Skip to content
Snippets Groups Projects
MRich_geo.cpp 19.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • //
    // Author     : Whit Armstrong (warmstrong@anl.gov)
    //
    #include <XML/Helper.h>
    #include "TMath.h"
    #include "TString.h"
    #include "DDRec/Surface.h"
    #include "DDRec/DetectorData.h"
    #include "DD4hep/OpticalSurfaces.h"
    #include "DD4hep/DetFactoryHelper.h"
    #include "DD4hep/Printout.h"
    #include "GeometryHelpers.h"
    #include "Math/Vector3D.h"
    #include "Math/AxisAngle.h"
    #include "Math/VectorUtil.h"
    
    using namespace std;
    using namespace dd4hep;
    using namespace dd4hep::rec;
    
    using Placements = vector<PlacedVolume>;
    
    
    
    static Ref_t createDetector(Detector& description, xml::Handle_t e, SensitiveDetector sens){
      xml_det_t      x_det    = e;
      Material       air      = description.material("AirOptical");
      Material       vacuum   = description.vacuum();
      string         det_name = x_det.nameStr();
      DetElement     sdet(det_name, x_det.id());
      Assembly       assembly(det_name);
      sens.setType("photoncounter");
      OpticalSurfaceManager surfMgr = description.surfaceManager();
    
      bool projective = getAttrOrDefault(x_det, _Unicode(projective), false);
    
      bool reflect    = x_det.reflect(true);
    
    
      PlacedVolume pv;
    
      map<string, Volume>     modules;
      map<string, Placements> sensitives;
      map<string, Volume>     module_assemblies;
      std::map<std::string,DetElement> module_assembly_delements;
    
      int                     n_sensor = 1;
    
    
      xml::Component dims   = x_det.dimensions();
      auto           rmin   = dims.rmin();
      auto           rmax   = dims.rmax();
      auto           length = dims.length();
      auto           zmin   = dims.zmin();
    
      auto           zpos   = zmin + length / 2;
    
      // envelope
      Tube   envShape(rmin, rmax, length / 2., 0., 2 * M_PI);
      Volume envVol("MRICH_Envelope", envShape, air);
      envVol.setVisAttributes(description.visAttributes(x_det.visStr()));
      if (x_det.hasChild(_Unicode(envelope))) {
        xml_comp_t x_envelope = x_det.child(_Unicode(envelope));
        double thickness  = x_envelope.thickness();
        Material material = description.material(x_envelope.materialStr());
        Tube   envInsideShape(rmin + thickness, rmax - thickness, length / 2. - thickness);
        SubtractionSolid envShellShape(envShape, envInsideShape);
        Volume envShell("MRICH_Envelope_Inside", envShellShape, material);
        envVol.placeVolume(envShell);
      }
    
    
      // expect only one module (for now)
      xml_comp_t x_mod = x_det.child(_U(module));
      string     mod_name            = x_mod.nameStr();
      double     mod_width           = getAttrOrDefault(x_mod, _U(width), 130.0 * mm);
      double     mod_height          = getAttrOrDefault(x_mod, _U(height), 130.0 * mm);
      double     mod_length          = getAttrOrDefault(x_mod, _U(length), 130.0 * mm);
    
      // module
      Box    m_solid(mod_width / 2.0, mod_height / 2.0, mod_length / 2.0);
      Volume m_volume(mod_name, m_solid, air);
      m_volume.setVisAttributes(description.visAttributes(x_mod.visStr()));
      DetElement mod_de( mod_name + std::string("_mod_") + std::to_string(1), 1);
    
      double z_placement = - mod_length / 2.0;
    
    
      // todo module frame
    
      if (x_mod.hasChild(_Unicode(frame))) {
        xml_comp_t x_frame    = x_mod.child(_Unicode(frame));
        double     frame_thickness = getAttrOrDefault(x_frame, _U(thickness), 2.0 * mm);
        Box        frame_inside(mod_width / 2.0 - frame_thickness, mod_height / 2.0 - frame_thickness, mod_length / 2.0 - frame_thickness);
        SubtractionSolid frame_solid(m_solid, frame_inside);
        Material   frame_mat       = description.material(x_frame.materialStr());
        Volume     frame_vol(mod_name+"_frame", frame_solid, frame_mat);
        auto       frame_vis       = getAttrOrDefault<std::string>(x_frame, _U(vis), std::string("GrayVis"));
        frame_vol.setVisAttributes(description.visAttributes(frame_vis));
        // update position
        z_placement += frame_thickness / 2.0;
        // place volume
        m_volume.placeVolume(frame_vol);
        // update position
        z_placement += frame_thickness / 2.0;
      }
    
    
      // aerogel box
    
      if (x_mod.hasChild(_Unicode(aerogel))) {
        xml_comp_t x_aerogel  = x_mod.child(_Unicode(aerogel));
        double     aerogel_width   = getAttrOrDefault(x_aerogel, _U(width), 130.0 * mm);
        double     aerogel_length  = getAttrOrDefault(x_aerogel, _U(length), 130.0 * mm);
        Material   aerogel_mat     = description.material(x_aerogel.materialStr());
        auto       aerogel_vis     = getAttrOrDefault<std::string>(x_aerogel, _U(vis), std::string("InvisibleWithDaughters"));
    
        xml_comp_t x_aerogel_frame = x_aerogel.child(_Unicode(frame));
        double     foam_thickness  = getAttrOrDefault(x_aerogel_frame, _U(thickness), 2.0 * mm);
        Material   foam_mat        = description.material(x_aerogel_frame.materialStr());
        auto       foam_vis        = getAttrOrDefault<std::string>(x_aerogel_frame, _U(vis), std::string("RedVis"));
    
        // foam frame
        Box foam_box(aerogel_width / 2.0 + foam_thickness, aerogel_width / 2.0 + foam_thickness, (aerogel_length + foam_thickness) / 2.0);
        Box foam_sub_box(aerogel_width / 2.0, aerogel_width / 2.0, (aerogel_length + foam_thickness) / 2.0);
        SubtractionSolid foam_frame_solid(foam_box, foam_sub_box, Position(0, 0, foam_thickness));
        Volume           foam_vol(mod_name+"_aerogel_frame", foam_frame_solid, foam_mat);
        foam_vol.setVisAttributes(description.visAttributes(foam_vis));
    
        // aerogel
        Box              aerogel_box(aerogel_width / 2.0, aerogel_width / 2.0, (aerogel_length) / 2.0);
        Volume           aerogel_vol(mod_name+"_aerogel", aerogel_box, aerogel_mat);
        aerogel_vol.setVisAttributes(description.visAttributes(aerogel_vis));
    
        // update position
        z_placement += (aerogel_length + foam_thickness) / 2.0;
        // place foam frame
        pv = m_volume.placeVolume(foam_vol,Position(0,0,z_placement));
        // place aerogel
        z_placement += foam_thickness / 2.0;
        pv = m_volume.placeVolume(aerogel_vol,Position(0,0,z_placement));
        DetElement aerogel_de(mod_de, mod_name + std::string("_aerogel_de") + std::to_string(1), 1);
        aerogel_de.setPlacement(pv);
        // update position
        z_placement += aerogel_length / 2.0;
    
        // optical surfaces
        auto aerogel_surf = surfMgr.opticalSurface(dd4hep::getAttrOrDefault(x_aerogel, _Unicode(surface), "MRICH_AerogelOpticalSurface"));
        SkinSurface skin_surf(description, aerogel_de, Form("MRICH_aerogel_skin_surface_%d", 1), aerogel_surf, aerogel_vol);
        skin_surf.isValid();
    
      // Fresnel Lens
      if (x_mod.hasChild(_Unicode(lens))) {
        xml_comp_t x_lens     = x_mod.child(_Unicode(lens));
    
        //  - The lens has a constant groove pitch (delta r) as opposed to fixing the groove height.
        //  - The lens area outside of the effective diamtere is flat.
        //  - The grooves are not curved, rather they are polycone shaped, ie a flat approximating the curvature.
        auto   lens_vis       = getAttrOrDefault<std::string>(x_lens, _U(vis), std::string("AnlBlue"));
        double groove_pitch   = getAttrOrDefault(x_lens, _Unicode(pitch), 0.2 * mm);// 0.5 * mm);
        double lens_f         = getAttrOrDefault(x_lens, _Unicode(focal_length), 6.0*2.54*cm);
        double eff_diameter   = getAttrOrDefault(x_lens, _Unicode(effective_diameter), 152.4 * mm);
        double lens_width     = getAttrOrDefault(x_lens, _Unicode(width), 6.7*2.54*cm);
        double center_thickness = getAttrOrDefault(x_lens, _U(thickness), 0.068 * 2.54 * cm);//2.0 * mm);
    
        double n_acrylic        = 1.49;
        double lens_curvature   = 1.0 / (lens_f*(n_acrylic - 1.0)); //confirmed
        double full_ring_rmax   = std::min(eff_diameter / 2.0, lens_width/2.0);
    
        double N_grooves        = std::ceil((full_ring_rmax) / groove_pitch);
        double groove_last_rmin = (N_grooves - 1) * groove_pitch;
        double groove_last_rmax = N_grooves * groove_pitch;
    
        auto   groove_sagitta = [&](double r) { return lens_curvature * std::pow(r, 2) / (1.0 + 1.0); };
        double lens_thickness = groove_sagitta(groove_last_rmax) - groove_sagitta(groove_last_rmin) + center_thickness;
    
        Material         lens_mat = description.material(x_lens.materialStr());
        Box              lens_box(lens_width / 2.0, lens_width / 2.0, (center_thickness) / 2.0);
        SubtractionSolid flat_lens(lens_box, Tube(0.0, full_ring_rmax, 2 * center_thickness));
    
        Assembly lens_vol(mod_name + "_lens");
        Volume   flatpart_lens_vol( "flatpart_lens", flat_lens, lens_mat);
        lens_vol.placeVolume(flatpart_lens_vol);
    
        int    i_groove           = 0;
        double groove_rmax        = groove_pitch;
        double groove_rmin        = 0;
    
        while ( groove_rmax <= full_ring_rmax ) {
          double   dZ = groove_sagitta(groove_rmax) - groove_sagitta(groove_rmin);
          Polycone groove_solid(0, 2.0 * M_PI,
                                {groove_rmin, groove_rmin, groove_rmin},
                                {groove_rmax, groove_rmax, groove_rmin},
                                {-lens_thickness/2.0, lens_thickness/2.0-dZ, lens_thickness/2.0});
          Volume   lens_groove_vol("lens_groove_" + std::to_string(i_groove), groove_solid, lens_mat);
          lens_vol.placeVolume(lens_groove_vol);
    
          i_groove++;
          groove_rmin = (i_groove  )*groove_pitch;
          groove_rmax = (i_groove+1)*groove_pitch;
        }
    
        lens_vol.setVisAttributes(description.visAttributes(lens_vis));
    
        // update position
        z_placement += lens_thickness/2.0;
        // place volume
        pv = m_volume.placeVolume(lens_vol,Position(0,0,z_placement));
        DetElement lens_de(mod_de, mod_name + std::string("_lens_de") + std::to_string(1), 1);
        lens_de.setPlacement(pv);
        // update position
        z_placement += lens_thickness/2.0;
    
        // optical surfaces
        auto lens_surf = surfMgr.opticalSurface(dd4hep::getAttrOrDefault(x_lens, _Unicode(surface), "MRICH_LensOpticalSurface"));
        SkinSurface skin_surf(description, lens_de, Form("MRichFresnelLens_skin_surface_%d", 1), lens_surf, lens_vol);
        skin_surf.isValid();
      }
    
      // mirror
      if (x_mod.hasChild(_Unicode(space))) {
        xml_comp_t x_space = x_mod.child(_Unicode(space));
        z_placement += getAttrOrDefault(x_space, _U(thickness), 0.0 * mm);
      }
    
      if (x_mod.hasChild(_Unicode(mirror))) {
        xml_comp_t x_mirror   = x_mod.child(_Unicode(mirror));
        auto   mirror_vis     = getAttrOrDefault<std::string>(x_mirror, _U(vis), std::string("AnlGray"));
        double mirror_x1      = getAttrOrDefault(x_mirror, _U(x1), 100.0 * mm);
        double mirror_x2      = getAttrOrDefault(x_mirror, _U(x2), 80.0 * mm);
        double mirror_length  = getAttrOrDefault(x_mirror, _U(length), 130.0 * mm);
        double mirror_thickness  = getAttrOrDefault(x_mirror, _U(thickness), 2.0 * mm);
        double outer_x1 = (mirror_x1+mirror_thickness)/2.0;
        double outer_x2 = (mirror_x2+mirror_thickness)/2.0;
        Trd2   outer_mirror_trd(outer_x1, outer_x2, outer_x1,  outer_x2, mirror_length/2.0);
        Trd2   inner_mirror_trd(mirror_x1 / 2.0,  mirror_x2 / 2.0, mirror_x1 / 2.0,mirror_x2 / 2.0, mirror_length/2.0+0.1*mm);
        SubtractionSolid mirror_solid(outer_mirror_trd, inner_mirror_trd);
        Material mirror_mat        = description.material(x_mirror.materialStr());
        Volume   mirror_vol(mod_name+"_mirror", mirror_solid, mirror_mat);
    
        // update position
        z_placement += mirror_length/2.0;
        // place volume
        pv = m_volume.placeVolume(mirror_vol,Position(0,0,z_placement));
        DetElement mirror_de(mod_de, mod_name + std::string("_mirror_de") + std::to_string(1), 1);
        mirror_de.setPlacement(pv);
        // update position
        z_placement += mirror_length/2.0;
    
        // optical surfaces
        auto mirror_surf = surfMgr.opticalSurface(dd4hep::getAttrOrDefault(x_mirror, _Unicode(surface), "MRICH_MirrorOpticalSurface"));
        SkinSurface skin_surf(description, mirror_de, Form("MRICH_mirror_skin_surface_%d", 1), mirror_surf, mirror_vol);
        skin_surf.isValid();
      }
    
    
      // photon detector
    
      if (x_mod.hasChild(_Unicode(photodet))) {
        xml_comp_t x_photodet = x_mod.child(_Unicode(photodet));
        auto       photodet_vis       = getAttrOrDefault<std::string>(x_photodet, _U(vis), std::string("AnlRed"));
        double     photodet_width     = getAttrOrDefault(x_photodet, _U(width), 130.0 * mm);
        double     photodet_thickness = getAttrOrDefault(x_photodet, _U(thickness), 2.0 * mm);
        Material   photodet_mat       = description.material(x_photodet.materialStr());
        Box        window_box(photodet_width/2.0,photodet_width/2.0,photodet_thickness/2.0);
        Volume     window_vol(mod_name+"_window", window_box, photodet_mat);
    
        // update position
        z_placement += photodet_thickness/2.0;
        // place volume
        pv = m_volume.placeVolume(window_vol,Position(0,0,z_placement));
        DetElement   comp_de(mod_de, mod_name + std::string("_sensor_de_") + std::to_string(1) ,  1);
        comp_de.setPlacement(pv);
        // update position
        z_placement += photodet_thickness/2.0;
    
        // sensitive
        pv.addPhysVolID("sensor", n_sensor);
        window_vol.setSensitiveDetector(sens);
        sensitives[mod_name].push_back(pv);
        ++n_sensor;
    
        // sensor
        xml_comp_t x_sensor  = x_photodet.child(_Unicode(sensor));
        double     sensor_thickness   = getAttrOrDefault(x_sensor, _U(thickness), 2.0 * mm);
        Material   sensor_mat         = description.material(x_sensor.materialStr());
        int        sensor_nx          = getAttrOrDefault(x_sensor, _Unicode(nx), 2);
        int        sensor_ny          = getAttrOrDefault(x_sensor, _Unicode(ny), 2);
    
        // layers
        int i_layer = 1;
        for (xml_coll_t li(x_photodet, _Unicode(layer)); li; ++li) {
          xml_comp_t x_layer = li;
          Material layer_mat = description.material(x_layer.materialStr());
          double   layer_thickness = x_layer.thickness();
          Box      layer_box(photodet_width/2.0,photodet_width/2.0,layer_thickness/2.0);
          Volume   layer_vol(mod_name + "_layer_" + std::to_string(i_layer), layer_box, layer_mat);
    
          // update position
          z_placement += layer_thickness / 2.0;
          // place volume
          pv = m_volume.placeVolume(layer_vol,Position(0,0,z_placement));
          DetElement layer_de(mod_de, mod_name + std::string("_layer_de_") + std::to_string(i_layer),  1);
          layer_de.setPlacement(pv);
          // update position
          z_placement += layer_thickness / 2.0;
    
          i_layer++;
        }
    
    
      //for (size_t ic = 0; ic < sensVols.size(); ++ic) {
      //  PlacedVolume sens_pv = sensVols[ic];
      //  DetElement   comp_de(mod_de, std::string("de_") + sens_pv.volume().name(), ic + 1);
      //  comp_de.setPlacement(sens_pv);
      //  // Acts::ActsExtension* sensorExtension = new Acts::ActsExtension();
      //  //// sensorExtension->addType("sensor", "detector");
      //  // comp_de.addExtension<Acts::ActsExtension>(sensorExtension);
      //  //// comp_de.setAttributes(description, sens_pv.volume(), x_layer.regionStr(),
      //  //// x_layer.limitsStr(),
      //  ////                      xml_det_t(xmleles[m_nam]).visStr());
      //}
      //DetElement window_de(sdet, mod_name + std::string("_window_de") + std::to_string(1), 1);
      //window_de.setPlacement(pv);
    
      modules[mod_name]                   = m_volume;
      module_assembly_delements[mod_name] = mod_de;
      // end module
    
      // place modules in the sectors (disk)
      auto points = athena::geo::fillSquares({0., 0.}, mod_width, rmin, rmax);
    
      // mod_name = ...
      Placements& sensVols = sensitives[mod_name];
      auto        mod_v    = modules[mod_name];
      // determine module direction, always facing z = 0
      double roty = dims.zmin() < 0. ? -M_PI : 0 ;
    
      // read module positions
      std::vector<std::tuple<double,double,double>> positions;
      for (xml_coll_t x_positions_i(x_det, _Unicode(positions)); x_positions_i; ++x_positions_i) {
        xml_comp_t x_positions = x_positions_i;
        for (xml_coll_t x_position_i(x_positions, _U(position)); x_position_i; ++x_position_i) {
          xml_comp_t x_position = x_position_i;
          positions.push_back(
            std::make_tuple(x_positions.scale() * x_position.x() * mm,
                            x_positions.scale() * x_position.y() * mm,
                            -x_positions.z0()));
        }
      }
      // if no positions, then autoplacement
      if (positions.empty()) {
        for (double x = mod_width / 2.0; x < rmax - mod_width / 2.0; x += mod_width) {
          for (double y = mod_width / 2.0; y < rmax - mod_width / 2.0; y += mod_width) {
            if (pow(x + mod_width / 2.0,2) + pow(y + mod_width / 2.0,2) > rmax*rmax) continue;
            if (pow(x - mod_width / 2.0,2) + pow(y - mod_width / 2.0,2) < rmin*rmin) continue;
            positions.push_back(std::make_tuple(x, y, 0));
          }
        }
      }
    
    
      // place modules
      int i_mod = 1; // starts at 1
      for (auto& p: positions) {
    
        // get positions in one quadrant
    
        double x = std::get<0>(p);
        double y = std::get<1>(p);
        double z0 = std::get<2>(p);
    
    
        // and place in all quadrants (intentional shadowing)
    
        for (auto& p: decltype(positions){{x,y,z0}, {y,-x,z0}, {-x,-y,z0}, {-y,x,z0}}) {
    
    
          // get positions (intentional shadowing)
    
          double x = std::get<0>(p);
          double y = std::get<1>(p);
          double z0 = std::get<2>(p);
    
    
          Transform3D tr;
          if(projective) {
    
            double rotAngX = atan(y/z0);
            double rotAngY = -1.*atan(x/z0);
            tr = Translation3D(x, y, 0) * RotationX(rotAngX) * RotationY(rotAngY);
    
          } else {
            tr = Translation3D(x, y, 0) * RotationX(0);
          }
    
          // mod placement
          pv = envVol.placeVolume(mod_v, tr);
          pv.addPhysVolID("module", i_mod);
    
          auto mod_det_element  = module_assembly_delements[mod_name].clone(mod_name + "__" + std::to_string(i_mod));
          mod_det_element.setPlacement(pv);
          sdet.add(mod_det_element);
    
          i_mod++;
    
      // additional layers
      if (x_det.hasChild(_Unicode(layer))) {
        xml_comp_t x_layer = x_det.child(_Unicode(layer));
        double   layer_thickness = x_layer.thickness();
        Material layer_mat = description.material(x_layer.materialStr());
        Tube   frameShape(rmin, rmax, layer_thickness / 2., 0., 2 * M_PI);
        Volume frameVol("MRICH_Frame", frameShape, layer_mat);
        pv = envVol.placeVolume(frameVol, Position(0, 0, (length - layer_thickness) / 2.0));
      }
    
      // place envelope
    
      Volume motherVol = description.pickMotherVolume(sdet);
      if (reflect) {
        pv = motherVol.placeVolume(envVol, Transform3D(RotationZYX(0, M_PI, 0), Position(0, 0, -zpos)));
      } else {
        pv = motherVol.placeVolume(envVol, Transform3D(RotationZYX(0,    0, 0), Position(0, 0, +zpos)));
      }
      pv.addPhysVolID("system", x_det.id());
      sdet.setPlacement(pv);
    
      return sdet;
    }
    
    
    //void addModules(Volume &mother, xml::DetElement &detElem, Detector &description, SensitiveDetector &sens)
    //{
    //    xml::Component dims = detElem.dimensions();
    //    xml::Component mods = detElem.child(_Unicode(modules));
    //
    //    auto rmin = dims.rmin();
    //    auto rmax = dims.rmax();
    //
    //    auto mThick = mods.attr<double>(_Unicode(thickness));
    //    auto mWidth = mods.attr<double>(_Unicode(width));
    //    auto mGap = mods.attr<double>(_Unicode(gap));
    //
    //    auto modMat = description.material(mods.materialStr());
    //    auto gasMat = description.material("AirOptical");
    //
    //    // single module
    //    Box mShape(mWidth/2., mWidth/2., mThick/2. - 0.1*mm);
    //    Volume mVol("ce_MRICH_mod_Solid", mShape, modMat);
    //
    //    // a thin gas layer to detect optical photons
    //    Box modShape(mWidth/2., mWidth/2., mThick/2.);
    //    Volume modVol("ce_MRICH_mod_Solid_v", modShape, gasMat);
    //    // thin gas layer is on top (+z) of the material
    //    modVol.placeVolume(mVol, Position(0., 0., -0.1*mm));
    //
    //    modVol.setVisAttributes(description.visAttributes(mods.visStr()));
    //    sens.setType("photoncounter");
    //    modVol.setSensitiveDetector(sens);
    //
    //    // place modules in the sectors (disk)
    //    auto points = ref::utils::fillSquares({0., 0.}, mWidth + mGap, rmin - mGap, rmax + mGap);
    //
    //    // determine module direction, always facing z = 0
    //    double roty = dims.z() > 0. ? M_PI/2. : -M_PI/2.;
    //    int imod = 1;
    //    for (auto &p : points) {
    //        // operations are inversely ordered
    //        Transform3D tr = Translation3D(p.x(), p.y(), 0.)        // move to position
    //                       * RotationY(roty);                       // facing z = 0.
    //        auto modPV = mother.placeVolume(modVol, tr);
    //        modPV.addPhysVolID("sector", 1).addPhysVolID("module", imod ++);
    //    }
    //}
    
    // clang-format off
    DECLARE_DETELEMENT(athena_MRICH, createDetector)