Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
detector_benchmarks
Manage
Activity
Members
Labels
Plan
Issues
21
Issue boards
Milestones
Wiki
Code
Merge requests
7
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
EIC
benchmarks
detector_benchmarks
Commits
e3b0d5f2
Commit
e3b0d5f2
authored
7 months ago
by
Jiajun Huang
Browse files
Options
Downloads
Patches
Plain Diff
Modified zdc lyso analysis code.
parent
0a6a4816
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#98794
passed with warnings with stages
in 2 hours, 22 minutes, and 59 seconds
Changes
1
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
benchmarks/zdc_lyso/analysis/analysis.py
+125
-39
125 additions, 39 deletions
benchmarks/zdc_lyso/analysis/analysis.py
with
125 additions
and
39 deletions
benchmarks/zdc_lyso/analysis/analysis.py
+
125
−
39
View file @
e3b0d5f2
...
@@ -3,9 +3,10 @@ import matplotlib.pyplot as plt
...
@@ -3,9 +3,10 @@ import matplotlib.pyplot as plt
import
mplhep
as
hep
import
mplhep
as
hep
import
uproot
import
uproot
import
pandas
as
pd
import
pandas
as
pd
import
os
from
scipy.optimize
import
curve_fit
from
scipy.optimize
import
curve_fit
from
matplotlib.backends.backend_pdf
import
PdfPages
from
matplotlib.backends.backend_pdf
import
PdfPages
import
os
import
awkward
as
ak
plt
.
figure
()
plt
.
figure
()
hep
.
set_style
(
hep
.
style
.
CMS
)
hep
.
set_style
(
hep
.
style
.
CMS
)
...
@@ -22,18 +23,21 @@ def rotateY(xdata, zdata, angle):
...
@@ -22,18 +23,21 @@ def rotateY(xdata, zdata, angle):
return
rotatedx
,
rotatedz
return
rotatedx
,
rotatedz
Energy
=
[
0.005
,
0.01
,
0.05
,
0.1
,
0.5
,
1.0
]
Energy
=
[
0.005
,
0.01
,
0.05
,
0.1
,
0.5
,
1.0
]
q0
=
[
5
,
10
,
40
,
90
,
400
,
700
]
q1
=
[
0.5
,
0.5
,
0.9
,
5
,
10
,
20
]
df
=
pd
.
DataFrame
({})
df
=
pd
.
DataFrame
({})
for
eng
in
Energy
:
for
eng
in
Energy
:
tree
=
uproot
.
open
(
f
'
sim_output/zdc_lyso/
{
os
.
environ
[
"
DETECTOR_CONFIG
"
]
}
_gamma_
{
eng
}
GeV_theta_0deg_thru_0.3deg.eicrecon.tree.edm4eic.root
'
)[
'
events
'
]
tree
=
uproot
.
open
(
f
'
sim_output/zdc_lyso/
{
os
.
environ
[
"
DETECTOR_CONFIG
"
]
}
_gamma_
{
eng
}
GeV_theta_0deg_thru_0.3deg.eicrecon.tree.edm4eic.root
'
)[
'
events
'
]
ecal_reco_energy
=
tree
[
'
EcalFarForwardZDCClusters/EcalFarForwardZDCClusters.energy
'
].
array
()
ecal_reco_energy
=
list
(
map
(
sum
,
tree
[
'
EcalFarForwardZDCClusters/EcalFarForwardZDCClusters.energy
'
].
array
()))
#hcal_reco_energy = tree['HcalFarForwardZDCClusters/HcalFarForwardZDCClusters.energy'].array()
hcal_reco_energy
=
list
(
map
(
sum
,
tree
[
'
HcalFarForwardZDCClusters/HcalFarForwardZDCClusters.energy
'
].
array
()))
ecal_rec_energy
=
list
(
map
(
sum
,
tree
[
'
EcalFarForwardZDCRecHits/EcalFarForwardZDCRecHits.energy
'
].
array
()))
hcal_rec_energy
=
list
(
map
(
sum
,
tree
[
'
HcalFarForwardZDCRecHits/HcalFarForwardZDCRecHits.energy
'
].
array
()))
ecal_reco_clusters
=
[
len
(
row
)
if
len
(
row
)
>=
1
else
0
for
row
in
tree
[
'
EcalFarForwardZDCClusters/EcalFarForwardZDCClusters.nhits
'
].
array
()]
ecal_reco_nhits
=
[
row
[
0
]
if
len
(
row
)
>=
1
else
0
for
row
in
tree
[
'
EcalFarForwardZDCClusters/EcalFarForwardZDCClusters.nhits
'
].
array
()]
tree
=
uproot
.
open
(
f
'
sim_output/zdc_lyso/
{
os
.
environ
[
"
DETECTOR_CONFIG
"
]
}
_gamma_
{
eng
}
GeV_theta_0deg_thru_0.3deg.edm4hep.root
'
)[
'
events
'
]
tree
=
uproot
.
open
(
f
'
sim_output/zdc_lyso/
{
os
.
environ
[
"
DETECTOR_CONFIG
"
]
}
_gamma_
{
eng
}
GeV_theta_0deg_thru_0.3deg.edm4hep.root
'
)[
'
events
'
]
ecal_sim_energy
=
tree
[
'
EcalFarForwardZDCHits/EcalFarForwardZDCHits.energy
'
].
array
()
ecal_sim_energy
=
list
(
map
(
sum
,
tree
[
'
EcalFarForwardZDCHits/EcalFarForwardZDCHits.energy
'
].
array
()
))
hcal_sim_energy
=
tree
[
'
HcalFarForwardZDCHits/HcalFarForwardZDCHits.energy
'
].
array
()
hcal_sim_energy
=
list
(
map
(
sum
,
tree
[
'
HcalFarForwardZDCHits/HcalFarForwardZDCHits.energy
'
].
array
()
))
par_x
=
tree
[
'
MCParticles/MCParticles.momentum.x
'
].
array
()[:,
2
]
par_x
=
tree
[
'
MCParticles/MCParticles.momentum.x
'
].
array
()[:,
2
]
par_y
=
tree
[
'
MCParticles/MCParticles.momentum.y
'
].
array
()[:,
2
]
par_y
=
tree
[
'
MCParticles/MCParticles.momentum.y
'
].
array
()[:,
2
]
...
@@ -41,66 +45,103 @@ for eng in Energy:
...
@@ -41,66 +45,103 @@ for eng in Energy:
eng
=
int
(
eng
*
1000
)
eng
=
int
(
eng
*
1000
)
ecal_reco_energy
=
pd
.
DataFrame
({
f
'
ecal_reco_energy_
{
eng
}
'
:
np
.
array
(
ecal_reco_energy
.
tolist
(),
dtype
=
object
)})
ecal_reco_energy
=
pd
.
DataFrame
({
f
'
ecal_reco_energy_
{
eng
}
'
:
np
.
array
(
ecal_reco_energy
,
dtype
=
object
)})
#hcal_reco_energy = pd.DataFrame({f'hcal_reco_energy_{eng}': np.array(hcal_reco_energy.tolist(), dtype=object)})
hcal_reco_energy
=
pd
.
DataFrame
({
f
'
hcal_reco_energy_
{
eng
}
'
:
np
.
array
(
hcal_reco_energy
,
dtype
=
object
)})
ecal_sim_energy
=
pd
.
DataFrame
({
f
'
ecal_sim_energy_
{
eng
}
'
:
np
.
array
(
ecal_sim_energy
.
tolist
(),
dtype
=
object
)})
ecal_rec_energy
=
pd
.
DataFrame
({
f
'
ecal_rec_energy_
{
eng
}
'
:
np
.
array
(
ecal_rec_energy
,
dtype
=
object
)})
hcal_sim_energy
=
pd
.
DataFrame
({
f
'
hcal_sim_energy_
{
eng
}
'
:
np
.
array
(
hcal_sim_energy
.
tolist
(),
dtype
=
object
)})
hcal_rec_energy
=
pd
.
DataFrame
({
f
'
hcal_rec_energy_
{
eng
}
'
:
np
.
array
(
hcal_rec_energy
,
dtype
=
object
)})
ecal_sim_energy
=
pd
.
DataFrame
({
f
'
ecal_sim_energy_
{
eng
}
'
:
np
.
array
(
ecal_sim_energy
,
dtype
=
object
)})
hcal_sim_energy
=
pd
.
DataFrame
({
f
'
hcal_sim_energy_
{
eng
}
'
:
np
.
array
(
hcal_sim_energy
,
dtype
=
object
)})
ecal_reco_nhits
=
pd
.
DataFrame
({
f
'
ecal_reco_nhits_
{
eng
}
'
:
np
.
array
(
ecal_reco_nhits
,
dtype
=
object
)})
ecal_reco_clusters
=
pd
.
DataFrame
({
f
'
ecal_reco_clusters_
{
eng
}
'
:
np
.
array
(
ecal_reco_clusters
,
dtype
=
object
)})
par_x
=
pd
.
DataFrame
({
f
'
par_x_
{
eng
}
'
:
np
.
array
(
par_x
.
tolist
(),
dtype
=
object
)})
par_x
=
pd
.
DataFrame
({
f
'
par_x_
{
eng
}
'
:
np
.
array
(
par_x
.
tolist
(),
dtype
=
object
)})
par_y
=
pd
.
DataFrame
({
f
'
par_y_
{
eng
}
'
:
np
.
array
(
par_y
.
tolist
(),
dtype
=
object
)})
par_y
=
pd
.
DataFrame
({
f
'
par_y_
{
eng
}
'
:
np
.
array
(
par_y
.
tolist
(),
dtype
=
object
)})
par_z
=
pd
.
DataFrame
({
f
'
par_z_
{
eng
}
'
:
np
.
array
(
par_z
.
tolist
(),
dtype
=
object
)})
par_z
=
pd
.
DataFrame
({
f
'
par_z_
{
eng
}
'
:
np
.
array
(
par_z
.
tolist
(),
dtype
=
object
)})
df
=
pd
.
concat
([
df
,
ecal_reco_energy
,
ecal_sim_energy
,
hcal_sim_energy
,
par_x
,
par_y
,
par_z
],
axis
=
1
)
df
=
pd
.
concat
([
df
,
ecal_reco_energy
,
ecal_rec_energy
,
ecal_sim_energy
,
hcal_reco_energy
,
hcal_rec_energy
,
hcal_sim_energy
,
ecal_reco_clusters
,
ecal_reco_nhits
,
par_x
,
par_y
,
par_z
],
axis
=
1
)
mu
=
[]
mu
=
[]
sigma
=
[]
sigma
=
[]
resolution
=
[]
fig1
,
ax
=
plt
.
subplots
(
3
,
2
,
figsize
=
(
20
,
10
))
fig1
,
ax
=
plt
.
subplots
(
3
,
2
,
figsize
=
(
20
,
10
))
#
fig1.suptitle('ZDC ECal Cluster Energy Reconstruction')
fig1
.
suptitle
(
'
ZDC ECal Cluster Energy Reconstruction
'
)
plt
.
tight_layout
()
plt
.
tight_layout
()
for
i
in
range
(
6
):
for
i
in
range
(
6
):
x
=
df
[
f
'
par_x_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
y
=
df
[
f
'
par_y_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
z
=
df
[
f
'
par_z_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
x
,
z
=
rotateY
(
x
,
z
,
0.025
)
theta
=
np
.
arccos
(
z
/
np
.
sqrt
((
x
**
2
+
y
**
2
+
z
**
2
)))
*
1000
condition
=
theta
<=
3.5
plt
.
sca
(
ax
[
i
%
3
,
i
//
3
])
plt
.
sca
(
ax
[
i
%
3
,
i
//
3
])
eng
=
int
(
Energy
[
i
]
*
1000
)
eng
=
int
(
Energy
[
i
]
*
1000
)
plt
.
title
(
f
'
Gamma Energy:
{
eng
}
MeV
'
)
plt
.
title
(
f
'
Gamma Energy:
{
eng
}
MeV
'
)
temp
=
np
.
array
(
[
sum
(
item
)
if
(
item
!=
0
)
else
0
for
item
in
df
[
f
'
ecal_reco_energy_
{
eng
}
'
]])
temp
=
np
.
array
(
df
[
f
'
ecal_reco_energy_
{
eng
}
'
].
astype
(
float
).
to_numpy
()[
condition
])
*
1000
hist
,
x
=
np
.
histogram
(
np
.
array
(
temp
)
*
1000
,
bins
=
30
)
hist
,
x
=
np
.
histogram
(
temp
,
bins
=
np
.
linspace
(
min
(
temp
),
max
(
temp
)
+
np
.
std
(
abs
(
temp
)),
2
*
int
(
np
.
sqrt
(
len
(
temp
))))
)
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
plt
.
errorbar
(
x
,
hist
,
yerr
=
np
.
sqrt
(
hist
),
fmt
=
'
-o
'
)
plt
.
errorbar
(
x
,
hist
,
yerr
=
np
.
sqrt
(
hist
),
fmt
=
'
-o
'
,
label
=
'
Cluster
'
)
temp
=
np
.
array
([
item
[
0
]
for
item
in
df
[
f
'
ecal_reco_energy_
{
eng
}
'
]
if
item
])
coeff
,
covar
=
curve_fit
(
gaussian
,
x
[
1
:],
hist
[
1
:],
p0
=
(
max
(
hist
[
x
>=
np
.
std
(
abs
(
temp
))]),
np
.
mean
(
temp
[
temp
!=
0
]),
np
.
std
(
temp
[
temp
!=
0
])))
hist
,
x
=
np
.
histogram
(
np
.
array
(
temp
)
*
1000
,
bins
=
30
)
#plt.plot(np.linspace(coeff[1]-3*coeff[2],coeff[1]+3*coeff[2],50),gaussian(np.linspace(coeff[1]-3*coeff[2],coeff[1]+3*coeff[2],50),*coeff))
mu
.
append
(
coeff
[
1
])
sigma
.
append
(
coeff
[
2
])
temp
=
np
.
array
(
df
[
f
'
ecal_rec_energy_
{
eng
}
'
].
astype
(
float
).
to_numpy
()[
condition
])
*
1000
hist
,
x
=
np
.
histogram
(
temp
,
bins
=
np
.
linspace
(
min
(
temp
),
max
(
temp
)
+
np
.
std
(
abs
(
temp
)),
2
*
int
(
np
.
sqrt
(
len
(
temp
)))))
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
coeff
,
covar
=
curve_fit
(
gaussian
,
x
,
hist
,
p0
=
(
200
,
q0
[
i
],
q1
[
i
]),
maxfev
=
80000
)
plt
.
errorbar
(
x
,
hist
,
yerr
=
np
.
sqrt
(
hist
),
fmt
=
'
-o
'
,
label
=
'
Digitization
'
)
plt
.
plot
(
np
.
linspace
(
coeff
[
1
]
-
5
*
coeff
[
2
],
coeff
[
1
]
+
5
*
coeff
[
2
],
50
),
gaussian
(
np
.
linspace
(
coeff
[
1
]
-
5
*
coeff
[
2
],
coeff
[
1
]
+
5
*
coeff
[
2
],
50
),
*
coeff
)
coeff
,
covar
=
curve_fit
(
gaussian
,
x
[
1
:],
hist
[
1
:],
p0
=
(
max
(
hist
[
x
>=
np
.
std
(
abs
(
temp
))]),
np
.
mean
(
temp
[
temp
!=
0
]),
np
.
std
(
temp
[
temp
!=
0
])))
,
label
=
f
'
$\mu$ =
{
coeff
[
1
]
:
.
3
f
}
$\pm$
{
covar
[
1
][
1
]
:
.
3
f
}
\n
$\sigma$ =
{
np
.
abs
(
coeff
[
2
])
:
.
3
f
}
$\pm$
{
covar
[
2
][
2
]
:
.
3
f
}
\n
Resolution =
{
np
.
abs
(
coeff
[
2
])
*
100
/
coeff
[
1
]
:
.
2
f
}
%
'
)
#plt.plot(np.linspace(coeff[1]-3*coeff[2],coeff[1]+3*coeff[2],50),gaussian(np.linspace(coeff[1]-3*coeff[2],coeff[1]+3*coeff[2],50),*coeff))
mu
.
append
(
coeff
[
1
])
sigma
.
append
(
coeff
[
2
])
plt
.
xlabel
(
'
Energy (MeV)
'
)
temp
=
np
.
array
(
df
[
f
'
ecal_sim_energy_
{
eng
}
'
].
astype
(
float
).
to_numpy
()[
condition
])
*
1000
plt
.
legend
()
hist
,
x
=
np
.
histogram
(
temp
,
bins
=
np
.
linspace
(
min
(
temp
),
max
(
temp
)
+
np
.
std
(
abs
(
temp
)),
2
*
int
(
np
.
sqrt
(
len
(
temp
)))))
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
plt
.
errorbar
(
x
,
hist
,
yerr
=
np
.
sqrt
(
hist
),
fmt
=
'
-o
'
,
label
=
'
Simulation
'
)
coeff
,
covar
=
curve_fit
(
gaussian
,
x
[
1
:],
hist
[
1
:],
p0
=
(
max
(
hist
[
x
>=
np
.
std
(
abs
(
temp
))]),
np
.
mean
(
temp
[
temp
!=
0
]),
np
.
std
(
temp
[
temp
!=
0
])))
#plt.plot(np.linspace(coeff[1]-3*coeff[2],coeff[1]+3*coeff[2],50),gaussian(np.linspace(coeff[1]-3*coeff[2],coeff[1]+3*coeff[2],50),*coeff))
mu
.
append
(
coeff
[
1
])
mu
.
append
(
coeff
[
1
])
sigma
.
append
(
coeff
[
2
])
sigma
.
append
(
coeff
[
2
])
resolution
.
append
(
np
.
abs
(
coeff
[
2
])
*
100
/
coeff
[
1
])
plt
.
xlabel
(
'
Energy (MeV)
'
)
plt
.
legend
()
#plt.savefig('results/Energy_reconstruction_cluster.pdf')
#plt.savefig('results/Energy_reconstruction_cluster.pdf')
#plt.show()
mu
=
np
.
array
(
mu
)
sigma
=
np
.
array
(
sigma
)
plt
.
show
()
fig2
,
(
ax1
,
ax2
)
=
plt
.
subplots
(
2
,
1
,
figsize
=
(
15
,
10
),
sharex
=
True
)
fig2
,
(
ax1
,
ax2
)
=
plt
.
subplots
(
2
,
1
,
figsize
=
(
15
,
10
),
sharex
=
True
)
plt
.
tight_layout
()
plt
.
tight_layout
()
# Plot data on primary axis
# Plot data on primary axis
ax1
.
scatter
(
np
.
array
(
Energy
)
*
1000
,
mu
,
c
=
'
b
'
)
ax1
.
scatter
(
np
.
array
(
Energy
)
*
1000
,
mu
[::
3
],
label
=
'
cluster
'
)
ax1
.
scatter
(
np
.
array
(
Energy
)
*
1000
,
mu
[
1
::
3
],
label
=
'
digitization
'
)
ax1
.
scatter
(
np
.
array
(
Energy
)
*
1000
,
mu
[
2
::
3
],
label
=
'
simulation
'
)
ax1
.
plot
([
4.5
,
1000
],[
4.5
,
1000
],
c
=
'
black
'
,
label
=
'
x=y
'
)
ax1
.
plot
([
4.5
,
1000
],[
4.5
,
1000
],
c
=
'
black
'
,
label
=
'
x=y
'
)
ax1
.
set_ylabel
(
'
Reconstructed Energy (MeV)
'
)
ax1
.
set_ylabel
(
'
Reconstructed Energy (MeV)
'
)
ax1
.
set_yscale
(
'
log
'
)
ax1
.
set_yscale
(
'
log
'
)
ax1
.
legend
()
ax1
.
legend
()
ax1
.
set_title
(
'
ECal Craterlake Cluster Energy Reconstruction
'
)
ax1
.
set_title
(
'
ECal Craterlake Cluster Energy Reconstruction
'
)
ax2
.
plot
(
np
.
array
(
Energy
)
*
1000
,
resolution
,
c
=
'
r
'
)
ax2
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
abs
(
sigma
[::
3
]
/
mu
[::
3
])
*
100
,
fmt
=
'
-o
'
,
label
=
'
cluster
'
)
ax2
.
scatter
(
np
.
array
(
Energy
)
*
1000
,
resolution
,
c
=
'
r
'
)
ax2
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
abs
(
sigma
[
1
::
3
]
/
mu
[
1
::
3
])
*
100
,
fmt
=
'
-o
'
,
label
=
'
digitization
'
)
ax2
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
abs
(
sigma
[
2
::
3
]
/
mu
[
2
::
3
])
*
100
,
fmt
=
'
-o
'
,
label
=
'
simulation
'
)
ax2
.
set_ylabel
(
'
Resolution (%)
'
)
ax2
.
set_ylabel
(
'
Resolution (%)
'
)
ax2
.
set_xlabel
(
'
Gamma Energy (MeV)
'
)
ax2
.
set_xlabel
(
'
Gamma Energy (MeV)
'
)
ax2
.
set_xscale
(
'
log
'
)
ax2
.
set_xscale
(
'
log
'
)
ax2
.
legend
()
#plt.savefig('results/Energy_resolution.pdf')
#plt.savefig('results/Energy_resolution.pdf')
#plt.show()
plt
.
show
()
htower
=
[]
htower
=
[]
herr
=
[]
herr
=
[]
...
@@ -127,14 +168,14 @@ for i in range(6):
...
@@ -127,14 +168,14 @@ for i in range(6):
condition
=
theta
<=
3.5
condition
=
theta
<=
3.5
plt
.
title
(
f
'
Gamma Energy:
{
eng
}
MeV
'
)
plt
.
title
(
f
'
Gamma Energy:
{
eng
}
MeV
'
)
energy1
=
np
.
array
([
sum
(
item
)
if
(
item
!=
0
)
else
0
for
item
in
df
[
f
'
hcal_sim_energy_
{
eng
}
'
]
]
)
#df.eval(f'hcal_sim_energy_{eng}').apply(lambda row: sum(row))
energy1
=
df
[
f
'
hcal_sim_energy_
{
eng
}
'
]
.
astype
(
float
).
to_numpy
(
)
#df.eval(f'hcal_sim_energy_{eng}').apply(lambda row: sum(row))
hist
,
x
=
np
.
histogram
(
energy1
*
1000
,
bins
=
np
.
logspace
(
0
,
3
,
200
))
hist
,
x
=
np
.
histogram
(
energy1
*
1000
,
bins
=
np
.
logspace
(
0
,
3
,
200
))
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
plt
.
plot
(
x
,
hist
,
marker
=
'
o
'
,
label
=
"
HCal
"
)
plt
.
plot
(
x
,
hist
,
marker
=
'
o
'
,
label
=
"
HCal
"
)
hhits
.
append
(
len
(
energy1
[
energy1
!=
0
]))
hhits
.
append
(
len
(
energy1
[
energy1
!=
0
]))
condition1
=
energy1
!=
0
condition1
=
energy1
!=
0
hhits_cut
.
append
(
len
(
energy1
[
condition
&
condition1
])
/
len
(
condition
[
condition
==
True
]))
hhits_cut
.
append
(
len
(
energy1
[
condition
&
condition1
])
/
len
(
condition
[
condition
==
True
]))
energy
=
np
.
array
([
sum
(
item
)
if
(
item
!=
0
)
else
0
for
item
in
df
[
f
'
ecal_sim_energy_
{
eng
}
'
]
]
)
#df.eval(f'ecal_sim_energy_{eng}').apply(lambda row: sum(row))
energy
=
df
[
f
'
ecal_sim_energy_
{
eng
}
'
]
.
astype
(
float
).
to_numpy
(
)
#df.eval(f'ecal_sim_energy_{eng}').apply(lambda row: sum(row))
hist
,
x
=
np
.
histogram
(
energy
*
1000
,
bins
=
np
.
logspace
(
0
,
3
,
200
))
hist
,
x
=
np
.
histogram
(
energy
*
1000
,
bins
=
np
.
logspace
(
0
,
3
,
200
))
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
x
=
x
[
1
:]
/
2
+
x
[:
-
1
]
/
2
plt
.
plot
(
x
,
hist
,
marker
=
'
o
'
,
label
=
"
ECal
"
)
plt
.
plot
(
x
,
hist
,
marker
=
'
o
'
,
label
=
"
ECal
"
)
...
@@ -147,13 +188,18 @@ for i in range(6):
...
@@ -147,13 +188,18 @@ for i in range(6):
plt
.
xscale
(
'
log
'
)
plt
.
xscale
(
'
log
'
)
plt
.
xlim
(
1e0
,
1e3
)
plt
.
xlim
(
1e0
,
1e3
)
plt
.
xlabel
(
'
Energy (MeV)
'
)
plt
.
xlabel
(
'
Energy (MeV)
'
)
#plt.savefig('results/Energy_deposition.pdf')
#plt.savefig('results/Energy_deposition.pdf')
#
plt.show()
plt
.
show
()
fig4
,
ax
=
plt
.
subplots
(
2
,
1
,
sharex
=
True
,
gridspec_kw
=
{
'
height_ratios
'
:
[
2
,
1
]})
fig4
,
ax
=
plt
.
subplots
(
2
,
1
,
sharex
=
True
,
gridspec_kw
=
{
'
height_ratios
'
:
[
2
,
1
]})
plt
.
sca
(
ax
[
0
])
plt
.
sca
(
ax
[
0
])
plt
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
np
.
array
(
hmean
)
*
47.619
+
np
.
array
(
emean
),
label
=
'
HCal+ECal
'
,
fmt
=
'
-o
'
)
plt
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
np
.
array
(
hmean
)
*
47.619
+
np
.
array
(
emean
),
label
=
'
HCal
/sf
+ECal
'
,
fmt
=
'
-o
'
)
plt
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
emean
,
label
=
'
ECal
'
,
fmt
=
'
-o
'
)
plt
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
emean
,
label
=
'
ECal
'
,
fmt
=
'
-o
'
)
plt
.
legend
()
plt
.
legend
()
plt
.
yscale
(
'
log
'
)
plt
.
yscale
(
'
log
'
)
...
@@ -166,7 +212,7 @@ plt.ylabel('Fraction of energy\n deposited in Hcal (%)')
...
@@ -166,7 +212,7 @@ plt.ylabel('Fraction of energy\n deposited in Hcal (%)')
plt
.
xlabel
(
'
Truth Energy (MeV)
'
)
plt
.
xlabel
(
'
Truth Energy (MeV)
'
)
#plt.savefig('results/Energy_ratio_and_Leakage.pdf')
#plt.savefig('results/Energy_ratio_and_Leakage.pdf')
plt
.
tight_layout
()
plt
.
tight_layout
()
#
plt.show()
plt
.
show
()
fig5
=
plt
.
figure
()
fig5
=
plt
.
figure
()
plt
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
np
.
array
(
hhits
)
/
1000
*
100
,
label
=
'
HCal Hits
'
,
fmt
=
'
-o
'
)
plt
.
errorbar
(
np
.
array
(
Energy
)
*
1000
,
np
.
array
(
hhits
)
/
1000
*
100
,
label
=
'
HCal Hits
'
,
fmt
=
'
-o
'
)
...
@@ -183,7 +229,46 @@ plt.xlabel('Simulation Truth Gamma Energy (MeV)')
...
@@ -183,7 +229,46 @@ plt.xlabel('Simulation Truth Gamma Energy (MeV)')
plt
.
ylabel
(
'
Fraction of Events with non-zero energy (%)
'
)
plt
.
ylabel
(
'
Fraction of Events with non-zero energy (%)
'
)
#plt.savefig('results/Hits.pdf')
#plt.savefig('results/Hits.pdf')
plt
.
xscale
(
'
log
'
)
plt
.
xscale
(
'
log
'
)
#plt.show()
plt
.
show
()
fig6
,
ax
=
plt
.
subplots
(
2
,
3
,
figsize
=
(
20
,
10
))
fig6
.
suptitle
(
'
ZDC Clustering
'
)
fig6
.
tight_layout
(
pad
=
1.8
)
for
i
in
range
(
6
):
plt
.
sca
(
ax
[
i
//
3
,
i
%
3
])
eng
=
int
(
Energy
[
i
]
*
1000
)
x
=
df
[
f
'
par_x_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
y
=
df
[
f
'
par_y_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
z
=
df
[
f
'
par_z_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
x
,
z
=
rotateY
(
x
,
z
,
0.025
)
theta
=
np
.
arccos
(
z
/
np
.
sqrt
((
x
**
2
+
y
**
2
+
z
**
2
)))
*
1000
condition
=
theta
<=
3.5
plt
.
hist
(
df
[
f
'
ecal_reco_clusters_
{
eng
}
'
][
condition
],
bins
=
np
.
linspace
(
0
,
5
,
6
))
plt
.
xlabel
(
'
Number of Clusters
'
)
plt
.
title
(
f
'
Gamma Energy:
{
eng
}
MeV
'
)
plt
.
show
()
fig7
,
ax
=
plt
.
subplots
(
2
,
3
,
figsize
=
(
20
,
10
))
fig7
.
suptitle
(
'
ZDC Towering in Clusters
'
)
fig7
.
tight_layout
(
pad
=
1.8
)
for
i
in
range
(
6
):
plt
.
sca
(
ax
[
i
//
3
,
i
%
3
])
eng
=
int
(
Energy
[
i
]
*
1000
)
x
=
df
[
f
'
par_x_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
y
=
df
[
f
'
par_y_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
z
=
df
[
f
'
par_z_
{
eng
}
'
].
astype
(
float
).
to_numpy
()
x
,
z
=
rotateY
(
x
,
z
,
0.025
)
theta
=
np
.
arccos
(
z
/
np
.
sqrt
((
x
**
2
+
y
**
2
+
z
**
2
)))
*
1000
condition
=
theta
<=
3.5
plt
.
hist
(
df
[
f
'
ecal_reco_nhits_
{
eng
}
'
][
condition
],
bins
=
np
.
linspace
(
0
,
max
(
df
[
f
'
ecal_reco_nhits_
{
eng
}
'
][
condition
]),
max
(
df
[
f
'
ecal_reco_nhits_
{
eng
}
'
][
condition
])
+
1
))
plt
.
xlabel
(
'
Number of tower in Clusters
'
)
plt
.
title
(
f
'
Gamma Energy:
{
eng
}
MeV
'
)
plt
.
show
()
#pdfs = ['results/Energy_reconstruction_cluster.pdf','results/Energy_resolution.pdf','results/Energy_deposition.pdf','results/Energy_ratio_and_Leakage.pdf','results/Hits.pdf']
#pdfs = ['results/Energy_reconstruction_cluster.pdf','results/Energy_resolution.pdf','results/Energy_deposition.pdf','results/Energy_ratio_and_Leakage.pdf','results/Hits.pdf']
with
PdfPages
(
f
'
results/
{
os
.
environ
[
"
DETECTOR_CONFIG
"
]
}
/zdc_lyso/plots.pdf
'
)
as
pdf
:
with
PdfPages
(
f
'
results/
{
os
.
environ
[
"
DETECTOR_CONFIG
"
]
}
/zdc_lyso/plots.pdf
'
)
as
pdf
:
...
@@ -192,4 +277,5 @@ with PdfPages(f'results/{os.environ["DETECTOR_CONFIG"]}/zdc_lyso/plots.pdf') as
...
@@ -192,4 +277,5 @@ with PdfPages(f'results/{os.environ["DETECTOR_CONFIG"]}/zdc_lyso/plots.pdf') as
pdf
.
savefig
(
fig3
)
pdf
.
savefig
(
fig3
)
pdf
.
savefig
(
fig4
)
pdf
.
savefig
(
fig4
)
pdf
.
savefig
(
fig5
)
pdf
.
savefig
(
fig5
)
pdf
.
savefig
(
fig6
)
pdf
.
savefig
(
fig7
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment