Newer
Older
/** \addtogroup PID
* \brief Type: **Barrel bar detector (think DIRC) with longitudinal frame**.
* \author S. Joosten
*
* \ingroup PID
*
*
* \code
* \endcode
*
* @{
*/
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/Printout.h"
#include "DD4hep/Shapes.h"
#include "DDRec/DetectorData.h"
#include "DDRec/Surface.h"
#include "XML/Layering.h"
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
using namespace std;
using namespace dd4hep;
/** Barrel Bar detector with optional framek
*
* - Optional "frame" tag within the module element (frame eats part of the module width
* and is longitudinal at both sides)
* - Detector is setup as a "tracker" so we can use the hits to perform fast MC
* for e.g. the DIRC
*
*/
static Ref_t create_BarrelBarDetectorWithSideFrame(Detector& description, xml_h e, SensitiveDetector sens)
{
typedef vector<PlacedVolume> Placements;
xml_det_t x_det = e;
Material air = description.air();
int det_id = x_det.id();
string det_name = x_det.nameStr();
DetElement sdet(det_name, det_id);
map<string, Volume> volumes;
map<string, Placements> sensitives;
map<string, std::vector<rec::VolPlane>> volplane_surfaces;
PlacedVolume pv;
dd4hep::xml::Dimension dimensions(x_det.dimensions());
xml_dim_t dirc_pos = x_det.position();
map<string, std::array<double, 2>> module_thicknesses;
Tube topVolumeShape(dimensions.rmin(), dimensions.rmax(), dimensions.length() * 0.5);
Volume assembly(det_name, topVolumeShape, air);
sens.setType("tracker");
// loop over the modules
for (xml_coll_t mi(x_det, _U(module)); mi; ++mi) {
xml_comp_t x_mod = mi;
string m_nam = x_mod.nameStr();
if (volumes.find(m_nam) != volumes.end()) {
printout(ERROR, "BarrelBarDetectorWithSideFrame",
string((string("Module with named ") + m_nam + string(" already exists."))).c_str());
throw runtime_error("Logics error in building modules.");
}
int ncomponents = 0;
int sensor_number = 1;
double total_thickness = 0;
// Compute module total thickness from components
xml_coll_t ci(x_mod, _U(module_component));
for (ci.reset(), total_thickness = 0.0; ci; ++ci) {
total_thickness += xml_comp_t(ci).thickness();
}
// the module assembly volume
Assembly m_vol(m_nam);
volumes[m_nam] = m_vol;
m_vol.setVisAttributes(description, x_mod.visStr());
// Optional module frame.
// frame is 2 longitudinal bars at the side of the module
//
// |___| <-- example module cross section (x-y plane), frame is flush with the
// bottom of the module and protrudes on the top if needed
//
// Get frame width, as it impacts the main module for being built. We
// construct the actual frame structure later (once we know the module width)
double frame_width = 0;
if (x_mod.hasChild("frame")) {
xml_comp_t m_frame = x_mod.child(_U(frame));
frame_width = m_frame.width();
}
double thickness_so_far = 0.0;
double thickness_sum = -total_thickness / 2.0;
double max_component_width = 0;
for (xml_coll_t ci(x_mod, _U(module_component)); ci; ++ci, ++ncomponents) {
xml_comp_t x_comp = ci;
xml_comp_t x_pos = x_comp.position(false);
string c_nam = _toString(ncomponents, "component%d");
double box_width = x_comp.width() - 2 * frame_width;
max_component_width = fmax(max_component_width, box_width);
Box c_box{box_width / 2, x_comp.length() / 2, x_comp.thickness() / 2};
Volume c_vol{c_nam, c_box, description.material(x_comp.materialStr())};
pv = m_vol.placeVolume(c_vol, Position(0, 0, thickness_sum + x_comp.thickness() / 2.0));
c_vol.setRegion(description, x_comp.regionStr());
c_vol.setLimitSet(description, x_comp.limitsStr());
c_vol.setVisAttributes(description, x_comp.visStr());
if (x_comp.isSensitive()) {
c_vol.setSensitiveDetector(sens);
sensitives[m_nam].push_back(pv);
module_thicknesses[m_nam] = {thickness_so_far + x_comp.thickness() / 2.0,
total_thickness - thickness_so_far - x_comp.thickness() / 2.0};
// -------- create a measurement plane for the tracking surface attched to the sensitive volume -----
rec::Vector3D u(0., 1., 0.);
rec::Vector3D v(0., 0., 1.);
rec::Vector3D n(1., 0., 0.);
// compute the inner and outer thicknesses that need to be assigned to the tracking surface
// depending on wether the support is above or below the sensor
double inner_thickness = module_thicknesses[m_nam][0];
double outer_thickness = module_thicknesses[m_nam][1];
rec::SurfaceType type(rec::SurfaceType::Sensitive);
rec::VolPlane surf(c_vol, type, inner_thickness, outer_thickness, u, v, n); //,o ) ;
volplane_surfaces[m_nam].push_back(surf);
}
thickness_sum += x_comp.thickness();
thickness_so_far += x_comp.thickness();
}
// Now add-on the frame
if (x_mod.hasChild("frame")) {
xml_comp_t m_frame = x_mod.child(_U(frame));
double frame_thickness = getAttrOrDefault<double>(m_frame, _U(thickness), total_thickness);
Box lframe_box{m_frame.width() / 2., m_frame.length() / 2., frame_thickness / 2.};
Box rframe_box{m_frame.width() / 2., m_frame.length() / 2., frame_thickness / 2.};
// Keep track of frame with so we can adjust the module bars appropriately
Volume lframe_vol{"left_frame", lframe_box, description.material(m_frame.materialStr())};
Volume rframe_vol{"right_frame", rframe_box, description.material(m_frame.materialStr())};
lframe_vol.setVisAttributes(description, m_frame.visStr());
rframe_vol.setVisAttributes(description, m_frame.visStr());
m_vol.placeVolume(lframe_vol, Position(frame_width / 2. + max_component_width / 2, 0.,
frame_thickness / 2. - total_thickness / 2.0));
m_vol.placeVolume(rframe_vol, Position(-frame_width / 2. - max_component_width / 2, 0.,
frame_thickness / 2. - total_thickness / 2.0));
}
}
// now build the layers
for (xml_coll_t li(x_det, _U(layer)); li; ++li) {
xml_comp_t x_layer = li;
xml_comp_t x_barrel = x_layer.child(_U(barrel_envelope));
xml_comp_t x_layout = x_layer.child(_U(rphi_layout));
xml_comp_t z_layout = x_layer.child(_U(z_layout)); // Get the <z_layout> element.
int lay_id = x_layer.id();
string m_nam = x_layer.moduleStr();
string lay_nam = _toString(x_layer.id(), "layer%d");
Tube lay_tub(x_barrel.inner_r(), x_barrel.outer_r(), x_barrel.z_length() / 2.0);
Volume lay_vol(lay_nam, lay_tub, air); // Create the layer envelope volume.
lay_vol.setVisAttributes(description, x_layer.visStr());
double phi0 = x_layout.phi0(); // Starting phi of first module.
double phi_tilt = x_layout.phi_tilt(); // Phi tilt of a module.
double rc = x_layout.rc(); // Radius of the module center.
int nphi = x_layout.nphi(); // Number of modules in phi.
double rphi_dr = x_layout.dr(); // The delta radius of every other module.
double phi_incr = (M_PI * 2) / nphi; // Phi increment for one module.
double phic = phi0; // Phi of the module center.
double z0 = z_layout.z0(); // Z position of first module in phi.
double nz = z_layout.nz(); // Number of modules to place in z.
double z_dr = z_layout.dr(); // Radial displacement parameter, of every other module.
Volume module_env = volumes[m_nam];
DetElement lay_elt(sdet, _toString(x_layer.id(), "layer%d"), lay_id);
Placements& sensVols = sensitives[m_nam];
// Z increment for module placement along Z axis.
// Adjust for z0 at center of module rather than
// the end of cylindrical envelope.
double z_incr = nz > 1 ? (2.0 * z0) / (nz - 1) : 0.0;
// Starting z for module placement along Z axis.
double module_z = -z0;
int module = 1;
// Loop over the number of modules in phi.
for (int ii = 0; ii < nphi; ii++) {
double dx = z_dr * std::cos(phic + phi_tilt); // Delta x of module position.
double dy = z_dr * std::sin(phic + phi_tilt); // Delta y of module position.
double x = rc * std::cos(phic); // Basic x module position.
double y = rc * std::sin(phic); // Basic y module position.
// Loop over the number of modules in z.
for (int j = 0; j < nz; j++) {
string module_name = _toString(module, "module%d");
DetElement mod_elt(lay_elt, module_name, module);
Transform3D tr(RotationZYX(0, ((M_PI / 2) - phic - phi_tilt), -M_PI / 2), Position(x, y, module_z));
pv = lay_vol.placeVolume(module_env, tr);
pv.addPhysVolID("module", module);
pv.addPhysVolID("section", j);
mod_elt.setPlacement(pv);
for (size_t ic = 0; ic < sensVols.size(); ++ic) {
PlacedVolume sens_pv = sensVols[ic];
DetElement comp_de(mod_elt, std::string("de_") + sens_pv.volume().name(), module);
comp_de.setPlacement(sens_pv);
rec::volSurfaceList(comp_de)->push_back(volplane_surfaces[m_nam][ic]);
}
/// Increase counters etc.
module++;
// Adjust the x and y coordinates of the module.
x += dx;
y += dy;
// Flip sign of x and y adjustments.
dx *= -1;
dy *= -1;
// Add z increment to get next z placement pos.
module_z += z_incr;
}
phic += phi_incr; // Increment the phi placement of module.
rc += rphi_dr; // Increment the center radius according to dr parameter.
rphi_dr *= -1; // Flip sign of dr parameter.
module_z = -z0; // Reset the Z placement parameter for module.
}
// Create the PhysicalVolume for the layer.
pv = assembly.placeVolume(lay_vol); // Place layer in mother
pv.addPhysVolID("layer", lay_id); // Set the layer ID.
lay_elt.setAttributes(description, lay_vol, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr());
lay_elt.setPlacement(pv);
}
sdet.setAttributes(description, assembly, x_det.regionStr(), x_det.limitsStr(), x_det.visStr());
assembly.setVisAttributes(description.invisible());
pv = description.pickMotherVolume(sdet).placeVolume(assembly, Position(0, 0, dirc_pos.z()));
pv.addPhysVolID("system", det_id); // Set the subdetector system ID.
sdet.setPlacement(pv);
return sdet;
}
//@}
// clang-format off
DECLARE_DETELEMENT(BarrelBarDetectorWithSideFrame, create_BarrelBarDetectorWithSideFrame)
DECLARE_DETELEMENT(athena_FakeDIRC, create_BarrelBarDetectorWithSideFrame)