Skip to content
Snippets Groups Projects

Implement detector benchmark for the barrel calorimeter for energy resolution

Merged Maria Zurek requested to merge 10-calo-resolution into master
Compare and
9 files
+ 745
15
Compare changes
  • Side-by-side
  • Inline
Files
9
////////////////////////////////////////
// Read reconstruction ROOT output file
// Plot variables
////////////////////////////////////////
#include "ROOT/RDataFrame.hxx"
#include <iostream>
#include <fmt/core.h>
#include "dd4pod/Geant4ParticleCollection.h"
#include "dd4pod/CalorimeterHitCollection.h"
#include "TCanvas.h"
#include "TStyle.h"
#include "TMath.h"
#include "TH1.h"
#include "TF1.h"
#include "TH1D.h"
#include "TGraphErrors.h"
using ROOT::RDataFrame;
using namespace ROOT::VecOps;
void save_canvas(TCanvas* c, std::string label)
{
c->SaveAs(fmt::format("results/energy_scan/{}.png",label).c_str());
c->SaveAs(fmt::format("results/energy_scan/{}.pdf",label).c_str());
}
void save_canvas(TCanvas* c, std::string label, double E)
{
std::string label_with_E = fmt::format("{}/{}", E, label);
save_canvas(c, label_with_E);
}
void save_canvas(TCanvas* c, std::string label, std::string E_label)
{
std::string label_with_E = fmt::format("{}/{}", E_label, label);
save_canvas(c, label_with_E);
}
void save_canvas(TCanvas* c, std::string var_label, std::string E_label, std::string particle_label)
{
std::string label_with_E = fmt::format("{}/emcal_barrel_{}_{}", E_label, particle_label, var_label);
save_canvas(c, label_with_E);
}
std::tuple <double, double, double, double> extract_sampling_fraction_parameters(std::string particle_label, std::string E_label)
{
std::string input_fname = fmt::format("sim_output/energy_scan/{}/sim_emcal_barrel_{}.root", E_label, particle_label);
ROOT::EnableImplicitMT();
ROOT::RDataFrame d0("events", input_fname);
// Thrown Energy [GeV]
auto Ethr = [](std::vector<dd4pod::Geant4ParticleData> const& input) {
auto p = input[2];
auto energy = TMath::Sqrt(p.psx * p.psx + p.psy * p.psy + p.psz * p.psz + p.mass * p.mass);
return energy;
};
// Number of hits
auto nhits = [] (const std::vector<dd4pod::CalorimeterHitData>& evt) {return (int) evt.size(); };
// Energy deposition [GeV]
auto Esim = [](const std::vector<dd4pod::CalorimeterHitData>& evt) {
auto total_edep = 0.0;
for (const auto& i: evt)
total_edep += i.energyDeposit;
return total_edep;
};
// Sampling fraction = Esampling / Ethrown
auto fsam = [](const double sampled, const double thrown) {
return sampled / thrown;
};
// Define variables
auto d1 = d0.Define("Ethr", Ethr, {"mcparticles"})
.Define("nhits", nhits, {"EcalBarrelHits"})
.Define("Esim", Esim, {"EcalBarrelHits"})
.Define("fsam", fsam, {"Esim", "Ethr"});
// Define Histograms
auto hEthr = d1.Histo1D(
{"hEthr", "Thrown Energy; Thrown Energy [GeV]; Events", 100, 0.0, 25.0},
"Ethr");
auto hNhits =
d1.Histo1D({"hNhits", "Number of hits per events; Number of hits; Events",
100, 0.0, 2000.0},
"nhits");
auto hEsim = d1.Histo1D(
{"hEsim", "Energy Deposit; Energy Deposit [GeV]; Events", 500, 0.0, 0.5},
"Esim");
auto hfsam = d1.Histo1D(
{"hfsam", "Sampling Fraction; Sampling Fraction; Events", 200, 0.0, 0.05},
"fsam");
// Event Counts
auto nevents_thrown = d1.Count();
std::cout << "Number of Thrown Events: " << (*nevents_thrown) << "\n";
// Draw Histograms
{
TCanvas* c1 = new TCanvas("c1", "c1", 700, 500);
c1->SetLogy(1);
auto h = hEthr->DrawCopy();
//h->GetYaxis()->SetTitleOffset(1.4);
h->SetLineWidth(2);
h->SetLineColor(kBlue);
save_canvas(c1, "Ethr", E_label, particle_label);
}
{
TCanvas* c2 = new TCanvas("c2", "c2", 700, 500);
c2->SetLogy(1);
auto h = hNhits->DrawCopy();
//h->GetYaxis()->SetTitleOffset(1.4);
h->SetLineWidth(2);
h->SetLineColor(kBlue);
save_canvas(c2, "nhits", E_label, particle_label);
}
{
TCanvas* c3 = new TCanvas("c3", "c3", 700, 500);
c3->SetLogy(1);
auto h = hEsim->DrawCopy();
//h->GetYaxis()->SetTitleOffset(1.4);
h->SetLineWidth(2);
h->SetLineColor(kBlue);
double up_fit = h->GetMean() + 5*h->GetStdDev();
double down_fit = h->GetMean() - 5*h->GetStdDev();
h->GetXaxis()->SetRangeUser(0.,up_fit);
save_canvas(c3, "Esim", E_label, particle_label);
}
{
TCanvas* c4 = new TCanvas("c4", "c4", 700, 500);
//c4->SetLogy(1);
auto h = hfsam->DrawCopy();
//h->GetYaxis()->SetTitleOffset(1.4);
h->SetLineWidth(2);
h->SetLineColor(kBlue);
double up_fit = h->GetMean() + 5*h->GetStdDev();
double down_fit = h->GetMean() - 5*h->GetStdDev();
h->Fit("gaus", "", "", down_fit, up_fit);
h->GetXaxis()->SetRangeUser(0.,up_fit);
TF1 *gaus = h->GetFunction("gaus");
gaus->SetLineWidth(2);
gaus->SetLineColor(kRed);
double mean = gaus->GetParameter(1);
double sigma = gaus->GetParameter(2);
double mean_err = gaus->GetParError(1);
double sigma_err = gaus->GetParError(2);
save_canvas(c4, "fsam", E_label, particle_label);
return std::make_tuple(mean, sigma, mean_err, sigma_err);
}
}
std::vector<std::string> read_scanned_energies(std::string input_energies_fname)
{
std::vector<std::string> scanned_energies;
std::string E_label;
ifstream E_file (input_energies_fname);
if (E_file.is_open())
{
while (E_file >> E_label)
{
scanned_energies.push_back(E_label);
}
E_file.close();
return scanned_energies;
}
else
{
std::cout << "Unable to open file " << input_energies_fname << std::endl;
abort();
}
}
void emcal_barrel_energy_scan_analysis(std::string particle_label = "electron")
{
// Setting for graphs
gROOT->SetStyle("Plain");
gStyle->SetOptFit(1);
gStyle->SetLineWidth(2);
gStyle->SetPadTickX(1);
gStyle->SetPadTickY(1);
gStyle->SetPadGridX(1);
gStyle->SetPadGridY(1);
gStyle->SetPadLeftMargin(0.14);
gStyle->SetPadRightMargin(0.14);
auto scanned_energies = read_scanned_energies(fmt::format("sim_output/emcal_barrel_energy_scan_points_{}.txt", particle_label));
TGraphErrors gr_fsam(scanned_energies.size()-1);
TGraphErrors gr_fsam_res(scanned_energies.size()-1);
for (const auto& E_label : scanned_energies) {
auto [fsam, fsam_res, fsam_err, fsam_res_err] = extract_sampling_fraction_parameters(particle_label, E_label);
auto E = std::stod(E_label);
gr_fsam.SetPoint(gr_fsam.GetN(),E,100*fsam);
gr_fsam.SetPointError(gr_fsam.GetN()-1,0., 100*fsam_err);
gr_fsam_res.SetPoint(gr_fsam_res.GetN(),E,100.0*(fsam_res/fsam));
auto fsam_res_rel_err = 100.0*(sqrt(pow((fsam_res_err/fsam),2)+pow((fsam_err*fsam_res)/(fsam*fsam),2)));
gr_fsam_res.SetPointError(gr_fsam_res.GetN()-1,0.,fsam_res_rel_err);
}
TCanvas* c5 = new TCanvas("c5", "c5", 700, 500);
c5->cd();
gr_fsam.SetTitle("Sampling Fraction Scan;True Energy [GeV];Sampling Fraction [%]");
gr_fsam.SetMarkerStyle(20);
gr_fsam.Fit("pol0", "", "", 2., 20.);
gr_fsam.Draw("APE");
save_canvas(c5, fmt::format("emcal_barrel_{}_fsam_scan", particle_label));
TCanvas* c6 = new TCanvas("c6", "c6", 700, 500);
c6->cd();
TF1* func_res = new TF1("func_res", "[0]/sqrt(x) + [1]", 0.25, 20.);
func_res->SetLineWidth(2);
func_res->SetLineColor(kRed);
gr_fsam_res.SetTitle("Energy Resolution;True Energy [GeV];#Delta E/E [%]");
gr_fsam_res.SetMarkerStyle(20);
gr_fsam_res.Fit(func_res,"R");
gr_fsam_res.Draw("APE");
save_canvas(c6,fmt::format("emcal_barrel_{}_fsam_scan_res", particle_label));
}
Loading