Skip to content
Snippets Groups Projects
BarrelTrackerWithFrame_geo.cpp 14.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /** \addtogroup Trackers Trackers
     * \brief Type: **BarrelTrackerWithFrame**.
    
     * \author W. Armstrong
    
     * \ingroup trackers
     *
     * @{
     */
    #include "DD4hep/DetFactoryHelper.h"
    #include "DD4hep/Printout.h"
    #include "DD4hep/Shapes.h"
    #include "DDRec/Surface.h"
    #include "DDRec/DetectorData.h"
    #include "XML/Layering.h"
    
    #include "XML/Utilities.h"
    
    Sylvester Joosten's avatar
    Sylvester Joosten committed
    
    
    #include "Acts/Plugins/DD4hep/ActsExtension.hpp"
    
    Sylvester Joosten's avatar
    Sylvester Joosten committed
    #include "Acts/Plugins/DD4hep/ConvertDD4hepMaterial.hpp"
    
    
    
    using namespace std;
    using namespace dd4hep;
    using namespace dd4hep::rec;
    using namespace dd4hep::detail;
    
    
    
    /** Barrel Tracker with space frame.
     *
     * - Optional "support" tag within the detector element.
    
     * 
     * The shapes are created using createShape which can be one of many basic geomtries. 
     * See the examples Check_shape_*.xml in 
     * [dd4hep's examples/ClientTests/compact](https://github.com/AIDASoft/DD4hep/tree/master/examples/ClientTests/compact)
     * directory.
     *
     *
     * - Optional "frame" tag within the module element.
    
     * 
     *
     * @author Whitney Armstrong
    
     */
    static Ref_t create_BarrelTrackerWithFrame(Detector& description, xml_h e, SensitiveDetector sens) {
    
      typedef vector<PlacedVolume> Placements;
      xml_det_t                    x_det    = e;
      Material                     air      = description.air();
      int                          det_id   = x_det.id();
      string                       det_name = x_det.nameStr();
      DetElement                   sdet(det_name, det_id);
    
    
      map<string, Volume>                volumes;
      map<string, Placements>            sensitives;
      map<string, std::vector<VolPlane>> volplane_surfaces;
    
      map<string, std::array<double, 2>> module_thicknesses;
    
    
      PlacedVolume           pv;
      dd4hep::xml::Dimension dimensions(x_det.dimensions());
    
    
    Sylvester Joosten's avatar
    Sylvester Joosten committed
      // ACTS extension
      {
        Acts::ActsExtension* detWorldExt = new Acts::ActsExtension();
        detWorldExt->addType("barrel", "detector");
        // Add the volume boundary material if configured
        for (xml_coll_t bmat(x_det, _Unicode(boundary_material)); bmat; ++bmat) {
          xml_comp_t x_boundary_material = bmat;
          Acts::xmlToProtoSurfaceMaterial(x_boundary_material, *detWorldExt, "boundary_material");
        }
        sdet.addExtension<Acts::ActsExtension>(detWorldExt);
      }
    
    
      Tube topVolumeShape(dimensions.rmin(), dimensions.rmax(), dimensions.length() * 0.5);
      Volume assembly(det_name,topVolumeShape,air);
    
      sens.setType("tracker");
    
    
      // Loop over the suports
      for (xml_coll_t su(x_det, _U(support)); su; ++su) {
        xml_comp_t x_support = su;
        double      support_thickness = getAttrOrDefault(x_support, _U(thickness), 2.0 * mm);
        double      support_length    = getAttrOrDefault(x_support, _U(length), 2.0 * mm);
        double      support_rmin      = getAttrOrDefault(x_support, _U(rmin), 2.0 * mm);
        double      support_zstart    = getAttrOrDefault(x_support, _U(zstart), 2.0 * mm);
        std::string support_name      = getAttrOrDefault<std::string>(x_support, _Unicode(name), "support_tube");
        std::string support_vis       = getAttrOrDefault<std::string>(x_support, _Unicode(vis), "AnlRed");
        xml_dim_t  pos        (x_support.child(_U(position), false));
        xml_dim_t  rot        (x_support.child(_U(rotation), false));
        Solid support_solid;
        if(x_support.hasChild("shape")){
          xml_comp_t shape(x_support.child(_U(shape)));
          string     shape_type = shape.typeStr();
          support_solid  = xml::createShape(description, shape_type, shape);
        } else {
          support_solid = Tube(support_rmin, support_rmin + support_thickness, support_length / 2);
        }
        Transform3D tr = Transform3D(Rotation3D(),Position(0,0,(support_zstart + support_length / 2)));
        if ( pos.ptr() && rot.ptr() )  {
          Rotation3D  rot3D(RotationZYX(rot.z(0),rot.y(0),rot.x(0)));
          Position    pos3D(pos.x(0),pos.y(0),pos.z(0));
          tr = Transform3D(rot3D, pos3D);
        }
        else if ( pos.ptr() )  {
          tr = Transform3D(Rotation3D(),Position(pos.x(0),pos.y(0),pos.z(0)));
        }
        else if ( rot.ptr() )  {
          Rotation3D rot3D(RotationZYX(rot.z(0),rot.y(0),rot.x(0)));
          tr = Transform3D(rot3D,Position());
        }
        Material    support_mat       = description.material(x_support.materialStr());
        Volume      support_vol(support_name, support_solid, support_mat);
        support_vol.setVisAttributes(description.visAttributes(support_vis));
        pv = assembly.placeVolume(support_vol, tr);
        // pv = assembly.placeVolume(support_vol, Position(0, 0, support_zstart + support_length / 2));
      }
    
    
      // loop over the modules
      for (xml_coll_t mi(x_det, _U(module)); mi; ++mi) {
        xml_comp_t x_mod = mi;
        string     m_nam = x_mod.nameStr();
    
        if (volumes.find(m_nam) != volumes.end()) {
    
          printout(ERROR, "BarrelTrackerWithFrame", string((string("Module with named ") + m_nam + string(" already exists."))).c_str() );
    
          throw runtime_error("Logics error in building modules.");
        }
    
    
        int ncomponents   = 0;
        int sensor_number = 1;
    
        double total_thickness = 0;
    
    
        // Compute module total thickness from components
    
        xml_coll_t ci(x_mod, _U(module_component));
        for (ci.reset(), total_thickness = 0.0; ci; ++ci) {
          total_thickness += xml_comp_t(ci).thickness();
        }
    
        // the module assembly volume
    
        Assembly m_vol( m_nam );
    
        volumes[m_nam] = m_vol;
        m_vol.setVisAttributes(description.visAttributes(x_mod.visStr()));
    
    
        // Optional module frame.
        if(x_mod.hasChild("frame")){
          xml_comp_t m_frame = x_mod.child(_U(frame));
          //xmleles[m_nam]  = x_mod;
          double frame_thickness = m_frame.thickness();
          double frame_width     = m_frame.width();
          double frame_height    = getAttrOrDefault<double>(m_frame, _U(height), 5.0 * mm);
          double tanth           = frame_height/(frame_width/2.0);
          double frame_height2   = frame_height-frame_thickness-frame_thickness/tanth;
          double frame_width2    = 2.0*frame_height2/tanth;
    
          Trd1 moduleframe_part1(frame_width / 2, 0.001 * mm, m_frame.length() / 2,
                                 frame_height / 2);
          Trd1 moduleframe_part2(frame_width2/2, 0.001 * mm,
                                 m_frame.length() / 2 + 0.01 * mm, frame_height2/2);
    
          SubtractionSolid moduleframe(moduleframe_part1, moduleframe_part2,Position(0.0,frame_thickness,0.0));
          Volume v_moduleframe(m_nam+"_vol", moduleframe, description.material(m_frame.materialStr()));
          v_moduleframe.setVisAttributes(description, m_frame.visStr());
          m_vol.placeVolume(v_moduleframe, Position(0.0, 0.0, frame_height / 2 + total_thickness / 2.0));
        }
    
    
    
        double thickness_so_far = 0.0;
    
        double thickness_sum = -total_thickness/2.0;
    
        for (xml_coll_t ci(x_mod, _U(module_component)); ci; ++ci, ++ncomponents) {
          xml_comp_t x_comp = ci;
    
          xml_comp_t x_pos  = x_comp.position(false);
          xml_comp_t x_rot  = x_comp.rotation(false);
          string     c_nam  = _toString(ncomponents, "component%d");
          Box        c_box(x_comp.width() / 2, x_comp.length() / 2, x_comp.thickness() / 2);
          Volume     c_vol(c_nam, c_box, description.material(x_comp.materialStr()));
    
    
          if (x_pos && x_rot) {
            Position c_pos(x_pos.x(0), x_pos.y(0), x_pos.z(0));
            RotationZYX c_rot(x_rot.z(0), x_rot.y(0), x_rot.x(0));
            pv = m_vol.placeVolume(c_vol, Transform3D(c_rot, c_pos));
          } else if (x_rot) {
    
            Position c_pos(0, 0, thickness_sum + x_comp.thickness() / 2.0);
            pv = m_vol.placeVolume(c_vol, Transform3D(RotationZYX(x_rot.z(0), x_rot.y(0), x_rot.x(0)),c_pos));
    
          } else if (x_pos) {
            pv = m_vol.placeVolume(c_vol, Position(x_pos.x(0), x_pos.y(0), x_pos.z(0)));
          } else {
    
            pv = m_vol.placeVolume(c_vol, Position(0,0,thickness_sum+x_comp.thickness()/2.0));
    
          }
          c_vol.setRegion(description, x_comp.regionStr());
          c_vol.setLimitSet(description, x_comp.limitsStr());
          c_vol.setVisAttributes(description, x_comp.visStr());
          if (x_comp.isSensitive()) {
    
            pv.addPhysVolID("sensor", sensor_number++);
    
            c_vol.setSensitiveDetector(sens);
            sensitives[m_nam].push_back(pv);
    
            module_thicknesses[m_nam] = {thickness_so_far + x_comp.thickness()/2.0, total_thickness-thickness_so_far - x_comp.thickness()/2.0};
    
    
            // -------- create a measurement plane for the tracking surface attched to the sensitive volume -----
            Vector3D u(0., 1., 0.);
            Vector3D v(0., 0., 1.);
            Vector3D n(1., 0., 0.);
            //    Vector3D o( 0. , 0. , 0. ) ;
    
            // compute the inner and outer thicknesses that need to be assigned to the tracking surface
            // depending on wether the support is above or below the sensor
            double inner_thickness = module_thicknesses[m_nam][0];
            double outer_thickness = module_thicknesses[m_nam][1];
    
            SurfaceType type(SurfaceType::Sensitive);
    
            // if( isStripDetector )
            //  type.setProperty( SurfaceType::Measurement1D , true ) ;
    
            VolPlane surf(c_vol, type, inner_thickness, outer_thickness, u, v, n); //,o ) ;
            volplane_surfaces[m_nam].push_back(surf);
    
            //--------------------------------------------
    
          thickness_sum += x_comp.thickness();
    
          thickness_so_far += x_comp.thickness();
    
        }
      }
    
      // now build the layers
      for (xml_coll_t li(x_det, _U(layer)); li; ++li) {
    
        xml_comp_t x_layer  = li;
    
        xml_comp_t x_barrel = x_layer.child(_U(barrel_envelope));
        xml_comp_t x_layout = x_layer.child(_U(rphi_layout));
    
        xml_comp_t z_layout = x_layer.child(_U(z_layout)); // Get the <z_layout> element.
        int        lay_id   = x_layer.id();
        string     m_nam    = x_layer.moduleStr();
        string     lay_nam  = _toString(x_layer.id(), "layer%d");
        Tube       lay_tub(x_barrel.inner_r(), x_barrel.outer_r(), x_barrel.z_length() / 2.0);
        Volume     lay_vol(lay_nam, lay_tub, air); // Create the layer envelope volume.
    
        lay_vol.setVisAttributes(description.visAttributes(x_layer.visStr()));
    
    
        double      phi0       = x_layout.phi0();     // Starting phi of first module.
        double      phi_tilt   = x_layout.phi_tilt(); // Phi tilt of a module.
        double      rc         = x_layout.rc();       // Radius of the module center.
        int         nphi       = x_layout.nphi();     // Number of modules in phi.
        double      rphi_dr    = x_layout.dr();       // The delta radius of every other module.
        double      phi_incr   = (M_PI * 2) / nphi;   // Phi increment for one module.
        double      phic       = phi0;                // Phi of the module center.
        double      z0         = z_layout.z0();       // Z position of first module in phi.
        double      nz         = z_layout.nz();       // Number of modules to place in z.
        double      z_dr       = z_layout.dr();       // Radial displacement parameter, of every other module.
    
        Volume      module_env = volumes[m_nam];
    
    Sylvester Joosten's avatar
    Sylvester Joosten committed
        DetElement  lay_elt(sdet, lay_nam, lay_id);
    
        Placements& sensVols = sensitives[m_nam];
    
        // the local coordinate systems of modules in dd4hep and acts differ
        // see http://acts.web.cern.ch/ACTS/latest/doc/group__DD4hepPlugins.html
    
    Sylvester Joosten's avatar
    Sylvester Joosten committed
        {
          Acts::ActsExtension* layerExtension = new Acts::ActsExtension();
          // layer is simple tube so no need to set envelope
          layerExtension->addType("sensitive cylinder", "layer");
          // Add the proto layer material
          for(xml_coll_t lmat(x_layer, _Unicode(layer_material)); lmat; ++lmat) {
            xml_comp_t x_layer_material = lmat;
            xmlToProtoSurfaceMaterial(x_layer_material, *layerExtension, "layer_material");
          }
          lay_elt.addExtension<Acts::ActsExtension>(layerExtension);
        }
    
    
        // Z increment for module placement along Z axis.
        // Adjust for z0 at center of module rather than
        // the end of cylindrical envelope.
        double z_incr = nz > 1 ? (2.0 * z0) / (nz - 1) : 0.0;
        // Starting z for module placement along Z axis.
        double module_z = -z0;
        int module = 1;
    
        // Loop over the number of modules in phi.
        for (int ii = 0; ii < nphi; ii++) {
          double dx = z_dr * std::cos(phic + phi_tilt);  // Delta x of module position.
          double dy = z_dr * std::sin(phic + phi_tilt);  // Delta y of module position.
          double x = rc * std::cos(phic);                // Basic x module position.
          double y = rc * std::sin(phic);                // Basic y module position.
    
          // Loop over the number of modules in z.
          for (int j = 0; j < nz; j++) {
            string module_name = _toString(module, "module%d");
            DetElement mod_elt(lay_elt, module_name, module);
    
            Transform3D tr(RotationZYX(0, ((M_PI / 2) - phic - phi_tilt), -M_PI / 2),
                           Position(x, y, module_z));
    
            pv = lay_vol.placeVolume(module_env, tr);
            pv.addPhysVolID("module", module);
            mod_elt.setPlacement(pv);
            for (size_t ic = 0; ic < sensVols.size(); ++ic) {
              PlacedVolume sens_pv = sensVols[ic];
              DetElement comp_de(mod_elt, std::string("de_") + sens_pv.volume().name(), module);
              comp_de.setPlacement(sens_pv);
    
    Sylvester Joosten's avatar
    Sylvester Joosten committed
              // ACTS extension
              {
                Acts::ActsExtension* sensorExtension = new Acts::ActsExtension();
                //sensorExtension->addType("sensor", "detector");
                comp_de.addExtension<Acts::ActsExtension>(sensorExtension);
              }
    
              //comp_de.setAttributes(description, sens_pv.volume(), x_layer.regionStr(), x_layer.limitsStr(),
              //                      xml_det_t(xmleles[m_nam]).visStr());
    
              volSurfaceList(comp_de)->push_back(volplane_surfaces[m_nam][ic]);
    
            }
    
            /// Increase counters etc.
            module++;
            // Adjust the x and y coordinates of the module.
            x += dx;
            y += dy;
            // Flip sign of x and y adjustments.
            dx *= -1;
            dy *= -1;
            // Add z increment to get next z placement pos.
            module_z += z_incr;
          }
          phic += phi_incr;  // Increment the phi placement of module.
          rc += rphi_dr;     // Increment the center radius according to dr parameter.
          rphi_dr *= -1;     // Flip sign of dr parameter.
          module_z = -z0;    // Reset the Z placement parameter for module.
        }
        // Create the PhysicalVolume for the layer.
        pv = assembly.placeVolume(lay_vol);  // Place layer in mother
        pv.addPhysVolID("layer", lay_id);    // Set the layer ID.
        lay_elt.setAttributes(description, lay_vol, x_layer.regionStr(), x_layer.limitsStr(),
                              x_layer.visStr());
        lay_elt.setPlacement(pv);
      }
      sdet.setAttributes(description, assembly, x_det.regionStr(), x_det.limitsStr(), x_det.visStr());
      assembly.setVisAttributes(description.invisible());
      pv = description.pickMotherVolume(sdet).placeVolume(assembly);
      pv.addPhysVolID("system", det_id);  // Set the subdetector system ID.
      sdet.setPlacement(pv);
      return sdet;
    }
    
    //@}
    // clang-format off
    
    DECLARE_DETELEMENT(BarrelTrackerWithFrame, create_BarrelTrackerWithFrame)
    DECLARE_DETELEMENT(athena_TrackerBarrel,   create_BarrelTrackerWithFrame)
    DECLARE_DETELEMENT(athena_VertexBarrel,    create_BarrelTrackerWithFrame)