Skip to content
Snippets Groups Projects
BarrelCalorimeterHybrid_geo.cpp 17.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
//==========================================================================
//  AIDA Detector description implementation
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
// All rights reserved.
//
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
//
// Author     : M.Frank
//
//==========================================================================
//
// Specialized generic detector constructor
//
//==========================================================================
//
// Implementation of the Sci Fiber geometry: M. Żurek 07/19/2021
#include "DD4hep/DetFactoryHelper.h"
#include "XML/Layering.h"
#include "Math/Point2D.h"
#include "TGeoPolygon.h"
#include "TMath.h"

using namespace std;
using namespace dd4hep;
using namespace dd4hep::detail;

typedef ROOT::Math::XYPoint Point;

// Fill fiber lattice into trapezoid starting from position (0,0) in x-z coordinate system
vector<Point> fiberPositions(double radius, double x_spacing, double z_spacing, double x, double z, double phi, double spacing_tol = 1e-2) {
  // z_spacing - distance between fiber layers in z
  // x_spacing - distance between fiber centers in x
  // x - half-length of the shorter (bottom) base of the trapezoid
  // z - height of the trapezoid
  // phi - angle between z and trapezoid arm

  vector<Point> positions;
  int z_layers = floor((z/2-radius-spacing_tol)/z_spacing); // number of layers that fit in z/2

    double z_pos = 0.;
    double x_pos = 0.;

    for(int l = -z_layers; l < z_layers+1; l++) {

      z_pos = l*z_spacing;
      double x_max = x + (z/2. + z_pos)*tan(phi) - spacing_tol; // calculate max x at particular z_pos
      (l % 2 == 0) ? x_pos = 0. : x_pos = x_spacing/2; // account for spacing/2 shift

      while(x_pos < (x_max - radius)) {
        positions.push_back(Point(x_pos,z_pos));
        if(x_pos != 0.) positions.push_back(Point(-x_pos,z_pos)); // using symmetry around x=0
        x_pos += x_spacing;
      }
    }

    return positions;
}

// Calculate number of divisions for the readout grid for the fiber layers
std::pair<int, int> getNdivisions(double x, double z, double dx, double dz){
  // x and z defined as in vector<Point> fiberPositions
  // dx, dz - size of the grid in x and z we want to get close to with the polygons
  // See also descripltion when the function is called

  double SiPMsize = 13.0*mm;
  double grid_min = SiPMsize + 3.0*mm;

  if(dz < grid_min) {
    dz = grid_min;
  }

  if(dx < grid_min) {
    dx = grid_min;
  }

  int nfit_cells_z = floor(z/dz);
  int n_cells_z = nfit_cells_z;

  if(nfit_cells_z == 0) n_cells_z++;

  int nfit_cells_x = floor((2*x)/dx);
  int n_cells_x = nfit_cells_x;

  if(nfit_cells_x == 0) n_cells_x++;

  return std::make_pair(n_cells_x, n_cells_z);

}

// Calculate dimensions of the polygonal grid in the cartesian coordinate system x-z
vector< tuple<int, Point, Point, Point, Point> > gridPoints(int div_x, int div_z, double x, double z, double phi) {
  // x, z and phi defined as in vector<Point> fiberPositions
  // div_x, div_z - number of divisions in x and z
  double dz = z/div_z;

  std::vector<std::tuple<int, Point, Point, Point, Point>> points;

  for(int iz = 0; iz < div_z + 1; iz++){
    for(int ix = 0; ix < div_x + 1; ix++){
      double A_z = -z/2 + iz*dz;
      double B_z = -z/2 + (iz+1)*dz;

      double len_x_for_z = 2*(x+iz*dz*tan(phi));
      double len_x_for_z_plus_1 = 2*(x + (iz+1)*dz*tan(phi));

      double dx_for_z = len_x_for_z/div_x;
      double dx_for_z_plus_1 = len_x_for_z_plus_1/div_x;

      double A_x = -len_x_for_z/2. + ix*dx_for_z;
      double B_x = -len_x_for_z_plus_1/2. + ix*dx_for_z_plus_1;

      double C_z = B_z;
      double D_z = A_z;
      double C_x = B_x + dx_for_z_plus_1;
      double D_x = A_x + dx_for_z;

      int id = ix + div_x * iz;

      auto A = Point(A_x, A_z);
      auto B = Point(B_x, B_z);
      auto C = Point(C_x, C_z);
      auto D = Point(D_x, D_z);

      // vertex points filled in the clock-wise direction
      points.push_back(make_tuple(id, A, B, C, D));

    }
  }

  return points;

}

// Create detector
static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens)  {
  static double tolerance = 0e0;
  Layering      layering (e);
  xml_det_t     x_det     = e;
  Material      air       = description.air();
  int           det_id    = x_det.id();
  string        det_name  = x_det.nameStr();
  xml_comp_t    x_staves  = x_det.staves();
  xml_comp_t    x_dim     = x_det.dimensions();
  int           nsides    = x_dim.numsides();

  double        inner_r   = x_dim.rmin();
  double        dphi      = (2*M_PI/nsides);
  double        hphi      = dphi/2;
  double        support_thickness = 0.0;
  if(x_staves.hasChild("support")){
    support_thickness = getAttrOrDefault(x_staves.child(_U(support)), _U(thickness), 5.0 * cm);
  }
  double        mod_z     = layering.totalThickness() + support_thickness;
  double        outer_r   = inner_r + mod_z;
  double        totThick  = mod_z;
  double        offset    = x_det.attr<double>(_Unicode(offset));
  DetElement    sdet      (det_name,det_id);
  Volume        motherVol = description.pickMotherVolume(sdet);
  PolyhedraRegular hedra  (nsides,inner_r,inner_r+totThick+tolerance*2e0,x_dim.z());
  Volume        envelope  (det_name,hedra,air);
  PlacedVolume  env_phv   = motherVol.placeVolume(envelope,Transform3D(Translation3D(0,0,offset)*RotationZ(M_PI/nsides)));

  env_phv.addPhysVolID("system",det_id);
  sdet.setPlacement(env_phv);

  DetElement    stave_det("stave0",det_id);
  double dx = 0.0; //mod_z / std::sin(dphi); // dx per layer

  // Compute the top and bottom face measurements.
  double trd_x2 = (2 * std::tan(hphi) * outer_r - dx)/2 - tolerance;
  double trd_x1 = (2 * std::tan(hphi) * inner_r + dx)/2 - tolerance;
  double trd_y1 = x_dim.z()/2 - tolerance;
  double trd_y2 = trd_y1;
  double trd_z  = mod_z/2 - tolerance;

  // Create the trapezoid for the stave.
  Trapezoid trd(trd_x1, // Outer side, i.e. the "long" X side.
                trd_x2, // Inner side, i.e. the "short"  X side.
                trd_y1, // Corresponds to subdetector (or module) Z.
                trd_y2, //
                trd_z); // Thickness, in Y for top stave, when rotated.

  Volume mod_vol("stave",trd,air);
  double l_pos_z = -(layering.totalThickness() / 2) - support_thickness/2.0;

  //double trd_x2_support = trd_x1;
  double trd_x1_support = (2 * std::tan(hphi) * outer_r - dx- support_thickness)/2 - tolerance;

  Solid  support_frame_s;
  // optional stave support
  if(x_staves.hasChild("support")){
    xml_comp_t x_support         = x_staves.child(_U(support));
    // is the support on the inside surface?
    bool       is_inside_support = getAttrOrDefault<bool>(x_support, _Unicode(inside), true);
    // number of "beams" running the length of the stave.
    int    n_beams        = getAttrOrDefault<int>(x_support, _Unicode(n_beams), 3);
    double beam_thickness = support_thickness / 4.0; // maybe a parameter later...
    trd_x1_support        = (2 * std::tan(hphi) * (outer_r - support_thickness + beam_thickness)) / 2 - tolerance;
    double grid_size      = getAttrOrDefault(x_support, _Unicode(grid_size), 25.0 * cm);
    double beam_width     = 2.0 * trd_x1_support / (n_beams + 1); // quick hack to make some gap between T beams

    double cross_beam_thickness    = support_thickness/4.0;
    //double trd_x1_support    = (2 * std::tan(hphi) * (inner_r + beam_thickness)) / 2 - tolerance;
    double trd_x2_support = trd_x2;

    int n_cross_supports = std::floor((trd_y1-cross_beam_thickness)/grid_size);

    Box        beam_vert_s(beam_thickness / 2.0 - tolerance, trd_y1, support_thickness / 2.0 - tolerance);
    Box        beam_hori_s(beam_width / 2.0 - tolerance, trd_y1, beam_thickness / 2.0 - tolerance);
    UnionSolid T_beam_s(beam_vert_s, beam_hori_s, Position(0, 0, -support_thickness / 2.0 + beam_thickness / 2.0));

    // cross supports
    Trapezoid  trd_support(trd_x1_support,trd_x2_support,
                           beam_thickness / 2.0 - tolerance, beam_thickness / 2.0 - tolerance,
                          support_thickness / 2.0 - tolerance - cross_beam_thickness/2.0);
    UnionSolid support_array_start_s(T_beam_s,trd_support,Position(0,0,cross_beam_thickness/2.0));
    for (int isup = 0; isup < n_cross_supports; isup++) {
      support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, -1.0 * isup * grid_size, cross_beam_thickness/2.0));
      support_array_start_s = UnionSolid(support_array_start_s, trd_support, Position(0, 1.0 * isup * grid_size, cross_beam_thickness/2.0));
    }
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_hori_s,
                   Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0));
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_hori_s,
                   Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0));
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_vert_s, Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0));
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_vert_s, Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0));

    support_frame_s = support_array_start_s;

    Material support_mat = description.material(x_support.materialStr());
    Volume   support_vol("support_frame_v", support_frame_s, support_mat);
    support_vol.setVisAttributes(description,x_support.visStr());

    // figure out how to best place
    //auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, l_pos_z + support_thickness / 2.0));
    auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, -l_pos_z - support_thickness / 2.0));
  }
  //l_pos_z += support_thickness;

  sens.setType("calorimeter");
  { // =====  buildBarrelStave(description, sens, module_volume) =====
    // Parameters for computing the layer X dimension:
    double stave_z  = trd_y1;
    double tan_hphi = std::tan(hphi);
    double l_dim_x  = trd_x1; // Starting X dimension for the layer.

    // Loop over the sets of layer elements in the detector.
    int l_num = 1;
    for(xml_coll_t li(x_det,_U(layer)); li; ++li)  {
      xml_comp_t x_layer = li;
      int repeat = x_layer.repeat();
      // Loop over number of repeats for this layer.
      for (int j=0; j<repeat; j++)    {
        string l_name = _toString(l_num,"layer%d");
        double l_thickness = layering.layer(l_num-1)->thickness();  // Layer's thickness.

        Position   l_pos(0,0,l_pos_z+l_thickness/2);      // Position of the layer.
	      double l_trd_x1 = l_dim_x - tolerance;
	      double l_trd_x2 = l_dim_x + l_thickness*tan_hphi - tolerance;
	      double l_trd_y1 = stave_z-tolerance;
	      double l_trd_y2 = l_trd_y1;
	      double l_trd_z  = l_thickness/2-tolerance;

        Trapezoid  l_trd(l_trd_x1,l_trd_x2,l_trd_y1,l_trd_y2,l_trd_z);
        Volume     l_vol(l_name,l_trd,air);
        DetElement layer(stave_det, l_name, det_id);

        // Loop over the sublayers or slices for this layer.
        int s_num = 1;
        double s_pos_z = -(l_thickness / 2);
        for(xml_coll_t si(x_layer,_U(slice)); si; ++si)  {
          xml_comp_t x_slice = si;
          string     s_name  = _toString(s_num,"slice%d");
          double     s_thick = x_slice.thickness();
          Volume     s_vol(s_name);
          DetElement slice(layer,s_name,det_id);

	          double s_trd_x1 = l_dim_x + (s_pos_z+l_thickness/2)*tan_hphi - tolerance;
	          double s_trd_x2 = l_dim_x + (s_pos_z+l_thickness/2+s_thick)*tan_hphi - tolerance;
	          double s_trd_y1 = stave_z-tolerance;
	          double s_trd_y2 = s_trd_y1;
	          double s_trd_z  = s_thick/2-tolerance;


            Trapezoid  s_trd(s_trd_x1, s_trd_x2, s_trd_y1, s_trd_y2, s_trd_z);
	          s_vol.setSolid(s_trd);
	          s_vol.setMaterial(description.material(x_slice.materialStr()));


          if (x_slice.hasChild("fiber")) {
            xml_comp_t x_fiber = x_slice.child(_Unicode(fiber));
            double f_radius = getAttrOrDefault(x_fiber, _U(radius), 0.1 * cm);
            double f_spacing_x = getAttrOrDefault(x_fiber, _Unicode(spacing_x), 0.122 * cm);
            double f_spacing_z = getAttrOrDefault(x_fiber, _Unicode(spacing_z), 0.134 * cm);
            std::string f_id_grid = getAttrOrDefault(x_fiber, _Unicode(identifier_grid), "grid");
            std::string f_id_fiber = getAttrOrDefault(x_fiber, _Unicode(identifier_fiber), "fiber");

            // Calculate fiber positions inside the slice
            vector<Point> f_pos = fiberPositions(f_radius, f_spacing_x, f_spacing_z, s_trd_x1, s_thick-tolerance, hphi);
            // Sort fiber IDs fo better organization
            sort(f_pos.begin(), f_pos.end(),
              [](const Point &p1, const Point &p2) {
              if (p1.y() == p2.y()) { return p1.x() < p2.x(); }
                return p1.y() < p2.y();
              });

            Tube f_tube(0, f_radius, stave_z-tolerance);

            // Set up the readout grid for the fiber layers
            // Trapezoid is divided into segments with equal dz and equal number of divisions in x
            // Every segment is a polygon that can be attached later to the lightguide
            // The grid size is assumed to be ~2x2 cm (starting values). This is to be larger than
            // SiPM chip (for GlueX 13mmx13mm: 4x4 grid 3mmx3mm with 3600 50×50 μm pixels each)
            // See, e.g., https://arxiv.org/abs/1801.03088 Fig. 2d

            // Calculate number of divisions
            pair<int, int> grid_div = getNdivisions(s_trd_x1, s_thick-tolerance, 2.0*cm, 2.0*cm);
            // Calculate polygonal grid coordinates (vertices)
            vector<tuple<int, Point, Point, Point, Point>> grid_vtx = gridPoints(grid_div.first, grid_div.second, s_trd_x1, s_thick-tolerance, hphi);

            vector<int> f_id_count(grid_div.first*grid_div.second,0);
            for (auto &p : f_pos) {
              int f_grid_id = -1;
              int f_id = -1;
              // Check to which grid fiber belongs to
              for (auto &poly_vtx : grid_vtx) {
                auto [grid_id, vtx_a, vtx_b, vtx_c, vtx_d] = poly_vtx;
                double poly_x[4] = {vtx_a.x(), vtx_b.x(), vtx_c.x(), vtx_d.x()};
                double poly_y[4] = {vtx_a.y(), vtx_b.y(), vtx_c.y(), vtx_d.y()};
                double f_xy[2] = {p.x(), p.y()};

                TGeoPolygon poly(4);
                poly.SetXY(poly_x,poly_y);
                poly.FinishPolygon();

                if(poly.Contains(f_xy)) {
                  f_grid_id = grid_id;
                  f_id = f_id_count[grid_id];
                  f_id_count[grid_id]++;
                }
              }

              string f_name = "fiber" + to_string(f_grid_id) + "_" + to_string(f_id);
              Volume f_vol(f_name, f_tube, description.material(x_fiber.materialStr()));
              DetElement fiber(slice, f_name, det_id);
              if ( x_fiber.isSensitive() ) {
                f_vol.setSensitiveDetector(sens);
              }
              fiber.setAttributes(description,f_vol,x_fiber.regionStr(),x_fiber.limitsStr(),x_fiber.visStr());

              // Fiber placement
              Transform3D f_tr(RotationZYX(0,0,M_PI*0.5),Position(p.x(), 0 ,p.y()));
              PlacedVolume fiber_phv = s_vol.placeVolume(f_vol, f_tr);
              fiber_phv.addPhysVolID(f_id_grid, f_grid_id + 1).addPhysVolID(f_id_fiber, f_id + 1);
              fiber.setPlacement(fiber_phv);

	          }
          }

          if ( x_slice.isSensitive() ) {
            s_vol.setSensitiveDetector(sens);
          }

          slice.setAttributes(description,s_vol,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());

          // Slice placement.
          PlacedVolume slice_phv = l_vol.placeVolume(s_vol,Position(0,0,s_pos_z+s_thick/2));
          slice_phv.addPhysVolID("slice", s_num);
          slice.setPlacement(slice_phv);
          // Increment Z position of slice.
          s_pos_z += s_thick;

          // Increment slice number.
          ++s_num;
        }

        // Set region, limitset, and vis of layer.
        layer.setAttributes(description,l_vol,x_layer.regionStr(),x_layer.limitsStr(),x_layer.visStr());

        PlacedVolume layer_phv = mod_vol.placeVolume(l_vol,l_pos);
        layer_phv.addPhysVolID("layer", l_num);
        layer.setPlacement(layer_phv);
        // Increment to next layer Z position.
        double xcut = l_thickness * tan_hphi;
        l_dim_x += xcut;
        l_pos_z += l_thickness;
        ++l_num;
      }
    }
  }

  // Set stave visualization.
  if ( x_staves )   {
    mod_vol.setVisAttributes(description.visAttributes(x_staves.visStr()));
  }
  // Phi start for a stave.
  double phi = M_PI / nsides;
  double mod_x_off = dx / 2;             // Stave X offset, derived from the dx.
  double mod_y_off = inner_r + mod_z/2;  // Stave Y offset

  // Create nsides staves.
  for (int i = 0; i < nsides; i++, phi -= dphi)      { // i is module number
    // Compute the stave position
    double m_pos_x = mod_x_off * std::cos(phi) - mod_y_off * std::sin(phi);
    double m_pos_y = mod_x_off * std::sin(phi) + mod_y_off * std::cos(phi);
    Transform3D tr(RotationZYX(0,phi,M_PI*0.5),Translation3D(-m_pos_x,-m_pos_y,0));
    PlacedVolume pv = envelope.placeVolume(mod_vol,tr);
    pv.addPhysVolID("system",det_id);
    pv.addPhysVolID("module",i+1);
    DetElement sd = i==0 ? stave_det : stave_det.clone(_toString(i,"stave%d"));
    sd.setPlacement(pv);
    sdet.add(sd);
  }

  // Set envelope volume attributes.
  envelope.setAttributes(description,x_det.regionStr(),x_det.limitsStr(),x_det.visStr());
  return sdet;
}

DECLARE_DETELEMENT(athena_EcalBarrelHybrid,create_detector)