Newer
Older
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/OpticalSurfaces.h"
#include "DD4hep/Printout.h"
#include "DDRec/DetectorData.h"
#include "DDRec/Surface.h"
#include <XML/Helper.h>
//////////////////////////////////
// Central Barrel DIRC
//////////////////////////////////
using namespace std;
using namespace dd4hep;
// Fixed Trap constructor. This function is a workaround of this bug:
// https://github.com/AIDASoft/DD4hep/issues/850
// Should be used instead of dd4hep::Trap(pName, pZ, pY, pX, pLTX) constructor
dd4hep::Trap MakeTrap( const std::string& pName, double pZ, double pY, double pX, double pLTX );
static Ref_t createDetector(Detector& desc, xml_h e, SensitiveDetector sens)
{
xml_det_t xml_det = e;
string det_name = xml_det.nameStr();
int det_id = xml_det.id();
// Main detector xml element
xml_dim_t dirc_dim = xml_det.dimensions();
xml_dim_t dirc_pos = xml_det.position();
xml_dim_t dirc_rot = xml_det.rotation();
double det_rin = dirc_dim.rmin();
double det_rout = dirc_dim.rmax();
double SizeZ = dirc_dim.length();
// DEBUG
// double mirror_r1 = x_det.attr<double>(_Unicode(r1));
// DIRC box:
xml_comp_t xml_box_module = xml_det.child(_U(module));
Material Vacuum = desc.material("Vacuum");
Material air = desc.material("AirOptical");
Material quartz = desc.material("Quartz");
Material epotek = desc.material("Epotek");
Material nlak33a = desc.material("Nlak33a");
auto& bar_material = quartz;
auto mirror_material = desc.material("Aluminum"); // mirror material
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
Tube det_geo(det_rin, det_rout, SizeZ / 2., 0., 360.0 * deg);
//Volume det_volume("DIRC", det_geo, Vacuum);
Assembly det_volume("DIRC");
det_volume.setVisAttributes(desc.visAttributes(xml_det.visStr()));
DetElement det(det_name, det_id);
Volume mother_vol = desc.pickMotherVolume(det);
Transform3D tr(RotationZYX(0, dirc_rot.theta(), 0.0), Position(0.0, 0.0, dirc_pos.z()));
PlacedVolume det_plvol = mother_vol.placeVolume(det_volume, tr);
det_plvol.addPhysVolID("system", det_id);
det.setPlacement(det_plvol);
// Parts Dimentions
int fLensId = 6; // focusing system
// 0 no lens
// 1 spherical lens
// 3 3-layer spherical lens
// 6 3-layer cylindrical lens
// 10 ideal lens (thickness = 0, ideal focusing)
int fGeomType = 0; // Full DIRC - 0, 1 only one plate
int fRunType = 0; // 0, 10 - simulation, 1, 5 - lookup table, 2,3,4 - reconstruction
double fPrizm[4];
fPrizm[0] = 360 * mm;
fPrizm[1] = 300 * mm;
fPrizm[3] = 50 * mm;
fPrizm[2] = fPrizm[3] + 300 * tan(32 * deg) * mm;
double fBarsGap = 0.15 * mm;
std::cout << "DIRC: fPrizm[2] " << fPrizm[2] << std::endl;
double fdTilt = 80 * deg;
double fPrizmT[6];
fPrizmT[0] = 390 * mm;
fPrizmT[1] = (400 - 290 * cos(fdTilt)) * mm; //
fPrizmT[2] = 290 * sin(fdTilt) * mm; // hight
fPrizmT[3] = 50 * mm; // face
fPrizmT[4] = 290 * mm;
fPrizmT[5] = 290 * cos(fdTilt)* mm;
double fMirror[3];
fMirror[0] = 20 * mm;
fMirror[1] = fPrizm[0];
fMirror[2] = 1 * mm;
// fPrizm[0] = 170; fPrizm[1] = 300; fPrizm[2] = 50+300*tan(45*deg); fPrizm[3] = 50;
// double fBar[3];
// fBar[0] = 17 * mm;
// fBar[1] = (fPrizm[0] - (fNBar - 1) * fBarsGap) / fNBar;
// fBar[2] = 1050 * mm; // 4200; //4200
double fMcpTotal[3];
double fMcpActive[3];
fMcpTotal[0] = fMcpTotal[1] = 53 + 4;
fMcpTotal[2] = 1*mm;
fMcpActive[0] = fMcpActive[1] = 53;
fMcpActive[2] = 1*mm;
double fLens[4];
fLens[0] = fLens[1] = 40 * mm;
fLens[2] = 10 * mm;
double fRadius = (det_rin + det_rout)/2;
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
double fBoxWidth = fPrizm[0];
double fFd[3];
fFd[0] = fBoxWidth;
fFd[1] = fPrizm[2];
fFd[2] = 1 * mm;
fLens[0] = fPrizm[3];
fLens[1] = fPrizm[0];
fLens[2] = 12 * mm;
// Getting box XML
const int fNBoxes = xml_box_module.repeat();
const double box_width = xml_box_module.width();
const double box_height = xml_box_module.height();
const double box_length = xml_box_module.length() + 550*mm;
// The DIRC
Assembly dirc_module("DIRCModule");
//Volume lDirc("lDirc", gDirc, air);
dirc_module.setVisAttributes(desc.visAttributes(xml_box_module.visStr()));
// FD... whatever F and D is
xml_comp_t xml_fd = xml_box_module.child(_Unicode(fd));
Box gFd("gFd", xml_fd.height()/2, xml_fd.width()/2, xml_fd.thickness()/2);
Volume lFd ("lFd", gFd, desc.material(xml_fd.materialStr()));
lFd.setVisAttributes(desc.visAttributes(xml_fd.visStr()));
//lFd.setSensitiveDetector(sens);
// The Bar
xml_comp_t xml_bar = xml_box_module.child(_Unicode(bar));
double bar_height = xml_bar.height();
double bar_width = xml_bar.width();
double bar_length = xml_bar.length();
Box gBar("gBar", bar_height/2, bar_width/2, bar_length/2);
Volume lBar("lBar", gBar, desc.material(xml_bar.materialStr()));
lBar.setVisAttributes(desc.visAttributes(xml_bar.visStr()));
// Glue
xml_comp_t xml_glue = xml_box_module.child(_Unicode(glue));
double glue_thickness = xml_glue.thickness(); // 0.05 * mm;
Box gGlue("gGlue", bar_height/2, bar_width/2, glue_thickness/2);
Volume lGlue("lGlue", gGlue, desc.material(xml_glue.materialStr()));
lGlue.setVisAttributes(desc.visAttributes(xml_glue.visStr()));
lBar.setSensitiveDetector(sens);
int bars_repeat_z = 4; // TODO parametrize!
double bar_assm_length = (bar_length + glue_thickness) * bars_repeat_z;
int fNBar = xml_bar.repeat();
double bar_gap = xml_bar.gap();
for (int y_index = 0; y_index < fNBar; y_index++) {
double shift_y = y_index * (bar_width + bar_gap) - 0.5 * box_width + 0.5 * bar_width;
for (int z_index = 0; z_index < bars_repeat_z; z_index++) {
double z = -0.5 * bar_assm_length + 0.5 * bar_length + (bar_length + glue_thickness) * z_index;
auto placed_bar = dirc_module.placeVolume(lBar, Position(0, shift_y, z));
dirc_module.placeVolume(lGlue, Position(0, shift_y, z + 0.5 * (bar_length + glue_thickness)));
placed_bar.addPhysVolID("section", z_index);
placed_bar.addPhysVolID("bar", y_index);
}
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// The Mirror
xml_comp_t xml_mirror = xml_box_module.child(_Unicode(mirror));
Box gMirror("gMirror", xml_mirror.height()/2, xml_mirror.width()/2, xml_mirror.thickness()/2);
Volume lMirror("lMirror", gMirror, desc.material(xml_mirror.materialStr()));
dirc_module.placeVolume(lMirror, Position(0, 0, -0.5 * (bar_assm_length - xml_mirror.thickness())));
lMirror.setVisAttributes(desc.visAttributes(xml_mirror.visStr()));
// The mirror optical surface
OpticalSurfaceManager surfMgr = desc.surfaceManager();
auto surf = surfMgr.opticalSurface("MirrorOpticalSurface");
SkinSurface skin(desc, det, Form("dirc_mirror_optical_surface"), surf, lMirror);
skin.isValid();
// LENS
// Lens volumes
Volume lLens1;
Volume lLens2;
Volume lLens3;
double lensMinThikness = 2.0 * mm;
double layer12 = lensMinThikness * 2;
// r1 = (r1==0)? 27.45: r1;
// r2 = (r2==0)? 20.02: r2;
double r1 = 33 * mm;
double r2 = 24 * mm;
double shight = 25 * mm;
Position zTrans1(0, 0, -r1 - fLens[2] / 2. + r1 - sqrt(r1 * r1 - shight / 2. * shight / 2.) + lensMinThikness);
Position zTrans2(0, 0, -r2 - fLens[2] / 2. + r2 - sqrt(r2 * r2 - shight / 2. * shight / 2.) + layer12);
Box gfbox("fbox", 0.5 * fLens[0], 0.5 * fLens[1], 0.5 * fLens[2]);
Box gcbox("cbox", 0.5 * fLens[0], 0.5 * fLens[1] + 1*mm, 0.5 * fLens[2]);
// Volume gfbox_volume("gfbox_volume", gfbox, bar_material);
// lDirc.placeVolume(gfbox_volume, Position(0, 0, 0));
//
// Volume gcbox_volume("gcbox_volume", gcbox, bar_material);
// lDirc.placeVolume(gcbox_volume, Position(0, 0, 50));
Position tTrans1(0.5 * (fLens[0] + shight), 0, -fLens[2] + layer12);
Position tTrans0(-0.5 * (fLens[0] + shight), 0, -fLens[2] + layer12);
SubtractionSolid tubox("tubox", gfbox, gcbox, tTrans1);
SubtractionSolid gubox("gubox", tubox, gcbox, tTrans0);
// Volume tubox_volume("tubox_volume", tubox, bar_material);
// lDirc.placeVolume(tubox_volume, Position(0, 0, 100));
//
// Volume gubox_volume("gubox_volume", gubox, bar_material);
// lDirc.placeVolume(gubox_volume, Position(0, 0, 150));
Tube gcylinder1("Cylinder1", 0, r1, 0.5 * fLens[1], 0 * deg, 360 * deg);
Tube gcylinder2("Cylinder2", 0, r2, 0.5 * fLens[1] - 0.5*mm, 0 * deg, 360 * deg);
Tube gcylinder1c("Cylinder1c", 0, r1, 0.5 * fLens[1] + 0.5*mm, 0 * deg, 360 * deg);
Tube gcylinder2c("Cylinder2c", 0, r2, 0.5 * fLens[1] + 0.5*mm, 0 * deg, 360 * deg);
RotationX xRot(-M_PI / 2.);
IntersectionSolid gLens1("Lens1", gubox, gcylinder1, Transform3D(xRot, zTrans1));
SubtractionSolid gLenst("temp", gubox, gcylinder1c, Transform3D(xRot, zTrans1));
// Volume gLens1_volume("gLens1_volume", gLens1, bar_material);
// lDirc.placeVolume(gLens1_volume, Position(0, 0, 200));
//
// Volume gLenst_volume("gLenst_volume", gLenst, bar_material);
// lDirc.placeVolume(gLenst_volume, Position(0, 0, 250));
IntersectionSolid gLens2("Lens2", gLenst, gcylinder2, Transform3D(xRot, zTrans2));
SubtractionSolid gLens3("Lens3", gLenst, gcylinder2c, Transform3D(xRot, zTrans2));
lLens1 = Volume("lLens1", gLens1, bar_material);
lLens2 = Volume("lLens2", gLens2, nlak33a);
lLens3 = Volume("lLens3", gLens3, bar_material);
lLens1.setVisAttributes(desc.visAttributes("DIRCLens1"));
lLens2.setVisAttributes(desc.visAttributes("DIRCLens2"));
lLens3.setVisAttributes(desc.visAttributes("DIRCLens3"));
double shifth = 0.5 * (bar_assm_length + fLens[2]);
// fmt::print("LENS HERE shifth={}\n", shifth);
lLens1.setVisAttributes(desc.visAttributes("AnlTeal"));
dirc_module.placeVolume(lLens1, Position(0, 0, shifth));
dirc_module.placeVolume(lLens2, Position(0, 0, shifth));
dirc_module.placeVolume(lLens3, Position(0, 0, shifth));
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// The Prizm
Trap gPrizm = MakeTrap("gPrizm", fPrizm[0], fPrizm[1], fPrizm[2], fPrizm[3]);
Volume lPrizm("lPrizm", gPrizm, bar_material);
lPrizm.setVisAttributes(desc.visAttributes("DIRCPrism"));
//G4RotationMatrix *fdRot = new G4RotationMatrix();
//G4RotationMatrix *fdrot = new G4RotationMatrix();
double evshiftz = 0.5 * bar_assm_length + fPrizm[1] + fMcpActive[2] / 2. + fLens[2];
double evshiftx = -3*mm;
double prism_shift_x = (fPrizm[2] + fPrizm[3]) / 4. - 0.5 * fPrizm[3] + 1.5*mm;
double prism_shift_z = 0.5 * (bar_assm_length + fPrizm[1]) + fLens[2];
Position fPrismShift(prism_shift_x, 0, prism_shift_z);
dirc_module.placeVolume(lPrizm, Transform3D(xRot, fPrismShift));
dirc_module.placeVolume(lFd, Position(0.5 * fFd[1] - 0.5 * fPrizm[3] - evshiftx, 0, evshiftz));
double dphi = 2 * M_PI / (double)fNBoxes;
for (int i = 0; i < fNBoxes; i++) {
double phi = dphi * i;
double dx = -fRadius * cos(phi);
double dy = -fRadius * sin(phi);
//G4RotationMatrix *tRot = new G4RotationMatrix();
Transform3D tr(RotationZ(phi+M_PI), Position(dx, dy, 0));
PlacedVolume box_placement = det_volume.placeVolume(dirc_module, tr);
box_placement.addPhysVolID("module", i);
// fmt::print("placing dircbox # {} -tphi={:.0f} dx={:.0f}, dy={:.0f}\n", i, phi/deg, dx/cm, dy/cm);
//new G4PVPlacement(tRot, G4ThreeVector(dx, dy, 0), lDirc, "wDirc", lExpHall, false, i);
}
//////////////////
// DIRC Bars
//////////////////
// double bar_radius = 83.65 * cm;
// double bar_length = SizeZ;
// double bar_width = 42. * cm;
// double bar_thicknes = 1.7 * cm;
// int bar_count = 2 * M_PI * bar_radius / bar_width;
// double bar_dphi = 2 * 3.1415926 / bar_count;
// Material bar_material = desc.material("Quartz");
// Box bar_geo(bar_thicknes / 2., bar_width / 2., bar_length / 2.);
// Volume bar_volume("cb_DIRC_bars_Logix", bar_geo, bar_material);
// bar_volume.setVisAttributes(desc.visAttributes(xml_det.visStr()));
// sens.setType("photoncounter");
// bar_volume.setSensitiveDetector(sens);
// for (int ia = 0; ia < bar_count; ia++) {
// double phi = (ia * (bar_dphi));
// double x = -bar_radius * cos(phi);
// double y = -bar_radius * sin(phi);
// Transform3D tr(RotationZ(bar_dphi * ia), Position(x, y, 0));
// PlacedVolume barPV = det_volume.placeVolume(bar_volume, tr);
// barPV.addPhysVolID("module", ia);
// }
DECLARE_DETELEMENT(cb_DIRC, createDetector)
dd4hep::Trap MakeTrap( const std::string& pName, double pZ, double pY, double pX, double pLTX )
{
// Fixed Trap constructor. This function is a workaround of this bug:
// https://github.com/AIDASoft/DD4hep/issues/850
// Should be used instead of dd4hep::Trap(pName, pZ, pY, pX, pLTX) constructor
double fDz = 0.5*pZ;
double fTthetaCphi = 0;
double fTthetaSphi = 0;
double fDy1 = 0.5*pY;
double fDx1 = 0.5*pX;
double fDx2 = 0.5*pLTX;
double fTalpha1 = 0.5*(pLTX - pX)/pY;
double fDy2 = fDy1;
double fDx3 = fDx1;
double fDx4 = fDx2;
double fTalpha2 = fTalpha1;
return Trap(pName, fDz, fTthetaCphi, fTthetaSphi,
fDy1, fDx1, fDx2, fTalpha1,
fDy2, fDx3, fDx4, fTalpha2);
}