Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//==========================================================================
// A general implementation for homogeneous calorimeter
// it supports three types of placements
// 1. Module placement with module dimensions and positions
// 2. Array placement with module dimensions and numbers of row and columns
// 3. Disk placement with module dimensions and (Rmin, Rmax), and (Phimin, Phimax)
//--------------------------------------------------------------------------
// Author: Chao Peng (ANL)
// Date: 06/09/2021
//==========================================================================
#include "GeometryHelpers.h"
#include "DD4hep/DetFactoryHelper.h"
#include <XML/Helper.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace dd4hep;
using namespace dd4hep::detail;
/** \addtogroup calorimeters Calorimeters
*/
/** \addtogroup Homogeneous Calorimeter
* \brief Type: **HomogeneousCalorimeter**.
* \author C. Peng
* \ingroup calorimeters
*
*
* \code
* <detector id="1" name="HyCal" type="HomogeneousCalorimeter" readout="EcalHits" vis="GreenVis">
* <dimensions shape="box" sizex="120*cm" sizey="120*cm" sizez="46*cm"/>
* <position x="0" y="0" z="0"/>
* <rotation x="0" y="0" z="0"/>
* <placements>
* <array nrow="34" ncol="34" sector="1">
* <position x="0" y="0" z="-9.73*cm"/>
* <module sizex="2.05*cm" sizey="2.05*cm" sizez="18*cm" vis="GreenVis" material="PbWO4"/>
* <wrapper thickness="0.015*cm" material="Epoxy" vis="WhiteVis"/>
* <removal row="16" col="16"/>
* <removal row="16" col="17"/>
* <removal row="17" col="16"/>
* <removal row="17" col="17"/>
* </array>
* <array nrow="6" ncol="24" sector="2">
* <position x="-17*(2.05+0.015)*cm+12*(3.8+0.015)*cm" y="17*(2.05+0.015)*cm+3*(3.8+0.015)*cm" z="0"/>
* <module sizex="3.8*cm" sizey="3.8*cm" sizez="45*cm" vis="BlueVis" material="PbGlass"/>
* <wrapper thickness="0.015*cm" material="Epoxy" vis="WhiteVis"/>
* </array>
* <array nrow="24" ncol="6" sector="3">
* <position x="17*(2.05+0.015)*cm+3*(3.8+0.015)*cm" y="17*(2.05+0.015)*cm-12*(3.8+0.015)*cm" z="0"/>
* <module sizex="3.8*cm" sizey="3.8*cm" sizez="45*cm" vis="BlueVis" material="PbGlass"/>
* <wrapper thickness="0.015*cm" material="Epoxy" vis="WhiteVis"/>
* </array>
* <array nrow="6" ncol="24" sector="4">
* <position x="17*(2.05+0.015)*cm-12*(3.8+0.015)*cm" y="-17*(2.05+0.015)*cm-3*(3.8+0.015)*cm" z="0"/>
* <module sizex="3.8*cm" sizey="3.8*cm" sizez="45*cm" vis="BlueVis" material="PbGlass"/>
* <wrapper thickness="0.015*cm" material="Epoxy" vis="WhiteVis"/>
* </array>
* <array nrow="24" ncol="6" sector="3">
* <position x="-17*(2.05+0.015)*cm-3*(3.8+0.015)*cm" y="-17*(2.05+0.015)*cm+12*(3.8+0.015)*cm" z="0"/>
* <module sizex="3.8*cm" sizey="3.8*cm" sizez="45*cm" vis="BlueVis" material="PbGlass"/>
* <wrapper thickness="0.015*cm" material="Epoxy" vis="WhiteVis"/>
* </array>
* </placements>
* </detector>
*
* <detector id="2" name="SomeBlocks" type="HomogeneousCalorimeter" readout="EcalHits" vis="GreenVis">
* <dimensions shape="box" sizex="100*cm" sizey="100*cm" sizez="20.5*cm"/>
* <position x="0" y="0" z="30*cm"/>
* <rotation x="0" y="0" z="0"/>
* <placements>
* <blocks sector="1"/>
* <module sizex="2.05*cm" sizey="2.05*cm" sizez="20*cm" vis="GreenVis" material="PbWO4"/>
* <wrapper thickness="0.015*cm" material="Epoxy" vis="WhiteVis"/>
* <placement x="1*cm" y="1*cm" z="0"/>
* <placement x="-1*cm" y="1*cm" z="0"/>
* <placement x="1*cm" y="-1*cm" z="0"/>
* <placement x="-1*cm" y="-1*cm" z="0"/>
* </blocks>
* </placements>
* </detector>
*
* <detector id="2" name="DiskShapeCalorimeter" type="HomogeneousCalorimeter" readout="EcalHits" vis="GreenVis">
* <dimensions shape="disk" rmin="25*cm" rmax="125*cm" length="20.5*cm" phimin="0" phimax="360*degree"/>
* <position x="0" y="0" z="-30*cm"/>
* <rotation x="0" y="0" z="0"/>
* <placements>
* <disk rmin="25*cm" rmax="125*cm" length="20.5*cm" phimin="0" phimax="360*degree" sector="1"/>
* <module sizex="2.05*cm" sizey="2.05*cm" sizez="20*cm" vis="GreenVis" material="PbWO4"/>
* <wrapper thickness="0.015*cm" material="Epoxy" vis="WhiteVis"/>
* </placements>
* </detector>
* \endcode
*
* @{
*/
// headers
static void add_blocks(Detector& desc, Volume &env, xml::Collection_t &plm, SensitiveDetector &sens, int id);
static void add_array(Detector& desc, Volume &env, xml::Collection_t &plm, SensitiveDetector &sens, int id);
static void add_disk(Detector& desc, Volume &env, xml::Collection_t &plm, SensitiveDetector &sens, int id);
// helper function to get x, y, z if defined in a xml component
template<class XmlComp>
Position get_xml_xyz(XmlComp &comp, dd4hep::xml::Strng_t name)
{
Position pos(0., 0., 0.);
if (comp.hasChild(name)) {
auto child = comp.child(name);
pos.SetX(dd4hep::getAttrOrDefault<double>(child, _Unicode(x), 0.));
pos.SetY(dd4hep::getAttrOrDefault<double>(child, _Unicode(y), 0.));
pos.SetZ(dd4hep::getAttrOrDefault<double>(child, _Unicode(z), 0.));
}
return pos;
}
// main
static Ref_t create_detector(Detector& desc, xml::Handle_t handle, SensitiveDetector sens)
{
static const std::string func = "HomogeneousCalorimeter";
xml::DetElement detElem = handle;
std::string detName = detElem.nameStr();
int detID = detElem.id();
DetElement det(detName, detID);
sens.setType("calorimeter");
// top-level children
xml::Component dims = detElem.dimensions();
// build envelop from dimensions
std::string shape = dd4hep::getAttrOrDefault(dims, _Unicode(shape), "");
// no shape input, try to determine shape from dimension variables
if (shape.empty()) {
if (dims.hasAttr(_Unicode(rmin)) && dims.hasAttr(_Unicode(rmax)) && dims.hasAttr(_Unicode(length))) {
shape = "disk";
} else if (dims.hasAttr(_Unicode(sizex)) && dims.hasAttr(_Unicode(sizey)) && dims.hasAttr(_Unicode(sizez))) {
shape = "box";
} else {
std::cerr << func << " Error: Cannot determine shape of the calorimeter. "
"Add shape (box, or disk) into dimensions\n";
return det;
}
}
Volume envVol(detName + "_envelope");
std::string filler = dd4hep::getAttrOrDefault(detElem, _Unicode(filler), "Air");
envVol.setMaterial(desc.material(filler));
envVol.setVisAttributes(desc.visAttributes(detElem.visStr()));
// convert to lower case
std::transform(shape.begin(), shape.end(), shape.begin(), [](unsigned char c){ return std::tolower(c); });
if (shape == "box") {
double sx = dims.attr<double>(_Unicode(sizex));
double sy = dims.attr<double>(_Unicode(sizey));
double sz = dims.attr<double>(_Unicode(sizez));
envVol.setSolid(Box(sx/2., sy/2., sz/2.));
} else if (shape == "disk") {
double rmin = dims.rmin();
double rmax = dims.rmax();
double length = dims.length();
double phimin = dd4hep::getAttrOrDefault<double>(dims, _Unicode(phimin), 0.);
double phimax = dd4hep::getAttrOrDefault<double>(dims, _Unicode(phimax), 2*M_PI);
envVol.setSolid(Tube(rmin, rmax, length/2., phimin, phimax));
} else {
std::cerr << func << " Error: Unsupported shape " << shape << ", use box or disk\n";
return det;
}
// module placement
xml::Component plm = detElem.child(_Unicode(placements));
int sector = 1;
for (xml::Collection_t arr(plm, _Unicode(array)); arr; ++arr) {
add_array(desc, envVol, arr, sens, sector++);
}
for (xml::Collection_t mod(plm, _Unicode(blocks)); mod; ++mod) {
add_blocks(desc, envVol, mod, sens, sector++);
}
for (xml::Collection_t disk(plm, _Unicode(disk)); disk; ++disk) {
add_disk(desc, envVol, disk, sens, sector++);
}
// detector position and rotation
auto pos = get_xml_xyz(detElem, _Unicode(position));
auto rot = get_xml_xyz(detElem, _Unicode(rotation));
Volume motherVol = desc.pickMotherVolume(det);
Transform3D tr = Translation3D(pos.x(), pos.y(), pos.z()) * RotationZYX(rot.z(), rot.y(), rot.x());
PlacedVolume envPV = motherVol.placeVolume(envVol, tr);
envPV.addPhysVolID("system", detID);
det.setPlacement(envPV);
return det;
}
// helper function to build module with or w/o wrapper
Volume build_module(Detector &desc, xml::Collection_t &plm, SensitiveDetector &sens, Position &dim)
{
auto mod = plm.child(_Unicode(module));
auto sx = mod.attr<double>(_Unicode(sizex));
auto sy = mod.attr<double>(_Unicode(sizey));
auto sz = mod.attr<double>(_Unicode(sizez));
dim = Position{sx, sy, sz};
Box modShape(sx/2., sy/2., sz/2.);
auto modMat = desc.material(mod.attr<std::string>(_Unicode(material)));
Volume modVol("module_vol", modShape, modMat);
modVol.setSensitiveDetector(sens);
modVol.setVisAttributes(desc.visAttributes(mod.attr<std::string>(_Unicode(vis))));
// no wrapper
if (!plm.hasChild(_Unicode(wrapper))) {
return modVol;
// build wrapper
} else {
auto wrp = plm.child(_Unicode(wrapper));
auto thickness = wrp.attr<double>(_Unicode(thickness));
auto wrpMat = desc.material(wrp.attr<std::string>(_Unicode(material)));
Box wrpShape((sx + thickness)/2., (sy + thickness)/2., sz/2.);
Volume wrpVol("wrapper_vol", wrpShape, wrpMat);
wrpVol.placeVolume(modVol, Position(0., 0., 0.));
wrpVol.setVisAttributes(desc.visAttributes(wrp.attr<std::string>(_Unicode(vis))));
dim = Position{sx + thickness, sy + thickness, sz};
return wrpVol;
}
}
// place array of modules
static void add_array(Detector& desc, Volume &env, xml::Collection_t &plm, SensitiveDetector &sens, int sid)
{
Position modSize;
auto modVol = build_module(desc, plm, sens, modSize);
int sector_id = dd4hep::getAttrOrDefault<int>(plm, _Unicode(sector), sid);
int nrow = plm.attr<int>(_Unicode(nrow));
int ncol = plm.attr<int>(_Unicode(ncol));
// compute array position
double begx = -modSize.x()*ncol/2. + modSize.x()/2.;
double begy = modSize.y()*nrow/2. - modSize.y()/2.;
std::vector<std::pair<int, int>> removals;
// get the removal list
for (xml::Collection_t rm(plm, _Unicode(removal)); rm; ++rm) {
removals.push_back({rm.attr<int>(_Unicode(row)), rm.attr<int>(_Unicode(col))});
}
// placement to mother
auto pos = get_xml_xyz(plm, _Unicode(position));
auto rot = get_xml_xyz(plm, _Unicode(rotation));
for (int i = 0; i < nrow; ++i) {
for (int j = 0; j < ncol; ++j) {
if (std::find(removals.begin(), removals.end(), std::pair<int, int>(i, j)) != removals.end()) {
continue;
}
double px = begx + modSize.x()*j;
double py = begy - modSize.y()*i;
Transform3D tr = Translation3D(pos.x() + px, pos.y() + py, pos.z())
* RotationZYX(rot.z(), rot.y(), rot.x());
auto modPV = env.placeVolume(modVol, tr);
modPV.addPhysVolID("sector", sector_id).addPhysVolID("module", i*ncol + j);
}
}
}
// place modules
static void add_blocks(Detector& desc, Volume &env, xml::Collection_t &plm, SensitiveDetector &sens, int sid)
{
Position modSize;
auto modVol = build_module(desc, plm, sens, modSize);
int sector_id = dd4hep::getAttrOrDefault<int>(plm, _Unicode(sector), sid);
int mid = 1;
for (xml::Collection_t pl(plm, _Unicode(placement)); pl; ++pl, ++mid) {
Position pos(dd4hep::getAttrOrDefault<double>(pl, _Unicode(x), 0.),
dd4hep::getAttrOrDefault<double>(pl, _Unicode(y), 0.),
dd4hep::getAttrOrDefault<double>(pl, _Unicode(z), 0.));
Position rot(dd4hep::getAttrOrDefault<double>(pl, _Unicode(rotx), 0.),
dd4hep::getAttrOrDefault<double>(pl, _Unicode(roty), 0.),
dd4hep::getAttrOrDefault<double>(pl, _Unicode(rotz), 0.));
Transform3D tr = Translation3D(pos.x(), pos.y(), pos.z())
* RotationZYX(rot.z(), rot.y(), rot.x());
auto modPV = env.placeVolume(modVol, tr);
modPV.addPhysVolID("sector", sector_id).addPhysVolID("module", mid);
}
}
// place disk of modules
static void add_disk(Detector& desc, Volume &env, xml::Collection_t &plm, SensitiveDetector &sens, int sid)
{
Position modSize;
auto modVol = build_module(desc, plm, sens, modSize);
int sector_id = dd4hep::getAttrOrDefault<int>(plm, _Unicode(sector), sid);
double rmin = plm.attr<double>(_Unicode(rmin));
double rmax = plm.attr<double>(_Unicode(rmax));
double phimin = dd4hep::getAttrOrDefault<double>(plm, _Unicode(phimin), 0.);
double phimax = dd4hep::getAttrOrDefault<double>(plm, _Unicode(phimax), 2.*M_PI);
auto points = ref::utils::fillSquares({0., 0.}, modSize.x(), rmin, rmax, phimin, phimax);
// placement to mother
auto pos = get_xml_xyz(plm, _Unicode(position));
auto rot = get_xml_xyz(plm, _Unicode(rotation));
int mid = 1;
for (auto &p : points) {
Transform3D tr = Translation3D(pos.x() + p.x(), pos.y() + p.y(), pos.z())
* RotationZYX(rot.z(), rot.y(), rot.x());
auto modPV = env.placeVolume(modVol, tr);
modPV.addPhysVolID("sector", sector_id).addPhysVolID("module", mid++);
}
}
//@}
DECLARE_DETELEMENT(HomogeneousCalorimeter, create_detector)