Skip to content
Snippets Groups Projects

add benchmark for pion0

Merged Chao Peng requested to merge add_pi0_benchmark into master
1 file
+ 68
11
Compare changes
  • Side-by-side
  • Inline
@@ -2,13 +2,63 @@
A simple analysis script to extract some basic info of Monte-Carlo hits
'''
import os
import DDG4
import ROOT
import pandas as pd
import numpy as np
import argparse
from matplotlib import pyplot as plt
import matplotlib.ticker as ticker
from lxml import etree as ET
class AthenaDecoder:
def __init__(self, compact, readout):
self.readouts = self.getReadouts(compact)
self.changeReadout(readout)
def changeReadout(self, readout):
self.fieldsmap = self.decomposeIDs(self.readouts[readout])
def get(self, idvals, field):
start, width = self.fieldsmap[field]
return np.bitwise_and(np.right_shift(idvals, start), (1 << width) - 1)
@staticmethod
def getReadouts(path):
res = dict()
AthenaDecoder.__getReadoutsRecur(path, res)
return res
@staticmethod
def __getReadoutsRecur(path, res):
if not os.path.exists(path):
print('Xml file {} not exist! Ignored it.'.format(path))
return
lccdd = ET.parse(path).getroot()
readouts = lccdd.find('readouts')
if readouts is not None:
for readout in readouts.getchildren():
ids = readout.find('id')
if ids is not None:
res[readout.attrib['name']] = ids.text
for child in lccdd.getchildren():
if child.tag == 'include':
root_dir = os.path.dirname(os.path.realpath(path))
AthenaDecoder.__getReadoutsRecur(os.path.join(root_dir, child.attrib['ref']), res)
@staticmethod
def decomposeIDs(id_str):
res = dict()
curr_bit = 0
for field_bits in id_str.split(','):
elements = field_bits.split(':')
field_name = elements[0]
bit_width = abs(int(elements[-1]))
if len(elements) == 3:
curr_bit = int(elements[1])
res[field_name] = (curr_bit, bit_width)
curr_bit += bit_width
return res
# read from RDataFrame and flatten a given collection, return pandas dataframe
@@ -50,23 +100,30 @@ if __name__ == '__main__':
help='Readout name for the hits collection')
args = parser.parse_args()
# decoder
decoder = AthenaDecoder(args.compact, args.readout)
# get hits
rdf_rec = ROOT.RDataFrame('events', args.rec_file)
df = flatten_collection(rdf_rec, args.coll)
df.rename(columns={c: c.replace(args.coll + '.', '') for c in df.columns}, inplace=True)
# initialize dd4hep detector
kernel = DDG4.Kernel()
description = kernel.detectorDescription()
kernel.loadGeometry("file:{}".format(args.compact))
decoder = description.readout(args.readout).idSpec().decoder()
lindex = decoder.index('layer')
get_layer_id = np.vectorize(lambda cid: decoder.get(cid, lindex))
# import DDG4
# kernel = DDG4.Kernel()
# description = kernel.detectorDescription()
# kernel.loadGeometry("file:{}".format(args.compact))
# decoder = description.readout(args.readout).idSpec().decoder()
# lindex = decoder.index('layer')
# get_layer_id = np.vectorize(lambda cid: decoder.get(cid, lindex))
df.loc[:, 'layerID'] = get_layer_id(df['cellID'].astype(int).values)
print(df[['cellID', 'layerID', 'position.x', 'position.y', 'position.z', 'energy']])
# df.loc[:, 'layerID'] = get_layer_id(df['cellID'].astype(int).values)
# print(df[['cellID', 'layerID', 'position.x', 'position.y', 'position.z', 'energy']])
# always terminate dd4hep kernel
kernel.terminate()
# kernel.terminate()
# faster way to get layerids
df.loc[:, 'layerID'] = decoder.get(df['cellID'].values, 'layer')
print(df[['cellID', 'layerID', 'position.x', 'position.y', 'position.z', 'energy']])
Loading