Skip to content
Snippets Groups Projects

Acts

Merged Whitney Armstrong requested to merge acts into master
5 files
+ 305
811
Compare changes
  • Side-by-side
  • Inline
Files
5
+ 155
155
//==========================================================================
// AIDA Detector description implementation
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
// All rights reserved.
//
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
//
// Author : M.Frank
//
//==========================================================================
//
// Specialized generic detector constructor
//
//==========================================================================
#include "Acts/Plugins/DD4hep/ActsExtension.hpp"
#include "Acts/Plugins/DD4hep/ConvertDD4hepMaterial.hpp"
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/Printout.h"
using namespace std;
using namespace dd4hep;
using namespace dd4hep::detail;
static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens) {
typedef vector<PlacedVolume> Placements;
xml_det_t x_det = e;
Material air = description.air();
int det_id = x_det.id();
string det_name = x_det.nameStr();
DetElement sdet(det_name, det_id);
Assembly assembly(det_name);
map<string, Volume> volumes;
map<string, Placements> sensitives;
PlacedVolume pv;
sens.setType("tracker");
for (xml_coll_t mi(x_det, _U(module)); mi; ++mi) {
xml_comp_t x_mod = mi;
xml_comp_t m_env = x_mod.child(_U(module_envelope));
string m_nam = x_mod.nameStr();
Volume m_vol(m_nam, Box(m_env.width() / 2, m_env.length() / 2, m_env.thickness() / 2), air);
int ncomponents = 0, sensor_number = 1;
if (volumes.find(m_nam) != volumes.end()) {
printout(ERROR, "SiTrackerBarrel", "Logics error in building modules.");
throw runtime_error("Logics error in building modules.");
}
volumes[m_nam] = m_vol;
m_vol.setVisAttributes(description.visAttributes(x_mod.visStr()));
for (xml_coll_t ci(x_mod, _U(module_component)); ci; ++ci, ++ncomponents) {
xml_comp_t x_comp = ci;
xml_comp_t x_pos = x_comp.position(false);
xml_comp_t x_rot = x_comp.rotation(false);
string c_nam = _toString(ncomponents, "component%d");
Box c_box(x_comp.width() / 2, x_comp.length() / 2, x_comp.thickness() / 2);
Volume c_vol(c_nam, c_box, description.material(x_comp.materialStr()));
if (x_pos && x_rot) {
Position c_pos(x_pos.x(0), x_pos.y(0), x_pos.z(0));
RotationZYX c_rot(x_rot.z(0), x_rot.y(0), x_rot.x(0));
pv = m_vol.placeVolume(c_vol, Transform3D(c_rot, c_pos));
} else if (x_rot) {
pv = m_vol.placeVolume(c_vol, RotationZYX(x_rot.z(0), x_rot.y(0), x_rot.x(0)));
} else if (x_pos) {
pv = m_vol.placeVolume(c_vol, Position(x_pos.x(0), x_pos.y(0), x_pos.z(0)));
} else {
pv = m_vol.placeVolume(c_vol);
}
c_vol.setRegion(description, x_comp.regionStr());
c_vol.setLimitSet(description, x_comp.limitsStr());
c_vol.setVisAttributes(description, x_comp.visStr());
if (x_comp.isSensitive()) {
pv.addPhysVolID(_U(sensor), sensor_number++);
c_vol.setSensitiveDetector(sens);
sensitives[m_nam].push_back(pv);
}
}
typedef vector<PlacedVolume> Placements;
xml_det_t x_det = e;
Material air = description.air();
int det_id = x_det.id();
string det_name = x_det.nameStr();
DetElement sdet(det_name, det_id);
Acts::ActsExtension* barrelExtension = new Acts::ActsExtension();
barrelExtension->addType("barrel", "detector");
sdet.addExtension<Acts::ActsExtension>(barrelExtension);
Assembly assembly(det_name);
map<string, Volume> volumes;
map<string, Placements> sensitives;
PlacedVolume pv;
sens.setType("tracker");
for (xml_coll_t mi(x_det, _U(module)); mi; ++mi) {
xml_comp_t x_mod = mi;
xml_comp_t m_env = x_mod.child(_U(module_envelope));
string m_nam = x_mod.nameStr();
Volume m_vol(m_nam, Box(m_env.width() / 2, m_env.length() / 2, m_env.thickness() / 2), air);
int ncomponents = 0, sensor_number = 1;
if (volumes.find(m_nam) != volumes.end()) {
printout(ERROR, "SiTrackerBarrel", "Logics error in building modules.");
throw runtime_error("Logics error in building modules.");
}
for (xml_coll_t li(x_det, _U(layer)); li; ++li) {
xml_comp_t x_layer = li;
xml_comp_t x_barrel = x_layer.child(_U(barrel_envelope));
xml_comp_t x_layout = x_layer.child(_U(rphi_layout));
xml_comp_t z_layout = x_layer.child(_U(z_layout)); // Get the <z_layout> element.
int lay_id = x_layer.id();
string m_nam = x_layer.moduleStr();
string lay_nam = _toString(x_layer.id(), "layer%d");
Tube lay_tub(x_barrel.inner_r(), x_barrel.outer_r(), x_barrel.z_length() / 2);
Volume lay_vol(lay_nam, lay_tub, air); // Create the layer envelope volume.
lay_vol.setVisAttributes(description.visAttributes(x_layer.visStr()));
double phi0 = x_layout.phi0(); // Starting phi of first module.
double phi_tilt = x_layout.phi_tilt(); // Phi tilt of a module.
double rc = x_layout.rc(); // Radius of the module center.
int nphi = x_layout.nphi(); // Number of modules in phi.
double rphi_dr = x_layout.dr(); // The delta radius of every other module.
double phi_incr = (M_PI * 2) / nphi; // Phi increment for one module.
double phic = phi0; // Phi of the module center.
double z0 = z_layout.z0(); // Z position of first module in phi.
double nz = z_layout.nz(); // Number of modules to place in z.
double z_dr = z_layout.dr(); // Radial displacement parameter, of every other module.
Volume m_env = volumes[m_nam];
DetElement lay_elt(sdet, _toString(x_layer.id(), "layer%d"), lay_id);
Placements& sensVols = sensitives[m_nam];
// Z increment for module placement along Z axis.
// Adjust for z0 at center of module rather than
// the end of cylindrical envelope.
double z_incr = nz > 1 ? (2.0 * z0) / (nz - 1) : 0.0;
// Starting z for module placement along Z axis.
double module_z = -z0;
int module = 1;
// Loop over the number of modules in phi.
for (int ii = 0; ii < nphi; ii++) {
double dx = z_dr * std::cos(phic + phi_tilt); // Delta x of module position.
double dy = z_dr * std::sin(phic + phi_tilt); // Delta y of module position.
double x = rc * std::cos(phic); // Basic x module position.
double y = rc * std::sin(phic); // Basic y module position.
// Loop over the number of modules in z.
for (int j = 0; j < nz; j++) {
string module_name = _toString(module, "module%d");
DetElement mod_elt(lay_elt, module_name, module);
// Module PhysicalVolume.
// Transform3D
// tr(RotationZYX(0,-((M_PI/2)-phic-phi_tilt),M_PI/2),Position(x,y,module_z));
// NOTE (Nikiforos, 26/08 Rotations needed to be fixed so that component1 (silicon) is on the
// outside
Transform3D tr(RotationZYX(0, ((M_PI / 2) - phic - phi_tilt), -M_PI / 2),
Position(x, y, module_z));
pv = lay_vol.placeVolume(m_env, tr);
pv.addPhysVolID("module", module);
mod_elt.setPlacement(pv);
for (size_t ic = 0; ic < sensVols.size(); ++ic) {
PlacedVolume sens_pv = sensVols[ic];
DetElement comp_elt(mod_elt, sens_pv.volume().name(), module);
comp_elt.setPlacement(sens_pv);
}
/// Increase counters etc.
module++;
// Adjust the x and y coordinates of the module.
x += dx;
y += dy;
// Flip sign of x and y adjustments.
dx *= -1;
dy *= -1;
// Add z increment to get next z placement pos.
module_z += z_incr;
}
phic += phi_incr; // Increment the phi placement of module.
rc += rphi_dr; // Increment the center radius according to dr parameter.
rphi_dr *= -1; // Flip sign of dr parameter.
module_z = -z0; // Reset the Z placement parameter for module.
volumes[m_nam] = m_vol;
m_vol.setVisAttributes(description.visAttributes(x_mod.visStr()));
for (xml_coll_t ci(x_mod, _U(module_component)); ci; ++ci, ++ncomponents) {
xml_comp_t x_comp = ci;
xml_comp_t x_pos = x_comp.position(false);
xml_comp_t x_rot = x_comp.rotation(false);
string c_nam = _toString(ncomponents, "component%d");
Box c_box(x_comp.width() / 2, x_comp.length() / 2, x_comp.thickness() / 2);
Volume c_vol(c_nam, c_box, description.material(x_comp.materialStr()));
if (x_pos && x_rot) {
Position c_pos(x_pos.x(0), x_pos.y(0), x_pos.z(0));
RotationZYX c_rot(x_rot.z(0), x_rot.y(0), x_rot.x(0));
pv = m_vol.placeVolume(c_vol, Transform3D(c_rot, c_pos));
} else if (x_rot) {
pv = m_vol.placeVolume(c_vol, RotationZYX(x_rot.z(0), x_rot.y(0), x_rot.x(0)));
} else if (x_pos) {
pv = m_vol.placeVolume(c_vol, Position(x_pos.x(0), x_pos.y(0), x_pos.z(0)));
} else {
pv = m_vol.placeVolume(c_vol);
}
c_vol.setRegion(description, x_comp.regionStr());
c_vol.setLimitSet(description, x_comp.limitsStr());
c_vol.setVisAttributes(description, x_comp.visStr());
if (x_comp.isSensitive()) {
pv.addPhysVolID(_U(sensor), sensor_number++);
c_vol.setSensitiveDetector(sens);
sensitives[m_nam].push_back(pv);
}
}
}
for (xml_coll_t li(x_det, _U(layer)); li; ++li) {
xml_comp_t x_layer = li;
xml_comp_t x_barrel = x_layer.child(_U(barrel_envelope));
xml_comp_t x_layout = x_layer.child(_U(rphi_layout));
xml_comp_t z_layout = x_layer.child(_U(z_layout)); // Get the <z_layout> element.
int lay_id = x_layer.id();
string m_nam = x_layer.moduleStr();
string lay_nam = _toString(x_layer.id(), "layer%d");
Tube lay_tub(x_barrel.inner_r(), x_barrel.outer_r(), x_barrel.z_length() / 2);
Volume lay_vol(lay_nam, lay_tub, air); // Create the layer envelope volume.
lay_vol.setVisAttributes(description.visAttributes(x_layer.visStr()));
double phi0 = x_layout.phi0(); // Starting phi of first module.
double phi_tilt = x_layout.phi_tilt(); // Phi tilt of a module.
double rc = x_layout.rc(); // Radius of the module center.
int nphi = x_layout.nphi(); // Number of modules in phi.
double rphi_dr = x_layout.dr(); // The delta radius of every other module.
double phi_incr = (M_PI * 2) / nphi; // Phi increment for one module.
double phic = phi0; // Phi of the module center.
double z0 = z_layout.z0(); // Z position of first module in phi.
double nz = z_layout.nz(); // Number of modules to place in z.
double z_dr = z_layout.dr(); // Radial displacement parameter, of every other module.
Volume m_env = volumes[m_nam];
DetElement lay_elt(sdet, _toString(x_layer.id(), "layer%d"), lay_id);
Acts::ActsExtension* layerExtension = new Acts::ActsExtension();
layerExtension->addType("sensitive cylinder", "layer");
lay_elt.addExtension<Acts::ActsExtension>(layerExtension);
Placements& sensVols = sensitives[m_nam];
// Z increment for module placement along Z axis.
// Adjust for z0 at center of module rather than
// the end of cylindrical envelope.
double z_incr = nz > 1 ? (2.0 * z0) / (nz - 1) : 0.0;
// Starting z for module placement along Z axis.
double module_z = -z0;
int module = 1;
// Loop over the number of modules in phi.
for (int ii = 0; ii < nphi; ii++) {
double dx = z_dr * std::cos(phic + phi_tilt); // Delta x of module position.
double dy = z_dr * std::sin(phic + phi_tilt); // Delta y of module position.
double x = rc * std::cos(phic); // Basic x module position.
double y = rc * std::sin(phic); // Basic y module position.
// Loop over the number of modules in z.
for (int j = 0; j < nz; j++) {
string module_name = _toString(module, "module%d");
DetElement mod_elt(lay_elt, module_name, module);
// Module PhysicalVolume.
// Transform3D
// tr(RotationZYX(0,-((M_PI/2)-phic-phi_tilt),M_PI/2),Position(x,y,module_z));
// NOTE (Nikiforos, 26/08 Rotations needed to be fixed so that component1 (silicon) is on the
// outside
Transform3D tr(RotationZYX(0, ((M_PI / 2) - phic - phi_tilt), -M_PI / 2), Position(x, y, module_z));
pv = lay_vol.placeVolume(m_env, tr);
pv.addPhysVolID("module", module);
mod_elt.setPlacement(pv);
for (size_t ic = 0; ic < sensVols.size(); ++ic) {
PlacedVolume sens_pv = sensVols[ic];
DetElement comp_elt(mod_elt, sens_pv.volume().name(), module);
comp_elt.setPlacement(sens_pv);
}
// Create the PhysicalVolume for the layer.
pv = assembly.placeVolume(lay_vol); // Place layer in mother
pv.addPhysVolID("layer", lay_id); // Set the layer ID.
lay_elt.setAttributes(description, lay_vol, x_layer.regionStr(), x_layer.limitsStr(),
x_layer.visStr());
lay_elt.setPlacement(pv);
/// Increase counters etc.
module++;
// Adjust the x and y coordinates of the module.
x += dx;
y += dy;
// Flip sign of x and y adjustments.
dx *= -1;
dy *= -1;
// Add z increment to get next z placement pos.
module_z += z_incr;
}
phic += phi_incr; // Increment the phi placement of module.
rc += rphi_dr; // Increment the center radius according to dr parameter.
rphi_dr *= -1; // Flip sign of dr parameter.
module_z = -z0; // Reset the Z placement parameter for module.
}
sdet.setAttributes(description, assembly, x_det.regionStr(), x_det.limitsStr(), x_det.visStr());
assembly.setVisAttributes(description.invisible());
pv = description.pickMotherVolume(sdet).placeVolume(assembly);
pv.addPhysVolID("system", det_id); // Set the subdetector system ID.
pv.addPhysVolID("barrel", 0); // Flag this as a barrel subdetector.
sdet.setPlacement(pv);
return sdet;
// Create the PhysicalVolume for the layer.
pv = assembly.placeVolume(lay_vol); // Place layer in mother
pv.addPhysVolID("layer", lay_id); // Set the layer ID.
lay_elt.setAttributes(description, lay_vol, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr());
lay_elt.setPlacement(pv);
}
sdet.setAttributes(description, assembly, x_det.regionStr(), x_det.limitsStr(), x_det.visStr());
assembly.setVisAttributes(description.invisible());
pv = description.pickMotherVolume(sdet).placeVolume(assembly);
pv.addPhysVolID("system", det_id); // Set the subdetector system ID.
pv.addPhysVolID("barrel", 0); // Flag this as a barrel subdetector.
sdet.setPlacement(pv);
return sdet;
}
// clang-format off
Loading