Select Git revision
GasCherenkov_geo.cpp
Chao Peng authored
GasCherenkov_geo.cpp 8.07 KiB
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/OpticalSurfaces.h"
#include "DD4hep/Printout.h"
#include "DDRec/DetectorData.h"
#include "DDRec/Surface.h"
#include <XML/Helper.h>
#include "TMath.h"
using namespace dd4hep;
using namespace dd4hep::rec;
/** \addtogroup PID Particle ID Detectors
*/
/** \addtogroup ThresholdGasCherenkov Light Gas (threshold) Cherenkov detector.
* \brief Type: **ThresholdGasCherenkov**.
* \ingroup PID
*
* \code
* <detector>
* </detector>
* \endcode
*
* @{
*/
static Ref_t createDetector(Detector& desc, xml::Handle_t handle, SensitiveDetector sens)
{
xml::DetElement x_det = handle;
std::string det_name = x_det.nameStr();
int det_id = x_det.id();
DetElement det(det_name, det_id);
sens.setType("photoncounter");
auto dims = x_det.dimensions();
auto r0 = dims.rmin();
auto r1 = dims.rmax1();
auto r2 = dims.rmax2();
auto zmin = dims.zmin();
auto zmax = dims.zmax();
int nsec = dims.numsides();
xml_dim_t x_place = x_det.child(_U(placement));
auto pos_x = x_place.x();
auto pos_y = x_place.y();
auto pos_z = x_place.z();
double LGC_inner_radius1 = 71.0*cm;
double LGC_inner_radius2 = 85.0*cm;
double LGC_outer_radius1 = 265.0*cm;
double LGC_main_length = 105.0*cm;
double LGC_snout_length = 107.0*cm;
double LGC_snout_inner_radius1 = 58.0*cm;
double LGC_snout_inner_radius2 = LGC_inner_radius1;
double LGC_snout_outer_radius1 = 127.0*cm;
double LGC_snout_outer_radius2 = 144.0*cm;
double LGC_entrance_window_thickness = 0.05*mm; // something tells this might be 5 mil, not mm
double LGC_exit_window_thickness = 0.1*mm; // same here
double LGC_pmt_array_size = 20.0*cm;
// Everything that goes in the tank will be copies of the sector assembly volume
Assembly v_sector("cherenkov_sector_1");
DetElement de_sector("de_sector" + std::to_string(1), 1);
// gas tank
auto x_rad = x_det.child(_U(radiator));
auto rad_mat = desc.material(x_rad.attr<std::string>(_U(material)));
ConeSegment tank_main(0.5 * LGC_main_length, LGC_inner_radius1, LGC_outer_radius1,
LGC_inner_radius2, LGC_outer_radius1);
ConeSegment tank_snout(0.5 * LGC_snout_length, LGC_snout_inner_radius1, LGC_snout_outer_radius1,
LGC_snout_inner_radius2, LGC_snout_outer_radius2);
UnionSolid tank_solid(tank_main,tank_snout,Position(0, 0, -0.5 * LGC_main_length - 0.5 * LGC_snout_length));
Volume v_tank("vol_gas_tank", tank_solid, rad_mat);
v_tank.setVisAttributes(desc, dd4hep::getAttrOrDefault<std::string>(x_det, _Unicode(vis), "BlueVis"));
Volume motherVol = desc.pickMotherVolume(det);
PlacedVolume envPV = motherVol.placeVolume(v_tank, Position(pos_x, pos_y, pos_z));
envPV.addPhysVolID("system", det_id);
det.setPlacement(envPV);
// optical surfaces
OpticalSurfaceManager surfMgr = desc.surfaceManager();
OpticalSurface mirrorSurf = surfMgr.opticalSurface("MirrorOpticalSurface");
OpticalSurface pmtSurf = surfMgr.opticalSurface("PMTOpticalSurface");
// mirrors
auto x_mirrors = x_det.child(_Unicode(mirrors));
int i = 1;
for (xml_coll_t il(x_mirrors, Unicode("piece")); il; ++il) {
xml_comp_t x_mir = il;
xml_dim_t mdim = x_mir.child(_U(dimensions));
xml_dim_t mloc = x_mir.child(_U(placement));
xml_dim_t mrot = x_mir.child(_U(rotation));
auto mmat = desc.material(x_mir.materialStr());
Sphere mir_shell(mdim.radius(), mdim.radius() + mdim.thickness(), 0., M_PI/2.);
Trd1 mir_cutout(mdim.attr<double>(_Unicode(width1))/2., mdim.attr<double>(_Unicode(width2))/2.,
mdim.length()/2., mdim.length()/2.);
auto mir_trans = RotationX(M_PI/2.)*Transform3D(Position(0., 0., -mdim.radius()));
Volume v_mir("vol_mirror_" + std::to_string(i), IntersectionSolid(mir_cutout, mir_shell, mir_trans), mmat);
auto mir_trans2 = Transform3D(Position(mloc.x(), mloc.y(), mloc.z()))*RotationZYX(mrot.z(), mrot.y(), mrot.x());
PlacedVolume pv_mir = v_sector.placeVolume(v_mir, mir_trans2);
DetElement de_mir(det, "de_mirror" + std::to_string(i) + "_shape", 1);
pv_mir.addPhysVolID("mirror", 1);
de_mir.setPlacement(pv_mir);
sens.setType("photoncounter");
v_mir.setSensitiveDetector(sens);
// optical surface
SkinSurface mirrorBorder_Surf(desc, de_mir, "LGCmirror", mirrorSurf, v_mir);
mirrorBorder_Surf.isValid();
}
// sectors
double sector_angle = 2.*M_PI / nsec;
for (int isec = 1; isec <= nsec; isec++) {
auto pv = v_tank.placeVolume(v_sector, Transform3D(RotationZ((isec - 1) * sector_angle)));
pv.addPhysVolID("sector" + std::to_string(isec), isec);
auto amod = (isec == 1 ? de_sector : de_sector.clone("de_sector" + std::to_string(isec), isec));
amod.setPlacement(pv);
det.add(amod);
}
// ---------------
// Winston Cone
auto x_winston = x_det.child(_Unicode(winston_cone));
auto winston_mat = desc.material(x_winston.attr<std::string>(_Unicode(material)));
xml_dim_t wpl = x_winston.child(_U(placement));
xml_dim_t wrot = x_winston.child(_U(rotation));
xml_dim_t cdims = x_winston.child(_Unicode(cone_dimensions));
double cone_thickness = cdims.thickness();
double cone_length = cdims.attr<double>(_Unicode(length));
double cone_radius1 = cdims.attr<double>(_Unicode(radius1));
double cone_radius2 = cdims.attr<double>(_Unicode(radius2));
// double cone_inset_length = cdims.attr<double>(_Unicode(inset_length));
xml_dim_t tdims = x_winston.child(_Unicode(tube_dimensions));
double tube_radius = tdims.radius();
double tube_length = tdims.length();
DetElement de_winston_cone(det, "de_winston_cone1", 1);
Tube winston_tube(tube_radius, tube_radius + cone_thickness, tube_length / 2.0);
Paraboloid winston_cone1(cone_radius1 + cone_thickness, cone_radius2 + cone_thickness, cone_length / 2.0 );
Paraboloid winston_cone2(cone_radius1, cone_radius2, cone_length / 2.0 );
SubtractionSolid winston_cone(winston_cone1, winston_cone2);
Volume v_winston_cone_solid("v_winston_cone_solid", winston_cone, winston_mat);
PlacedVolume pv_winston_cone_solid = v_sector.placeVolume(
v_winston_cone_solid, Transform3D(Position(wpl.x(), wpl.y(), wpl.z())) *
RotationZYX(wrot.z(), wrot.y(), wrot.x()) *
Transform3D(Position(0, 0, tube_length / 2.0 + 5.0 * mm)));
de_winston_cone.setPlacement(pv_winston_cone_solid);
// optical surface
SkinSurface winstonBorder_Surf(desc, de_winston_cone, "LGCWinstonCone", mirrorSurf, v_winston_cone_solid);
winstonBorder_Surf.isValid();
//// ---------------
//// Dummy PMT surface
DetElement de_pmt_array(det, "PMT_DE", 1);
Box pmt_array(LGC_pmt_array_size / 2.0, LGC_pmt_array_size / 2.0, 5 * mm / 2.0);
Volume v_pmt_array("v_pmt_array", pmt_array, rad_mat);
PlacedVolume pv_pmt_array =
v_sector.placeVolume(v_pmt_array, Transform3D(Position(wpl.x(), wpl.y(), wpl.z())) *
RotationZYX(wrot.z(), wrot.y(), wrot.x()));
pv_pmt_array.addPhysVolID("mirror", 3);
de_pmt_array.setPlacement(pv_pmt_array);
sens.setType("photoncounter");
v_pmt_array.setSensitiveDetector(sens);
// optical surface
SkinSurface pmtBorder_Surf(desc, de_pmt_array, "LGCPMTsurface", pmtSurf, v_pmt_array);
pmtBorder_Surf.isValid();
// copper layer inside to stop photons
Box pmt_array_backing(LGC_pmt_array_size/2.0, LGC_pmt_array_size/2.0, 1*mm/2.0);
auto Copper = desc.material("Copper");
Volume v_pmt_array_backing("v_pmt_array_backing", pmt_array_backing, Copper);
PlacedVolume pv_pmt_array_backing = v_pmt_array.placeVolume(v_pmt_array_backing, Position(0,0,0));
return det;
}
//@}
// clang-format off
DECLARE_DETELEMENT(SoLID_GasCherenkov, createDetector)