibly.
    If it is set to 0, 3D shapes are visualized according to 
    a drawing style given on the GUI panel of DAWN.
    By default, \verb+/ForceWireframe 0+ is set implicitly. 
    \vspace{.20in}
    
    \begin{tabular}{|c|l|}