Skip to content
Snippets Groups Projects
Commit 8eea2149 authored by Whitney Armstrong's avatar Whitney Armstrong
Browse files

Added track_finding benchmark directory

parent 5ed37b55
No related branches found
No related tags found
1 merge request!166Added track_finding
......@@ -64,6 +64,7 @@ common:detector:
include:
- local: 'benchmarks/ecal/config.yml'
- local: 'benchmarks/track_finding/config.yml'
- local: 'benchmarks/tracking/config.yml'
- local: 'benchmarks/clustering/config.yml'
# - local: 'benchmarks/rich/config.yml'
......
track_finding:multiple_tracks:
extends: .rec_benchmark
stage: run
timeout: 24 hours
script:
- bash benchmarks/track_finding/multiple_tracks.sh
#!/bin/bash
function print_the_help {
echo "USAGE: ${0} "
echo " OPTIONS: "
exit
}
POSITIONAL=()
while [[ $# -gt 0 ]]
do
key="$1"
case $key in
-h|--help)
shift # past argument
print_the_help
;;
#--ana-only)
# ANALYSIS_ONLY=1
# shift # past value
# ;;
*) # unknown option
#POSITIONAL+=("$1") # save it in an array for later
echo "unknown option $1"
print_the_help
shift # past argument
;;
esac
done
set -- "${POSITIONAL[@]}" # restore positional parameters
print_env.sh
## To run the reconstruction, we need the following global variables:
## - JUGGLER_INSTALL_PREFIX: Install prefix for Juggler (simu/recon)
## - JUGGLER_DETECTOR: the detector package we want to use for this benchmark
## - JUGGLER_DETECTOR_VERSION: the detector package we want to use for this benchmark
## - DETECTOR_PATH: full path to the detector definitions
if [[ ! -n "${JUGGLER_N_EVENTS}" ]] ; then
export JUGGLER_N_EVENTS=100
fi
#export JUGGLER_N_EVENTS=$(expr ${JUGGLER_N_EVENTS} \* 1)
export JUGGLER_FILE_NAME_TAG="multiple_tracks"
export JUGGLER_GEN_FILE="${JUGGLER_FILE_NAME_TAG}.hepmc"
export JUGGLER_SIM_FILE="sim_${JUGGLER_FILE_NAME_TAG}.root"
export JUGGLER_REC_FILE="rec_${JUGGLER_FILE_NAME_TAG}.root"
echo "JUGGLER_N_EVENTS = ${JUGGLER_N_EVENTS}"
echo "JUGGLER_DETECTOR = ${JUGGLER_DETECTOR}"
## generate the input events
root -b -q "benchmarks/track_finding/scripts/gen_multiple_tracks.cxx(${JUGGLER_N_EVENTS}, \"${JUGGLER_FILE_NAME_TAG}.hepmc\")"
if [[ "$?" -ne "0" ]] ; then
echo "ERROR running script"
exit 1
fi
echo "Running geant4 simulation"
## run geant4 simulations
npsim --runType batch \
--part.minimalKineticEnergy 1000*GeV \
-v WARNING \
--numberOfEvents ${JUGGLER_N_EVENTS} \
--compactFile ${DETECTOR_PATH}/${JUGGLER_DETECTOR}.xml \
--inputFiles ${JUGGLER_FILE_NAME_TAG}.hepmc \
--outputFile ${JUGGLER_SIM_FILE}
if [[ "$?" -ne "0" ]] ; then
echo "ERROR running script"
exit 1
fi
rootls -t ${JUGGLER_SIM_FILE}
if [[ -z "${ANALYSIS_ONLY}" ]] ;
then
# Need to figure out how to pass file name to juggler from the commandline
gaudirun.py benchmarks/tracking/options/track_reconstruction.py
if [[ "$?" -ne "0" ]] ; then
echo "ERROR running juggler"
exit 1
fi
fi
mkdir -p results/track_finding
root -b -q "benchmarks/track_finding/scripts/rec_multiple_tracks.cxx(\"${JUGGLER_REC_FILE}\")"
if [[ "$?" -ne "0" ]] ; then
echo "ERROR running root script"
exit 1
fi
root_filesize=$(stat --format=%s "${JUGGLER_REC_FILE}")
if [[ "${JUGGLER_N_EVENTS}" -lt "500" ]] ; then
# file must be less than 10 MB to upload
if [[ "${root_filesize}" -lt "10000000" ]] ; then
cp ${JUGGLER_REC_FILE} results/.
fi
fi
from Gaudi.Configuration import *
from Configurables import ApplicationMgr, EICDataSvc, PodioOutput, GeoSvc
from GaudiKernel import SystemOfUnits as units
detector_name = "topside"
if "JUGGLER_DETECTOR" in os.environ :
detector_name = str(os.environ["JUGGLER_DETECTOR"])
detector_path = ""
if "DETECTOR_PATH" in os.environ :
detector_path = str(os.environ["DETECTOR_PATH"])
# todo add checks
input_sim_file = str(os.environ["JUGGLER_SIM_FILE"])
output_rec_file = str(os.environ["JUGGLER_REC_FILE"])
n_events = str(os.environ["JUGGLER_N_EVENTS"])
geo_service = GeoSvc("GeoSvc", detectors=["{}/{}.xml".format(detector_path,detector_name)], OutputLevel=WARNING)
podioevent = EICDataSvc("EventDataSvc", inputs=[input_sim_file], OutputLevel=WARNING)
from Configurables import PodioInput
from Configurables import Jug__Base__InputCopier_dd4pod__Geant4ParticleCollection_dd4pod__Geant4ParticleCollection_ as MCCopier
from Configurables import Jug__Base__InputCopier_dd4pod__CalorimeterHitCollection_dd4pod__CalorimeterHitCollection_ as CalCopier
from Configurables import Jug__Base__InputCopier_dd4pod__TrackerHitCollection_dd4pod__TrackerHitCollection_ as TrkCopier
from Configurables import Jug__Digi__ExampleCaloDigi as ExampleCaloDigi
from Configurables import Jug__Digi__UFSDTrackerDigi as TrackerDigi
from Configurables import Jug__Digi__EMCalorimeterDigi as EMCalorimeterDigi
from Configurables import Jug__Reco__TrackerHitReconstruction as TrackerHitReconstruction
from Configurables import Jug__Reco__TrackingHitsCollector2 as TrackingHitsCollector
from Configurables import Jug__Reco__TrackerSourceLinker as TrackerSourceLinker
from Configurables import Jug__Reco__TrackerSourcesLinker as TrackerSourcesLinker
#from Configurables import Jug__Reco__TrackingHitsSourceLinker as TrackingHitsSourceLinker
from Configurables import Jug__Reco__TrackParamTruthInit as TrackParamTruthInit
from Configurables import Jug__Reco__TrackParamClusterInit as TrackParamClusterInit
from Configurables import Jug__Reco__TrackParamVertexClusterInit as TrackParamVertexClusterInit
from Configurables import Jug__Reco__TrackFindingAlgorithm as TrackFindingAlgorithm
from Configurables import Jug__Reco__ParticlesFromTrackFit as ParticlesFromTrackFit
from Configurables import Jug__Reco__EMCalReconstruction as EMCalReconstruction
from Configurables import Jug__Reco__SimpleClustering as SimpleClustering
algorithms = [ ]
podioinput = PodioInput("PodioReader",
collections=["mcparticles","TrackerEndcapHits","TrackerBarrelHits","VertexBarrelHits","VertexEndcapHits","GEMTrackerEndcapHits"])#, OutputLevel=DEBUG)
algorithms.append( podioinput )
## copiers to get around input --> output copy bug. Note the "2" appended to the output collection.
copier = MCCopier("MCCopier",
inputCollection="mcparticles",
outputCollection="mcparticles2")
algorithms.append( copier )
trkcopier = TrkCopier("TrkCopier",
inputCollection="TrackerBarrelHits",
outputCollection="TrackerBarrelHits2")
algorithms.append( trkcopier )
trk_b_digi = TrackerDigi("trk_b_digi",
inputHitCollection="TrackerBarrelHits",
outputHitCollection="TrackerBarrelRawHits",
timeResolution=8)
algorithms.append( trk_b_digi )
trk_ec_digi = TrackerDigi("trk_ec_digi",
inputHitCollection="TrackerEndcapHits",
outputHitCollection="TrackerEndcapRawHits",
timeResolution=8)
algorithms.append( trk_ec_digi )
vtx_b_digi = TrackerDigi("vtx_b_digi",
inputHitCollection="VertexBarrelHits",
outputHitCollection="VertexBarrelRawHits",
timeResolution=8)
algorithms.append( vtx_b_digi )
vtx_ec_digi = TrackerDigi("vtx_ec_digi",
inputHitCollection="VertexEndcapHits",
outputHitCollection="VertexEndcapRawHits",
timeResolution=8)
algorithms.append( vtx_ec_digi )
gem_ec_digi = TrackerDigi("gem_ec_digi",
inputHitCollection="GEMTrackerEndcapHits",
outputHitCollection="GEMTrackerEndcapRawHits",
timeResolution=10)
algorithms.append(gem_ec_digi)
# Tracker and vertex reconstruction
trk_b_reco = TrackerHitReconstruction("trk_b_reco",
inputHitCollection = trk_b_digi.outputHitCollection,
outputHitCollection="TrackerBarrelRecHits")
algorithms.append( trk_b_reco )
trk_ec_reco = TrackerHitReconstruction("trk_ec_reco",
inputHitCollection = trk_ec_digi.outputHitCollection,
outputHitCollection="TrackerEndcapRecHits")
algorithms.append( trk_ec_reco )
vtx_b_reco = TrackerHitReconstruction("vtx_b_reco",
inputHitCollection = vtx_b_digi.outputHitCollection,
outputHitCollection="VertexBarrelRecHits")
algorithms.append( vtx_b_reco )
vtx_ec_reco = TrackerHitReconstruction("vtx_ec_reco",
inputHitCollection = vtx_ec_digi.outputHitCollection,
outputHitCollection="VertexEndcapRecHits")
algorithms.append( vtx_ec_reco )
gem_ec_reco = TrackerHitReconstruction("gem_ec_reco",
inputHitCollection=gem_ec_digi.outputHitCollection,
outputHitCollection="GEMTrackerEndcapRecHits")
algorithms.append(gem_ec_reco)
trk_hit_col = TrackingHitsCollector("trk_hit_col",
inputTrackingHits=[
str(trk_b_reco.outputHitCollection),
str(trk_ec_reco.outputHitCollection),
str(vtx_b_reco.outputHitCollection),
str(vtx_ec_reco.outputHitCollection),
str(gem_ec_reco.outputHitCollection) ],
trackingHits="trackingHits",
OutputLevel=DEBUG)
algorithms.append( trk_hit_col )
# Hit Source linker
sourcelinker = TrackerSourceLinker("sourcelinker",
inputHitCollection=trk_hit_col.trackingHits,
outputSourceLinks="TrackSourceLinks",
outputMeasurements="TrackMeasurements",
OutputLevel=DEBUG)
algorithms.append( sourcelinker )
## Track param init
truth_trk_init = TrackParamTruthInit("truth_trk_init",
inputMCParticles="mcparticles",
outputInitialTrackParameters="InitTrackParams")
#OutputLevel=DEBUG)
algorithms.append( truth_trk_init )
# Tracking algorithms
trk_find_alg = TrackFindingAlgorithm("trk_find_alg",
inputSourceLinks = sourcelinker.outputSourceLinks,
inputMeasurements = sourcelinker.outputMeasurements,
inputInitialTrackParameters= "InitTrackParams",#"InitTrackParamsFromClusters",
outputTrajectories="trajectories")
#OutputLevel=DEBUG)
algorithms.append( trk_find_alg )
parts_from_fit = ParticlesFromTrackFit("parts_from_fit",
inputTrajectories="trajectories",
outputParticles="ReconstructedParticles",
outputTrackParameters="outputTrackParameters")
#OutputLevel=DEBUG)
algorithms.append( parts_from_fit )
#types = []
## this printout is useful to check that the type information is passed to python correctly
#print("---------------------------------------\n")
#print("---\n# List of input and output types by class")
#for configurable in sorted([ PodioInput, EICDataSvc, PodioOutput,
# TrackerHitReconstruction,ExampleCaloDigi,
# UFSDTrackerDigi, TrackerSourceLinker,
# PodioOutput],
# key=lambda c: c.getType()):
# print("\"{}\":".format(configurable.getType()))
# props = configurable.getDefaultProperties()
# for propname, prop in sorted(props.items()):
# print(" prop name: {}".format(propname))
# if isinstance(prop, DataHandleBase):
# types.append(prop.type())
# print(" {}: \"{}\"".format(propname, prop.type()))
#print("---")
out = PodioOutput("out", filename=output_rec_file)
out.outputCommands = ["keep *",
"drop BarrelTrackSourceLinks",
"drop InitTrackParams",
"drop trajectories",
"drop outputSourceLinks",
"drop outputInitialTrackParameters",
"drop mcparticles"
]
algorithms.append(out)
ApplicationMgr(
TopAlg = algorithms,
EvtSel = 'NONE',
EvtMax = n_events,
ExtSvc = [podioevent,geo_service],
OutputLevel=WARNING
)
#include "HepMC3/GenEvent.h"
#include "HepMC3/ReaderAscii.h"
#include "HepMC3/WriterAscii.h"
#include "HepMC3/Print.h"
#include <iostream>
#include <random>
#include <cmath>
#include "TMath.h"
#include "common_bench/particles.h"
using namespace HepMC3;
/** Generate particles in the central region.
*/
void gen_central_particles(int n_events = 100,
const char* out_fname = "central_electrons.hepmc")
{
double cos_theta_min = std::cos( 10.0*(M_PI/180.0));
double cos_theta_max = std::cos(170.0*(M_PI/180.0));
const auto& partmap = common_bench::particleMap;
WriterAscii hepmc_output(out_fname);
GenEvent evt(Units::GEV, Units::MM);
int events_parsed = 0;
// Random number generator
TRandom *r1 = new TRandom();
for (events_parsed = 0; events_parsed < n_events; events_parsed++) {
// FourVector(px,py,pz,e,pdgid,status)
// type 4 is beam
// pdgid 11 - electron
// pdgid 111 - pi0
// pdgid 2212 - proton
GenParticlePtr p1 =
std::make_shared<GenParticle>(FourVector(0.0, 0.0, 10.0, 10.0), 11, 4);
GenParticlePtr p2 = std::make_shared<GenParticle>(
FourVector(0.0, 0.0, 0.0, partmap.at(2212).mass), 2212, 4);
// Define momentum
Double_t p = r1->Uniform(1.0, 10.0);
Double_t phi = r1->Uniform(0.0, 2.0 * M_PI);
Double_t costh = r1->Uniform(cos_theta_min, cos_theta_max);
Double_t th = std::acos(costh);
Double_t px = p * std::cos(phi) * std::sin(th);
Double_t py = p * std::sin(phi) * std::sin(th);
Double_t pz = p * std::cos(th);
// Generates random vectors, uniformly distributed over the surface of a
// sphere of given radius, in this case momentum.
// r1->Sphere(px, py, pz, p);
//std::cout << std::sqrt(px*px + py*py + pz*pz) - p << " is zero? \n";
// type 1 is final state
// pdgid 11 - electron 0.510 MeV/c^2
GenParticlePtr p3 = std::make_shared<GenParticle>(
FourVector(
px, py, pz,
sqrt(p*p + std::pow(partmap.at(11).mass,2))),
11, 1);
GenVertexPtr v1 = std::make_shared<GenVertex>();
v1->add_particle_in(p1);
v1->add_particle_in(p2);
v1->add_particle_out(p3);
evt.add_vertex(v1);
if (events_parsed == 0) {
std::cout << "First event: " << std::endl;
Print::listing(evt);
}
hepmc_output.write_event(evt);
if (events_parsed % 10000 == 0) {
std::cout << "Event: " << events_parsed << std::endl;
}
evt.clear();
}
hepmc_output.close();
std::cout << "Events parsed and written: " << events_parsed << std::endl;
}
#include "HepMC3/GenEvent.h"
#include "HepMC3/ReaderAscii.h"
#include "HepMC3/WriterAscii.h"
#include "HepMC3/Print.h"
#include <iostream>
#include <random>
#include <cmath>
#include "TMath.h"
#include "common_bench/particles.h"
using namespace HepMC3;
/** Generate multiple electrons/positron tracks in the central region.
* This is for testing detectors in the "barrel" region.
*/
void gen_multiple_tracks(int n_events = 100,
const char* out_fname = "multiple_tracks.hepmc",
int n_parts = 2)
{
double cos_theta_min = std::cos( 10.0*(M_PI/180.0));
double cos_theta_max = std::cos(170.0*(M_PI/180.0));
WriterAscii hepmc_output(out_fname);
int events_parsed = 0;
GenEvent evt(Units::GEV, Units::MM);
// Random number generator
TRandom *r1 = new TRandom();
for (events_parsed = 0; events_parsed < n_events; events_parsed++) {
// FourVector(px,py,pz,e,pdgid,status)
// type 4 is beam
// pdgid 11 - electron
// pdgid 111 - pi0
// pdgid 2212 - proton
for (int ip = 0; ip < n_parts; ip++) {
GenParticlePtr p1 = std::make_shared<GenParticle>(FourVector(0.0, 0.0, 10.0, 10.0), 11, 4);
GenParticlePtr p2 = std::make_shared<GenParticle>(FourVector(0.0, 0.0, 0.0, 0.938), 2212, 4);
// Define momentum
Double_t p = r1->Uniform(1.0, 10.0);
Double_t phi = r1->Uniform(0.0, 2.0 * M_PI);
Double_t costh = r1->Uniform(cos_theta_min, cos_theta_max);
Double_t th = std::acos(costh);
Double_t px = p * std::cos(phi) * std::sin(th);
Double_t py = p * std::sin(phi) * std::sin(th);
Double_t pz = p * std::cos(th);
// Generates random vectors, uniformly distributed over the surface of a
// sphere of given radius, in this case momentum.
// r1->Sphere(px, py, pz, p);
// std::cout << std::sqrt(px*px + py*py + pz*pz) - p << " is zero? \n";
// type 1 is final state
// pdgid 11 - electron 0.510 MeV/c^2
GenParticlePtr p3 = std::make_shared<GenParticle>(FourVector(px, py, pz, sqrt(p * p + (0.000511 * 0.000511))),
((ip % 2 == 0) ? 11 : -11), 1);
GenVertexPtr v1 = std::make_shared<GenVertex>();
v1->add_particle_in(p1);
v1->add_particle_in(p2);
v1->add_particle_out(p3);
evt.add_vertex(v1);
}
if (events_parsed == 0) {
std::cout << "First event: " << std::endl;
Print::listing(evt);
}
hepmc_output.write_event(evt);
if (events_parsed % 10000 == 0) {
std::cout << "Event: " << events_parsed << std::endl;
}
evt.clear();
}
hepmc_output.close();
std::cout << "Events parsed and written: " << events_parsed << std::endl;
}
#include "ROOT/RDataFrame.hxx"
#include "TCanvas.h"
#include "TLegend.h"
#include "TH1D.h"
#include "TProfile.h"
#include <iostream>
R__LOAD_LIBRARY(libeicd.so)
R__LOAD_LIBRARY(libDD4pod.so)
#include "dd4pod/TrackerHitCollection.h"
#include "dd4pod/TrackerHitData.h"
#include "dd4pod/Geant4ParticleCollection.h"
#include "eicd/TrackParametersCollection.h"
#include "eicd/ClusterCollection.h"
#include "eicd/ClusterData.h"
#include "eicd/TrackerHitCollection.h"
using ROOT::RDataFrame;
using namespace ROOT::VecOps;
auto p_track = [](std::vector<eic::TrackParametersData> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(std::abs(1.0/(in[i].qOverP)));
}
return result;
};
std::vector<float> pt (std::vector<dd4pod::Geant4ParticleData> const& in){
std::vector<float> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(std::sqrt(in[i].ps.x * in[i].ps.x + in[i].ps.y * in[i].ps.y));
}
return result;
}
auto momentum = [](std::vector<ROOT::Math::PxPyPzMVector> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(in[i].E());
}
return result;
};
auto theta = [](std::vector<ROOT::Math::PxPyPzMVector> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(in[i].Theta()*180/M_PI);
}
return result;
};
auto fourvec = [](ROOT::VecOps::RVec<dd4pod::Geant4ParticleData> const& in) {
std::vector<ROOT::Math::PxPyPzMVector> result;
ROOT::Math::PxPyPzMVector lv;
for (size_t i = 0; i < in.size(); ++i) {
lv.SetCoordinates(in[i].ps.x, in[i].ps.y, in[i].ps.z, in[i].mass);
result.push_back(lv);
}
return result;
};
auto delta_p = [](const std::vector<double>& tracks, const std::vector<double>& thrown) {
std::vector<double> res;
for (const auto& p1 : thrown) {
for (const auto& p2 : tracks) {
res.push_back(p1 - p2);
}
}
return res;
};
auto delta_p_over_p = [](const std::vector<double>& tracks, const std::vector<double>& thrown) {
std::vector<double> res;
for (const auto& p1 : thrown) {
for (const auto& p2 : tracks) {
res.push_back((p1 - p2)/p1);
}
}
return res;
};
int hits_central_electrons(const char* fname = "sim_central_electrons.root")
{
ROOT::EnableImplicitMT();
ROOT::RDataFrame df("events", fname);
auto df0 = df.Define("isThrown", "mcparticles.genStatus == 1")
.Define("thrownParticles", "mcparticles[isThrown]")
.Define("thrownP", fourvec, {"thrownParticles"})
.Define("p_thrown", momentum, {"thrownP"})
.Define("theta_thrown", theta, {"thrownP"})
.Define("theta0", "theta_thrown[0]")
//.Define("nTracks", "outputTrackParameters.size()")
//.Define("p_track", p_track, {"outputTrackParameters"})
//.Define("p_track1", p_track, {"outputTrackParameters1"})
//.Define("p_track2", p_track, {"outputTrackParameters2"})
//.Define("delta_p0",delta_p, {"p_track", "p_thrown"})
//.Define("delta_p1",delta_p, {"p_track1", "p_thrown"})
////.Define("delta_p2",delta_p, {"p_track2", "p_thrown"})
//.Define("delta_p_over_p0",delta_p_over_p, {"p_track", "p_thrown"})
//.Define("delta_p_over_p1",delta_p_over_p, {"p_track1", "p_thrown"})
//.Define("delta_p_over_p2",delta_p_over_p, {"p_track2", "p_thrown"})
//.Define("N_VtxBarrelHits",[](std::vector<eic::TrackerHitData> hits) { return hits.size();},{"VertexBarrelRecHits"})
//.Define("N_Hits", [](std::vector<dd4pod::TrackerHitData> hits) { return hits.size();}, {"trackingHits"})
.Define("N_BarrelHits", [](std::vector<dd4pod::TrackerHitData> hits) { return hits.size();}, {"TrackerBarrelHits"})
.Define("N_EndcapHits", [](std::vector<dd4pod::TrackerHitData> hits) { return hits.size();}, {"TrackerEndcapHits"})
;
auto hBarrel_x_vs_y = df0.Histo2D({"hBarrel_x_vs_y", "; x ; y ", 100, -900, 900,100, -900, 900 }, "TrackerBarrelHits.position.x", "TrackerBarrelHits.position.y");
auto hEndcap_x_vs_y = df0.Histo2D({"hEndcap_x_vs_y", "; x ; y ", 100, -900, 900,100, -900, 900 }, "TrackerEndcaplHits.position.x", "TrackerEndcapHits.position.y");
//auto hvtxBarrel_x_vs_y = df0.Histo2D({"hvtxBarrel_x_vs_y", "; x ; y ", 100, -900, 900,100, -900, 900 }, "VertexBarrelHits.position.x", "VertexBarrelHits.position.y");
//auto hvtxEndcap_x_vs_y = df0.Histo2D({"hvtxEndcap_x_vs_y", "; x ; y ", 100, -900, 900,100, -900, 900 }, "VertexEndcaplHits.position.x", "VertexEndcapHits.position.y");
//auto hAllHits_x_vs_y = df0.Histo2D({"hAllHitsx_vs_y", "; x ; y ", 100, -900, 900,100, -900, 900 }, "allHits.position.x", "allHits.position.y");
auto hBarrel_x_vs_z = df0.Histo2D({"hBarrel_x_vs_z", "; z ; x ", 100, -900, 900,100, -900, 900 }, "TrackerBarrelHits.position.z" , "TrackerBarrelHits.position.y");
auto hEndcap_x_vs_z = df0.Histo2D({"hEndcap_x_vs_z", "; z ; x ", 100, -900, 900,100, -900, 900 }, "TrackerEndcaplHits.position.z", "TrackerEndcapHits.position.y");
//auto hvtxBarrel_x_vs_z = df0.Histo2D({"hvtxBarrel_x_vs_z", "; z ; x ", 100, -900, 900,100, -900, 900 }, "VertexBarrelHits.position.z" , "VertexBarrelHits.position.y" );
//auto hvtxEndcap_x_vs_z = df0.Histo2D({"hvtxEndcap_x_vs_z", "; z ; x ", 100, -900, 900,100, -900, 900 }, "VertexEndcaplHits.position.z" , "VertexEndcapHits.position.y" );
//auto hAllHits_x_vs_z = df0.Histo2D({"hAllHitsx_vs_z","; z ; x ", 100, -900, 900,100, -900, 900 }, "allHits.position.z" , "allHits.position.y" );
auto hBarrel_N_vs_theta = df0.Histo1D({"hBarrel_N_vs_theta", "; #theta [deg.]", 20, 0, 180 }, "theta0", "N_BarrelHits");
auto hEndcap_N_vs_theta = df0.Histo1D({"hEndcap_N_vs_theta", "; #theta [deg.]", 20, 0, 180 }, "theta0", "N_EndcapHits");
//auto hVtxBarrel_N_vs_theta = df0.Histo1D({"hVtxBarrel_N_vs_theta", "; #theta [deg.]", 20, 0, 180 }, "theta0", "N_VtxBarrelHits");
auto hBarrel_Nhits = df0.Histo1D({"hBarrel_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_BarrelHits");
auto hEndcap_Nhits = df0.Histo1D({"hEndcap_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_EndcapHits");
//auto hVtxBarrel_Nhits = df0.Histo1D({"hVtxBarrel_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_VtxBarrelHits");
auto hBarrel_Ntheta = df0.Histo1D({"hBarrel_Ntheta", "; #theta [deg.]", 20, 0, 180 }, "theta0");
auto hEndcap_Ntheta = df0.Histo1D({"hEndcap_Ntheta", "; #theta [deg.]", 20, 0, 180 }, "theta0");
//auto hVtxBarrel_Ntheta = df0.Histo1D({"hVtxBarrel_Ntheta", "; #theta [deg.]", 20, 0, 180 }, "theta0");
auto c = new TCanvas();
auto hs = new THStack("n_hits","; #theta ");
auto h1 = (TH1D*) hBarrel_N_vs_theta->Clone();
auto h2 = (TH1D*) hBarrel_Ntheta->Clone();
h1->Divide(h2);
hs->Add(h1);
h1 = (TH1D*) hEndcap_N_vs_theta->Clone();
h2 = (TH1D*) hEndcap_Ntheta->Clone();
h1->Divide(h2);
h1->SetLineColor(2);
hs->Add(h1);
//h1 = (TH1D*) hVtxBarrel_vs_theta->Clone();
//h1->SetLineColor(4);
//h1->SetFillStyle(3001);
//h1->SetFillColor(4);
//hs->Add(h1);
hs->Draw("nostack, hist");
c->BuildLegend();
c->SaveAs("results/tracking/hits_central_electrons_n_hits_vs_theta.png");
c->SaveAs("results/tracking/hits_central_electrons_n_hits_vs_theta.pdf");
c = new TCanvas();
hs = new THStack("theta","; #theta ");
h1 = (TH1D*) hBarrel_N_vs_theta->Clone();
h2 = (TH1D*) hBarrel_Ntheta->Clone();
//h1->Divide(h2);
hs->Add(h2);
h1 = (TH1D*) hEndcap_N_vs_theta->Clone();
h2 = (TH1D*) hEndcap_Ntheta->Clone();
//h1->Divide(h2);
h1->SetLineColor(2);
h2->SetLineColor(2);
hs->Add(h2);
//h1 = (TH1D*) hVtxBarrel_vs_theta->Clone();
//h1->SetLineColor(4);
//h1->SetFillStyle(3001);
//h1->SetFillColor(4);
//hs->Add(h1);
hs->Draw("nostack hist");
c->BuildLegend();
c->SaveAs("results/tracking/hits_central_electrons_theta.png");
c->SaveAs("results/tracking/hits_central_electrons_theta.pdf");
c = new TCanvas();
hs = new THStack("hits","; hits ");
h1 = (TH1D*) hBarrel_Nhits->Clone();
hs->Add(h1);
h1 = (TH1D*) hEndcap_Nhits->Clone();
h1->SetLineColor(2);
h2->SetLineColor(2);
hs->Add(h2);
//h1 = (TH1D*) hVtxBarrel_Nhits->Clone();
//h1->SetLineColor(4);
//h1->SetFillStyle(3001);
//h1->SetFillColor(4);
//hs->Add(h1);
//hs->Draw("nostack hist");
c->BuildLegend();
c->SaveAs("results/tracking/hits_central_electrons_nhits.png");
c->SaveAs("results/tracking/hits_central_electrons_nhits.pdf");
c = new TCanvas();
hBarrel_x_vs_y->DrawCopy("colz");
c->SaveAs("results/tracking/hits_central_electrons_trkBarrel_xy.png");
c->SaveAs("results/tracking/hits_central_electrons_trkBarrel_xy.pdf");
c = new TCanvas();
hBarrel_x_vs_y->DrawCopy("colz");
hEndcap_x_vs_y->DrawCopy("colz same");
//hvtxBarrel_x_vs_y->DrawCopy("colz same");
//hvtxEndcap_x_vs_y->DrawCopy("colz same");
c->SaveAs("results/tracking/hits_central_electrons_Hits_xy.png");
c->SaveAs("results/tracking/hits_central_electrons_Hits_xy.pdf");
//hAllHits_x_vs_z->DrawCopy("colz");
hBarrel_x_vs_z->DrawCopy("colz");
hEndcap_x_vs_z->DrawCopy("colz same");
c->SaveAs("results/tracking/hits_central_electrons_Hits_xz.png");
c->SaveAs("results/tracking/hits_central_electrons_Hits_xz.pdf");
return 0;
}
#include "ROOT/RDataFrame.hxx"
#include "TCanvas.h"
#include "TLegend.h"
#include "TH1D.h"
#include "TProfile.h"
#include <iostream>
R__LOAD_LIBRARY(libeicd.so)
R__LOAD_LIBRARY(libDD4pod.so)
#include "dd4pod/TrackerHitCollection.h"
#include "dd4pod/TrackerHitData.h"
#include "dd4pod/Geant4ParticleCollection.h"
#include "eicd/TrackParametersCollection.h"
#include "eicd/ClusterCollection.h"
#include "eicd/ClusterData.h"
#include "eicd/TrackerHitCollection.h"
using ROOT::RDataFrame;
using namespace ROOT::VecOps;
auto p_track = [](std::vector<eic::TrackParametersData> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(std::abs(1.0/(in[i].qOverP)));
}
return result;
};
std::vector<float> pt (std::vector<dd4pod::Geant4ParticleData> const& in){
std::vector<float> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(std::sqrt(in[i].ps.x * in[i].ps.x + in[i].ps.y * in[i].ps.y));
}
return result;
}
auto momentum = [](std::vector<ROOT::Math::PxPyPzMVector> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(in[i].E());
}
return result;
};
auto theta = [](std::vector<ROOT::Math::PxPyPzMVector> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(in[i].Theta()*180/M_PI);
}
return result;
};
auto fourvec = [](ROOT::VecOps::RVec<dd4pod::Geant4ParticleData> const& in) {
std::vector<ROOT::Math::PxPyPzMVector> result;
ROOT::Math::PxPyPzMVector lv;
for (size_t i = 0; i < in.size(); ++i) {
lv.SetCoordinates(in[i].ps.x, in[i].ps.y, in[i].ps.z, in[i].mass);
result.push_back(lv);
}
return result;
};
auto delta_p = [](const std::vector<double>& tracks, const std::vector<double>& thrown) {
std::vector<double> res;
for (const auto& p1 : thrown) {
for (const auto& p2 : tracks) {
res.push_back(p1 - p2);
}
}
return res;
};
auto delta_p_over_p = [](const std::vector<double>& tracks, const std::vector<double>& thrown) {
std::vector<double> res;
for (const auto& p1 : thrown) {
for (const auto& p2 : tracks) {
res.push_back((p1 - p2)/p1);
}
}
return res;
};
int hits_central_pions(const char* fname = "sim_central_pions.root")
{
ROOT::EnableImplicitMT();
ROOT::RDataFrame df("events", fname);
auto df0 = df.Define("isThrown", "mcparticles.genStatus == 1")
.Define("thrownParticles", "mcparticles[isThrown]")
.Define("thrownP", fourvec, {"thrownParticles"})
.Define("p_thrown", momentum, {"thrownP"})
.Define("theta_thrown", theta, {"thrownP"})
.Define("theta0", "theta_thrown[0]")
//.Define("nTracks", "outputTrackParameters.size()")
//.Define("p_track", p_track, {"outputTrackParameters"})
//.Define("p_track1", p_track, {"outputTrackParameters1"})
//.Define("p_track2", p_track, {"outputTrackParameters2"})
//.Define("delta_p0",delta_p, {"p_track", "p_thrown"})
//.Define("delta_p1",delta_p, {"p_track1", "p_thrown"})
////.Define("delta_p2",delta_p, {"p_track2", "p_thrown"})
//.Define("delta_p_over_p0",delta_p_over_p, {"p_track", "p_thrown"})
//.Define("delta_p_over_p1",delta_p_over_p, {"p_track1", "p_thrown"})
//.Define("delta_p_over_p2",delta_p_over_p, {"p_track2", "p_thrown"})
//.Define("N_VtxBarrelHits",[](std::vector<eic::TrackerHitData> hits) { return hits.size();},{"VertexBarrelRecHits"})
.Define("N_BarrelHits", [](std::vector<dd4pod::TrackerHitData> hits) { return hits.size();}, {"TrackerBarrelHits"})
.Define("N_EndcapHits", [](std::vector<dd4pod::TrackerHitData> hits) { return hits.size();}, {"TrackerEndcapHits"})
;
auto hBarrel_x_vs_y = df0.Histo2D({"hBarrel_x_vs_y", "; x ; y ", 100, -900, 900,100, -900, 900 }, "TrackerBarrelHits.position.x", "TrackerBarrelHits.position.y");
auto hBarrel_N_vs_theta = df0.Histo1D({"hBarrel_N_vs_theta", "; #theta [deg.]", 20, 0, 180 }, "theta0", "N_BarrelHits");
auto hEndcap_N_vs_theta = df0.Histo1D({"hEndcap_N_vs_theta", "; #theta [deg.]", 20, 0, 180 }, "theta0", "N_EndcapHits");
//auto hVtxBarrel_N_vs_theta = df0.Histo1D({"hVtxBarrel_N_vs_theta", "; #theta [deg.]", 20, 0, 180 }, "theta0", "N_VtxBarrelHits");
auto hBarrel_Nhits = df0.Histo1D({"hBarrel_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_BarrelHits");
auto hEndcap_Nhits = df0.Histo1D({"hEndcap_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_EndcapHits");
//auto hVtxBarrel_Nhits = df0.Histo1D({"hVtxBarrel_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_VtxBarrelHits");
auto hBarrel_Ntheta = df0.Histo1D({"hBarrel_Ntheta", "; #theta [deg.]", 20, 0, 180 }, "theta0");
auto hEndcap_Ntheta = df0.Histo1D({"hEndcap_Ntheta", "; #theta [deg.]", 20, 0, 180 }, "theta0");
//auto hVtxBarrel_Ntheta = df0.Histo1D({"hVtxBarrel_Ntheta", "; #theta [deg.]", 20, 0, 180 }, "theta0");
auto c = new TCanvas();
auto hs = new THStack("n_hits","; #theta ");
auto h1 = (TH1D*) hBarrel_N_vs_theta->Clone();
auto h2 = (TH1D*) hBarrel_Ntheta->Clone();
h1->Divide(h2);
hs->Add(h1);
h1 = (TH1D*) hEndcap_N_vs_theta->Clone();
h2 = (TH1D*) hEndcap_Ntheta->Clone();
h1->Divide(h2);
h1->SetLineColor(2);
hs->Add(h1);
//h1 = (TH1D*) hVtxBarrel_vs_theta->Clone();
//h1->SetLineColor(4);
//h1->SetFillStyle(3001);
//h1->SetFillColor(4);
//hs->Add(h1);
hs->Draw("nostack, hist");
c->BuildLegend();
c->SaveAs("results/tracking/hits_central_pions_n_hits_vs_theta.png");
c->SaveAs("results/tracking/hits_central_pions_n_hits_vs_theta.pdf");
c = new TCanvas();
hs = new THStack("theta","; #theta ");
h1 = (TH1D*) hBarrel_N_vs_theta->Clone();
h2 = (TH1D*) hBarrel_Ntheta->Clone();
//h1->Divide(h2);
hs->Add(h2);
h1 = (TH1D*) hEndcap_N_vs_theta->Clone();
h2 = (TH1D*) hEndcap_Ntheta->Clone();
//h1->Divide(h2);
h1->SetLineColor(2);
h2->SetLineColor(2);
hs->Add(h2);
//h1 = (TH1D*) hVtxBarrel_vs_theta->Clone();
//h1->SetLineColor(4);
//h1->SetFillStyle(3001);
//h1->SetFillColor(4);
//hs->Add(h1);
hs->Draw("nostack hist");
c->BuildLegend();
c->SaveAs("results/tracking/hits_central_pions_theta.png");
c->SaveAs("results/tracking/hits_central_pions_theta.pdf");
c = new TCanvas();
hs = new THStack("hits","; hits ");
h1 = (TH1D*) hBarrel_Nhits->Clone();
hs->Add(h1);
h1 = (TH1D*) hEndcap_Nhits->Clone();
h1->SetLineColor(2);
h2->SetLineColor(2);
hs->Add(h2);
//h1 = (TH1D*) hVtxBarrel_Nhits->Clone();
//h1->SetLineColor(4);
//h1->SetFillStyle(3001);
//h1->SetFillColor(4);
//hs->Add(h1);
//hs->Draw("nostack hist");
c->BuildLegend();
c->SaveAs("results/tracking/hits_central_pions_nhits.png");
c->SaveAs("results/tracking/hits_central_pions_nhits.pdf");
c = new TCanvas();
hBarrel_x_vs_y->DrawCopy("colz");
c->SaveAs("results/tracking/hits_central_pions_xy.png");
c->SaveAs("results/tracking/hits_central_pions_xy.pdf");
return 0;
}
#include "ROOT/RDataFrame.hxx"
#include "TCanvas.h"
#include "TLegend.h"
#include "TH1D.h"
#include "TProfile.h"
#include <iostream>
R__LOAD_LIBRARY(libeicd.so)
R__LOAD_LIBRARY(libDD4pod.so)
#include "dd4pod/Geant4ParticleCollection.h"
#include "eicd/TrackParametersCollection.h"
#include "eicd/ClusterCollection.h"
#include "eicd/ClusterData.h"
#include "eicd/TrackerHitCollection.h"
using ROOT::RDataFrame;
using namespace ROOT::VecOps;
auto p_track = [](std::vector<eic::TrackParametersData> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(std::abs(1.0/(in[i].qOverP)));
}
return result;
};
std::vector<float> pt (std::vector<dd4pod::Geant4ParticleData> const& in){
std::vector<float> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(std::sqrt(in[i].ps.x * in[i].ps.x + in[i].ps.y * in[i].ps.y));
}
return result;
}
auto momentum = [](std::vector<ROOT::Math::PxPyPzMVector> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(in[i].P());
}
return result;
};
auto theta = [](std::vector<ROOT::Math::PxPyPzMVector> const& in) {
std::vector<double> result;
for (size_t i = 0; i < in.size(); ++i) {
result.push_back(in[i].Theta()*180/M_PI);
}
return result;
};
auto fourvec = [](ROOT::VecOps::RVec<dd4pod::Geant4ParticleData> const& in) {
std::vector<ROOT::Math::PxPyPzMVector> result;
ROOT::Math::PxPyPzMVector lv;
for (size_t i = 0; i < in.size(); ++i) {
lv.SetCoordinates(in[i].ps.x, in[i].ps.y, in[i].ps.z, in[i].mass);
result.push_back(lv);
}
return result;
};
auto delta_p = [](const std::vector<double>& tracks, const std::vector<double>& thrown) {
std::vector<double> res;
for (const auto& p1 : thrown) {
for (const auto& p2 : tracks) {
res.push_back(p1 - p2);
}
}
return res;
};
auto delta_p_over_p = [](const std::vector<double>& tracks, const std::vector<double>& thrown) {
std::vector<double> res;
for (const auto& p1 : thrown) {
for (const auto& p2 : tracks) {
res.push_back((p1 - p2)/p1);
}
}
return res;
};
int rec_multiple_tracks(const char* fname = "topside/rec_multiple_tracks.root")
{
ROOT::EnableImplicitMT();
ROOT::RDataFrame df("events", fname);
auto df0 = df.Define("isThrown", "mcparticles2.genStatus == 1")
.Define("thrownParticles", "mcparticles2[isThrown]")
.Define("thrownP", fourvec, {"thrownParticles"})
.Define("p_thrown", momentum, {"thrownP"})
.Define("theta_thrown", theta, {"thrownP"})
.Define("theta0", "theta_thrown[0]")
.Define("nTracks", "outputTrackParameters.size()")
.Define("p_track", p_track, {"outputTrackParameters"})
.Define("delta_p0",delta_p, {"p_track", "p_thrown"})
.Define("delta_p_over_p0",delta_p_over_p, {"p_track", "p_thrown"})
.Define("N_Hits", [](std::vector<eic::TrackerHitData> hits) { return hits.size();}, {"trackingHits"})
.Define("N_BarrelHits", [](std::vector<eic::TrackerHitData> hits) { return hits.size();}, {"TrackerBarrelRecHits"})
.Define("N_EndcapHits", [](std::vector<eic::TrackerHitData> hits) { return hits.size();}, {"TrackerEndcapRecHits"})
;
auto h_nTracks_vs_theta = df0.Histo2D({"h_nTracks_vs_theta", "; #theta; N tracks ", 40,0,180,10, 0, 10}, "theta0","nTracks");
auto h_nTracks = df0.Histo1D({"h_nTracks", "; N tracks ", 10, 0, 10}, "nTracks");
auto h_pTracks = df0.Histo1D({"h_pTracks", "; GeV/c ", 100, 0, 10}, "p_track");
auto h_delta_p0 = df0.Histo1D({"h_delta_p0", "Truth Track Init; GeV/c ", 100, -10, 10}, "delta_p0");
auto h_delta_p0_over_p = df0.Histo1D({"h_delta_p0_over_p", "Truth Track Init; delta p/p ", 100, -0.1, 0.1}, "delta_p_over_p0");
auto hNhits_vs_theta = df0.Histo1D({"hNhits_vs_theta", "; #theta [deg.]", 40, 0, 180 }, "theta0", "N_Hits");
auto hBarrel_N_vs_theta = df0.Histo1D({"hBarrel_N_vs_theta", "; #theta [deg.]", 40, 0, 180 }, "theta0", "N_BarrelHits");
auto hEndcap_N_vs_theta = df0.Histo1D({"hEndcap_N_vs_theta", "; #theta [deg.]", 40, 0, 180 }, "theta0", "N_EndcapHits");
auto hHits_Nhits = df0.Histo1D({"hHits_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_Hits");
auto hBarrel_Nhits = df0.Histo1D({"hBarrel_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_BarrelHits");
auto hEndcap_Nhits = df0.Histo1D({"hEndcap_Nhits", "; #theta [deg.]", 20, 0, 20 }, "N_EndcapHits");
auto hHits_Ntheta = df0.Histo1D({"hHits_Ntheta", "; #theta [deg.]", 40, 0, 180 }, "theta0");
auto hBarrel_Ntheta = df0.Histo1D({"hBarrel_Ntheta", "; #theta [deg.]", 40, 0, 180 }, "theta0");
auto hEndcap_Ntheta = df0.Histo1D({"hEndcap_Ntheta", "; #theta [deg.]", 40, 0, 180 }, "theta0");
// -----------------------------------------------
auto c = new TCanvas();
h_nTracks->DrawCopy();
c->SaveAs("results/track_finding/rec_multiple_tracks_nTracks.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_nTracks.pdf");
// -----------------------------------------------
h_pTracks->DrawCopy();
c->SaveAs("results/track_finding/rec_multiple_tracks_pTracks.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_pTracks.pdf");
// -----------------------------------------------
c = new TCanvas();
THStack * hs = new THStack("hs_delta_p","; GeV/c ");
TH1D* h1 = (TH1D*) h_delta_p0->Clone();
hs->Add(h1);
hs->Draw("nostack");
c->BuildLegend();
c->SaveAs("results/track_finding/rec_multiple_tracks_delta_p.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_delta_p.pdf");
// -----------------------------------------------
c = new TCanvas();
hs = new THStack("hs_delta_p_over_p","; delta p/p ");
h1 = (TH1D*) h_delta_p0_over_p->Clone();
hs->Add(h1);
hs->Draw("nostack");
c->BuildLegend();
c->SaveAs("results/track_finding/rec_multiple_tracks_delta_p_over_p.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_delta_p_over_p.pdf");
// -----------------------------------------------
c = new TCanvas();
hs = new THStack("n_hits","; #theta ");
h1 = (TH1D*) hBarrel_N_vs_theta->Clone();
auto h2 = (TH1D*) hBarrel_Ntheta->Clone();
h1->SetLineColor(4);
h1->Divide(h2);
hs->Add(h1);
h1 = (TH1D*) hEndcap_N_vs_theta->Clone();
h2 = (TH1D*) hEndcap_Ntheta->Clone();
h1->Divide(h2);
h1->SetLineColor(2);
hs->Add(h1);
h1 = (TH1D*) hNhits_vs_theta->Clone();
h2 = (TH1D*) hHits_Ntheta->Clone();
h1->Divide(h2);
h1->SetLineColor(1);
hs->Add(h1);
hs->Draw("nostack, hist");
c->BuildLegend();
c->SaveAs("results/track_finding/rec_multiple_tracks_n_hits_vs_theta.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_n_hits_vs_theta.pdf");
// -----------------------------------------------
c = new TCanvas();
hs = new THStack("theta","; #theta ");
h2 = (TH1D*) hBarrel_Ntheta->Clone();
h2->SetLineColor(4);
hs->Add(h2);
h2 = (TH1D*) hEndcap_Ntheta->Clone();
h2->SetLineColor(2);
hs->Add(h2);
h2 = (TH1D*) hHits_Ntheta->Clone();
h2->SetLineColor(1);
hs->Add(h2);
hs->Draw("nostack hist");
c->BuildLegend();
c->SaveAs("results/track_finding/rec_multiple_tracks_theta.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_theta.pdf");
// -----------------------------------------------
c = new TCanvas();
hs = new THStack("hits","; hits ");
h1 = (TH1D*) hBarrel_Nhits->Clone();
h1->SetLineColor(4);
hs->Add(h1);
h1 = (TH1D*) hEndcap_Nhits->Clone();
h1->SetLineColor(2);
hs->Add(h1);
h1 = (TH1D*) hHits_Nhits->Clone();
h1->SetLineColor(2);
hs->Add(h1);
c->BuildLegend();
c->SaveAs("results/track_finding/rec_multiple_tracks_nhits.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_nhits.pdf");
// -----------------------------------------------
c = new TCanvas();
h_nTracks_vs_theta->DrawCopy("colz");
c->SaveAs("results/track_finding/rec_multiple_tracks_nTracks_vs_theta.png");
c->SaveAs("results/track_finding/rec_multiple_tracks_nTracks_vs_theta.pdf");
return 0;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment