Skip to content
Snippets Groups Projects
BarrelCalorimeterInterlayers_geo.cpp 16.6 KiB
Newer Older
Chao Peng's avatar
Chao Peng committed
// Detector plugin to support a hybrid central barrel calorimeter
// The detector consists of interlayers of Pb/ScFi (segmentation in global r, phi) and W/Si (segmentation in local x, y)
// Assembly is used as the envelope so two different detectors can be interlayered with each other
//
//
// Implementation of the Sci Fiber geometry: M. Żurek 06/19/2021
// Support interlayers between multiple detectors: C. Peng 07/09/2021


#include "DD4hep/DetFactoryHelper.h"
#include "XML/Layering.h"
#include "Math/Point2D.h"
#include "TGeoPolygon.h"

using namespace std;
using namespace dd4hep;
using namespace dd4hep::detail;

typedef ROOT::Math::XYPoint Point;
// headers for helper functions
vector<Point> _fiberPositions(double radius, double x_spacing, double z_spacing,
        double x, double z, double phi, double spacing_tol = 1e-2);
std::pair<int, int> _getNdivisions(double x, double z, double dx, double dz);
vector<tuple<int, Point, Point, Point, Point>> _gridPoints(int div_x, int div_z, double x, double z, double phi);


// barrel ecal layers contained in an assembly
static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens)  {
  Layering      layering (e);
  xml_det_t     x_det     = e;
  Material      air       = description.air();
  int           det_id    = x_det.id();
  string        det_name  = x_det.nameStr();
  xml_comp_t    x_staves  = x_det.staves();
  double        offset    = x_det.attr<double>(_Unicode(offset));
  xml_comp_t    x_dim     = x_det.dimensions();
  int           nsides    = x_dim.numsides();
  double        inner_r   = x_dim.rmin();
  double        dphi      = (2*M_PI/nsides);
  double        hphi      = dphi/2;

  DetElement    sdet      (det_name, det_id);
  Volume        motherVol = description.pickMotherVolume(sdet);

  Assembly      envelope  (det_name);
  Transform3D   tr        = Translation3D(0, 0, offset) * RotationZ(hphi);
  PlacedVolume  env_phv   = motherVol.placeVolume(envelope, tr);
  sens.setType("calorimeter");

  env_phv.addPhysVolID("system",det_id);
  sdet.setPlacement(env_phv);

  // build a single stave
  DetElement    stave_det("stave0", det_id);
  Assembly      mod_vol("stave");

  // keep tracking of the total thickness
  double l_pos_z = inner_r;
  { // =====  buildBarrelStave(description, sens, module_volume) =====
    // Parameters for computing the layer X dimension:
    double tan_hphi = std::tan(hphi);
    double l_dim_y  = x_dim.z()/2.;

    // Loop over the sets of layer elements in the detector.
    int l_num = 1;
    for(xml_coll_t li(x_det, _U(layer)); li; ++li)  {
      xml_comp_t x_layer = li;
      int repeat = x_layer.repeat();
      double l_space_between = dd4hep::getAttrOrDefault(x_layer, _Unicode(space_between), 0.);
      double l_space_before = dd4hep::getAttrOrDefault(x_layer, _Unicode(space_before), 0.);
      l_pos_z += l_space_before;
      // Loop over number of repeats for this layer.
      for (int j = 0; j < repeat; j++)    {
        string l_name = Form("layer%d", l_num);
        double l_thickness = layering.layer(l_num - 1)->thickness();  // Layer's thickness.
        double l_dim_x = tan_hphi* l_pos_z;
        l_pos_z += l_thickness;

        Position   l_pos(0, 0, l_pos_z - l_thickness/2.);      // Position of the layer.
	    double l_trd_x1 = l_dim_x;
	    double l_trd_x2 = l_dim_x + l_thickness*tan_hphi;
	    double l_trd_y1 = l_dim_y;
	    double l_trd_y2 = l_trd_y1;
	    double l_trd_z  = l_thickness/2;
        Trapezoid  l_shape(l_trd_x1, l_trd_x2, l_trd_y1, l_trd_y2, l_trd_z);
        Volume     l_vol(l_name, l_shape, air);
        DetElement layer(stave_det, l_name, det_id);

        // Loop over the sublayers or slices for this layer.
        int s_num = 1;
        double s_pos_z = -(l_thickness / 2.);
        for(xml_coll_t si(x_layer,_U(slice)); si; ++si)  {
          xml_comp_t x_slice = si;
          string     s_name  = Form("slice%d", s_num);
          double     s_thick = x_slice.thickness();
	      double s_trd_x1 = l_dim_x + (s_pos_z + l_thickness/2)*tan_hphi;
	      double s_trd_x2 = l_dim_x + (s_pos_z + l_thickness/2 + s_thick)*tan_hphi;
	      double s_trd_y1 = l_trd_y1;
	      double s_trd_y2 = s_trd_y1;
	      double s_trd_z  = s_thick/2.;
          Trapezoid  s_shape(s_trd_x1, s_trd_x2, s_trd_y1, s_trd_y2, s_trd_z);
          Volume     s_vol(s_name, s_shape, description.material(x_slice.materialStr()));
          DetElement slice(layer, s_name, det_id);

          // build fibers
          if (x_slice.hasChild("fiber")) {
            xml_comp_t x_fiber = x_slice.child(_Unicode(fiber));
            double f_radius = getAttrOrDefault(x_fiber, _U(radius), 0.1 * cm);
            double f_spacing_x = getAttrOrDefault(x_fiber, _Unicode(spacing_x), 0.122 * cm);
            double f_spacing_z = getAttrOrDefault(x_fiber, _Unicode(spacing_z), 0.134 * cm);
            std::string f_id_grid = getAttrOrDefault(x_fiber, _Unicode(identifier_grid), "grid");
            std::string f_id_fiber = getAttrOrDefault(x_fiber, _Unicode(identifier_fiber), "fiber");

            // Calculate fiber positions inside the slice
            vector<Point> f_pos = _fiberPositions(f_radius, f_spacing_x, f_spacing_z, s_trd_x1, s_thick, hphi);
            // Sort fiber IDs fo better organization
            sort(f_pos.begin(), f_pos.end(),
              [](const Point &p1, const Point &p2) {
              if (p1.y() == p2.y()) { return p1.x() < p2.x(); }
                return p1.y() < p2.y();
              });

            Tube f_tube(0, f_radius, l_dim_y);

            // Set up the readout grid for the fiber layers
            // Trapezoid is divided into segments with equal dz and equal number of divisions in x
            // Every segment is a polygon that can be attached later to the lightguide
            // The grid size is assumed to be ~2x2 cm (starting values). This is to be larger than
            // SiPM chip (for GlueX 13mmx13mm: 4x4 grid 3mmx3mm with 3600 50×50 μm pixels each)
            // See, e.g., https://arxiv.org/abs/1801.03088 Fig. 2d

            // Calculate number of divisions
            auto grid_div = _getNdivisions(s_trd_x1, s_thick, 2.0*cm, 2.0*cm);
            // Calculate polygonal grid coordinates (vertices)
            auto grid_vtx = _gridPoints(grid_div.first, grid_div.second, s_trd_x1, s_thick, hphi);

            vector<int> f_id_count(grid_div.first*grid_div.second, 0);
            for (auto &p : f_pos) {
              int f_grid_id = -1;
              int f_id = -1;
              // Check to which grid fiber belongs to
              for (auto &poly_vtx : grid_vtx) {
                auto [grid_id, vtx_a, vtx_b, vtx_c, vtx_d] = poly_vtx;
                double poly_x[4] = {vtx_a.x(), vtx_b.x(), vtx_c.x(), vtx_d.x()};
                double poly_y[4] = {vtx_a.y(), vtx_b.y(), vtx_c.y(), vtx_d.y()};
                double f_xy[2] = {p.x(), p.y()};

                TGeoPolygon poly(4);
                poly.SetXY(poly_x,poly_y);
                poly.FinishPolygon();

                if(poly.Contains(f_xy)) {
                  f_grid_id = grid_id;
                  f_id = f_id_count[grid_id];
                  f_id_count[grid_id]++;
                }
              }

              string f_name = "fiber" + to_string(f_grid_id) + "_" + to_string(f_id);
              Volume f_vol(f_name, f_tube, description.material(x_fiber.materialStr()));
              DetElement fiber(slice, f_name, det_id);
              if ( x_fiber.isSensitive() ) {
                f_vol.setSensitiveDetector(sens);
              }
              fiber.setAttributes(description,f_vol,x_fiber.regionStr(),x_fiber.limitsStr(),x_fiber.visStr());

              // Fiber placement
              Transform3D f_tr(RotationZYX(0,0,M_PI*0.5),Position(p.x(), 0 ,p.y()));
              PlacedVolume fiber_phv = s_vol.placeVolume(f_vol, f_tr);
              fiber_phv.addPhysVolID(f_id_grid, f_grid_id + 1).addPhysVolID(f_id_fiber, f_id + 1);
              fiber.setPlacement(fiber_phv);
	        }
          }


          if ( x_slice.isSensitive() ) {
            s_vol.setSensitiveDetector(sens);
          }
          s_vol.setAttributes(description, x_slice.regionStr(), x_slice.limitsStr(), x_slice.visStr());

          // Slice placement.
          PlacedVolume slice_phv = l_vol.placeVolume(s_vol, Position(0, 0, s_pos_z + s_thick/2));
          slice_phv.addPhysVolID("slice", s_num);
          slice.setPlacement(slice_phv);
          // Increment Z position of slice.
          s_pos_z += s_thick;
          ++s_num;
        }

        // Set region, limitset, and vis of layer.
        l_vol.setAttributes(description, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr());

        PlacedVolume layer_phv = mod_vol.placeVolume(l_vol, l_pos);
        layer_phv.addPhysVolID("layer", l_num);
        layer.setPlacement(layer_phv);
        // Increment to next layer Z position. Do not add space_between for the last layer
        if (j < repeat - 1) {
          l_pos_z += l_space_between;
        }
        ++l_num;
      }
    }
  }
  // Phi start for a stave.
  double phi = M_PI / nsides;
  // Create nsides staves.
  for (int i = 0; i < nsides; i++, phi -= dphi)      { // i is module number
    // Compute the stave position
    Transform3D tr(RotationZYX(0, phi, M_PI*0.5), Translation3D(0, 0, 0));
    PlacedVolume pv = envelope.placeVolume(mod_vol, tr);
    pv.addPhysVolID("module", i + 1);
    DetElement sd = (i == 0) ? stave_det : stave_det.clone(Form("stave%d", i));
    sd.setPlacement(pv);
    sdet.add(sd);
  }

  Solid  support_frame_s;
  // optional stave support
  if (x_staves.hasChild("support")) {
    xml_comp_t  x_support           = x_staves.child(_U(support));
    double      support_thickness   = getAttrOrDefault(x_support, _U(thickness), 5.0 * cm);
    double      trd_x1_support      = (2 * std::tan(hphi) * l_pos_z + support_thickness)/2;
    // is the support on the inside surface?
    bool        is_inside_support   = getAttrOrDefault<bool>(x_support, _Unicode(inside), true);
    double      trd_x1              = std::tan(hphi) * inner_r;
    double      trd_x2              = std::tan(hphi) * (l_pos_z + support_thickness);
    double      trd_y1              = x_dim.z()/2.;

    // number of "beams" running the length of the stave.
    int    n_beams          = getAttrOrDefault<int>(x_support, _Unicode(n_beams), 3);
    double beam_thickness   = support_thickness / 4.0; // maybe a parameter later...
    trd_x1_support          = (2 * std::tan(hphi) * (l_pos_z + beam_thickness)) / 2.;
    double grid_size        = getAttrOrDefault(x_support, _Unicode(grid_size), 25.0 * cm);
    double beam_width       = 2.0 * trd_x1_support / (n_beams + 1); // quick hack to make some gap between T beams

    double cross_beam_thickness = support_thickness/4.0;
    //double trd_x1_support     = (2 * std::tan(hphi) * (inner_r + beam_thickness)) / 2.;
    double trd_x2_support       = trd_x2;

    int n_cross_supports = std::floor((trd_y1-cross_beam_thickness)/grid_size);

    Box        beam_vert_s(beam_thickness / 2.0 , trd_y1, support_thickness / 2.0 );
    Box        beam_hori_s(beam_width / 2.0, trd_y1, beam_thickness / 2.0);
    UnionSolid T_beam_s(beam_vert_s, beam_hori_s, Position(0, 0, -support_thickness / 2.0 + beam_thickness / 2.0));

    // cross supports
    Trapezoid  trd_support(trd_x1_support,trd_x2_support,
                           beam_thickness / 2.0, beam_thickness / 2.0,
                           support_thickness / 2.0 - cross_beam_thickness/2.0);
    UnionSolid support_array_start_s(T_beam_s,trd_support,Position(0,0,cross_beam_thickness/2.0));
    for (int isup = 0; isup < n_cross_supports; isup++) {
      support_array_start_s = UnionSolid(support_array_start_s, trd_support,
                                         Position(0, -1.0 * isup * grid_size, cross_beam_thickness/2.0));
      support_array_start_s = UnionSolid(support_array_start_s, trd_support,
                                         Position(0, 1.0 * isup * grid_size, cross_beam_thickness/2.0));
    }
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_hori_s,
                   Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0));
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_hori_s,
                   Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, -support_thickness / 2.0 + beam_thickness / 2.0));
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_vert_s, Position(-1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0));
    support_array_start_s =
        UnionSolid(support_array_start_s, beam_vert_s, Position(1.8 * 0.5*(trd_x1+trd_x2_support) / n_beams, 0, 0));

    support_frame_s = support_array_start_s;

    Material support_mat = description.material(x_support.materialStr());
    Volume   support_vol("support_frame_v", support_frame_s, support_mat);
    support_vol.setVisAttributes(description,x_support.visStr());

    // figure out how to best place
    auto pv = mod_vol.placeVolume(support_vol, Position(0.0, 0.0, l_pos_z + support_thickness / 2.0));
  }

  //l_pos_z += support_thickness;
  // Set envelope volume attributes.
  envelope.setAttributes(description, x_det.regionStr(), x_det.limitsStr(), x_det.visStr());
  return sdet;
}


DECLARE_DETELEMENT(athena_EcalBarrelInterlayers, create_detector)
// DECLARE_DETELEMENT(athena_EcalBarrelInterlayers, create_detector)


// -----------------------------------------------------------------------------
//   helper functions
// -----------------------------------------------------------------------------
// Fill fiber lattice into trapezoid starting from position (0,0) in x-z coordinate system
vector<Point> _fiberPositions(double radius, double x_spacing, double z_spacing,
        double x, double z, double phi, double spacing_tol) {
  // z_spacing - distance between fiber layers in z
  // x_spacing - distance between fiber centers in x
  // x - half-length of the shorter (bottom) base of the trapezoid
  // z - height of the trapezoid
  // phi - angle between z and trapezoid arm

  vector<Point> positions;
  int z_layers = floor((z/2-radius-spacing_tol)/z_spacing); // number of layers that fit in z/2

    double z_pos = 0.;
    double x_pos = 0.;

    for(int l = -z_layers; l < z_layers+1; l++) {

      z_pos = l*z_spacing;
      double x_max = x + (z/2. + z_pos)*tan(phi) - spacing_tol; // calculate max x at particular z_pos
      (l % 2 == 0) ? x_pos = 0. : x_pos = x_spacing/2; // account for spacing/2 shift

      while(x_pos < (x_max - radius)) {
        positions.push_back(Point(x_pos,z_pos));
        if(x_pos != 0.) positions.push_back(Point(-x_pos,z_pos)); // using symmetry around x=0
        x_pos += x_spacing;
      }
    }

    return positions;
}

// Calculate number of divisions for the readout grid for the fiber layers
std::pair<int, int> _getNdivisions(double x, double z, double dx, double dz){
  // x and z defined as in vector<Point> fiberPositions
  // dx, dz - size of the grid in x and z we want to get close to with the polygons
  // See also descripltion when the function is called

  double SiPMsize = 13.0*mm;
  double grid_min = SiPMsize + 3.0*mm;

  if(dz < grid_min) {
    dz = grid_min;
  }

  if(dx < grid_min) {
    dx = grid_min;
  }

  int nfit_cells_z = floor(z/dz);
  int n_cells_z = nfit_cells_z;

  if(nfit_cells_z == 0) n_cells_z++;

  int nfit_cells_x = floor((2*x)/dx);
  int n_cells_x = nfit_cells_x;

  if(nfit_cells_x == 0) n_cells_x++;

  return std::make_pair(n_cells_x, n_cells_z);

}

// Calculate dimensions of the polygonal grid in the cartesian coordinate system x-z
vector< tuple<int, Point, Point, Point, Point> > _gridPoints(int div_x, int div_z, double x, double z, double phi) {
  // x, z and phi defined as in vector<Point> fiberPositions
  // div_x, div_z - number of divisions in x and z
  double dz = z/div_z;

  std::vector<std::tuple<int, Point, Point, Point, Point>> points;

  for(int iz = 0; iz < div_z + 1; iz++){
    for(int ix = 0; ix < div_x + 1; ix++){
      double A_z = -z/2 + iz*dz;
      double B_z = -z/2 + (iz+1)*dz;

      double len_x_for_z = 2*(x+iz*dz*tan(phi));
      double len_x_for_z_plus_1 = 2*(x + (iz+1)*dz*tan(phi));

      double dx_for_z = len_x_for_z/div_x;
      double dx_for_z_plus_1 = len_x_for_z_plus_1/div_x;

      double A_x = -len_x_for_z/2. + ix*dx_for_z;
      double B_x = -len_x_for_z_plus_1/2. + ix*dx_for_z_plus_1;

      double C_z = B_z;
      double D_z = A_z;
      double C_x = B_x + dx_for_z_plus_1;
      double D_x = A_x + dx_for_z;

      int id = ix + div_x * iz;

      auto A = Point(A_x, A_z);
      auto B = Point(B_x, B_z);
      auto C = Point(C_x, C_z);
      auto D = Point(D_x, D_z);

      // vertex points filled in the clock-wise direction
      points.push_back(make_tuple(id, A, B, C, D));

    }
  }

  return points;

}