Skip to content
Snippets Groups Projects
Unverified Commit 03a6adcd authored by Barak Schmookler's avatar Barak Schmookler Committed by GitHub
Browse files

Benchmark for low-energy photons in the ZDC LYSO (#37)

parent f6ea4ebf
No related branches found
No related tags found
No related merge requests found
Pipeline #98609 passed with warnings
......@@ -135,6 +135,7 @@ include:
- local: 'benchmarks/barrel_ecal/config.yml'
- local: 'benchmarks/barrel_hcal/config.yml'
- local: 'benchmarks/zdc/config.yml'
- local: 'benchmarks/zdc_lyso/config.yml'
- local: 'benchmarks/material_maps/config.yml'
- local: 'benchmarks/material_scan/config.yml'
- local: 'benchmarks/pid/config.yml'
......
......@@ -3,7 +3,7 @@ include: "benchmarks/barrel_ecal/Snakefile"
include: "benchmarks/ecal_gaps/Snakefile"
include: "benchmarks/material_scan/Snakefile"
include: "benchmarks/tracking_performances/Snakefile"
include: "benchmarks/zdc_lyso/Snakefile"
rule fetch_epic:
output:
......
Detector Benchmark for LYSO ZDC
===============================
## Overview
This benchmark generates events with single low-energy (5 MeV - 1 GeV) photons. The photons are generated with angles of 0-5.24 mRad with respect to the proton/ion beam direction. The benchmark creates performance plots of the LYSO ZDC acceptance and energy reconstruction resolution.
## Contacts
[JiaJun Huang](jhuan328@ucr.edu)
[Barak Schmookler](baraks@ucr.edu)
import os
rule ecal_lyso_sim_hepmc:
input:
script = "benchmarks/zdc_lyso/gen_particles.cxx",
output:
hepmcfile="data/{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.hepmc",
log:
"data/{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.hepmc.log",
params:
num_events=1000,
shell:
"""
root -l -b -q '{input.script}({params.num_events}, "{output.hepmcfile}", "{wildcards.PARTICLE}", {wildcards.THETA_MIN}, {wildcards.THETA_MAX}, 0, 360, {wildcards.BEAM_ENERGY})'
"""
rule ecal_lyso_sim:
input:
hepmcfile="data/{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.hepmc",
warmup="warmup/{DETECTOR_CONFIG}.edm4hep.root",
output:
"sim_output/zdc_lyso/{DETECTOR_CONFIG}_{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.edm4hep.root",
log:
"sim_output/zdc_lyso/{DETECTOR_CONFIG}_{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.edm4hep.root.log",
params:
num_events=1000,
shell:
"""
npsim \
--runType batch \
-v WARNING \
--compactFile $DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml \
--numberOfEvents {params.num_events} \
--inputFiles {input.hepmcfile} \
--outputFile {output}
"""
rule ecal_lyso_reco:
input:
"sim_output/zdc_lyso/{DETECTOR_CONFIG}_{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.edm4hep.root",
output:
"sim_output/zdc_lyso/{DETECTOR_CONFIG}_{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.eicrecon.tree.edm4eic.root",
log:
"sim_output/zdc_lyso/{DETECTOR_CONFIG}_{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.eicrecon.tree.edm4eic.root.log",
shell:
"""
eicrecon -Ppodio:output_collections=HcalFarForwardZDCRawHits,HcalFarForwardZDCRecHits,HcalFarForwardZDCClusters,EcalFarForwardZDCRawHits,EcalFarForwardZDCRecHits,EcalFarForwardZDCClusters,MCParticles {input}
mv podio_output.root {output}
"""
rule zdc_analysis:
input:
expand("sim_output/zdc_lyso/{{DETECTOR_CONFIG}}_{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.eicrecon.tree.edm4eic.root",
PARTICLE=["gamma"],
BEAM_ENERGY=["0.005", "0.01", "0.05", "0.1", "0.5", "1.0"],
THETA_MIN=["0"],
THETA_MAX=["0.3"]),
script="benchmarks/zdc_lyso/analysis/analysis.py",
output:
"results/{DETECTOR_CONFIG}/zdc_lyso/plots.pdf",
shell:
"""
python {input.script}
"""
# Examples of invocation
rule create_all_hepmc:
input:
expand("data/{PARTICLE}_{BEAM_ENERGY}GeV_theta_{THETA_MIN}deg_thru_{THETA_MAX}deg.hepmc",
PARTICLE=["gamma"],
BEAM_ENERGY=["0.005", "0.01", "0.05", "0.1", "0.5", "1.0"],
THETA_MIN=["0"],
THETA_MAX=["0.3"])
rule run_all_locally:
input:
"results/" + os.environ["DETECTOR_CONFIG"] + "/zdc_lyso/plots.pdf",
message:
"See output in {input[0]}"
import numpy as np
import matplotlib.pyplot as plt
import mplhep as hep
import uproot
import pandas as pd
import os
from scipy.optimize import curve_fit
from matplotlib.backends.backend_pdf import PdfPages
plt.figure()
hep.set_style(hep.style.CMS)
hep.set_style("CMS")
def gaussian(x, amp, mean, sigma):
return amp * np.exp( -(x - mean)**2 / (2*sigma**2) )
def rotateY(xdata, zdata, angle):
s = np.sin(angle)
c = np.cos(angle)
rotatedz = c*zdata - s*xdata
rotatedx = s*zdata + c*xdata
return rotatedx, rotatedz
Energy = [0.005, 0.01, 0.05, 0.1, 0.5, 1.0]
q0 = [5, 10, 40, 90, 400, 700]
q1 = [0.5, 0.5, 0.9, 5, 10, 20]
df = pd.DataFrame({})
for eng in Energy:
tree = uproot.open(f'sim_output/zdc_lyso/{os.environ["DETECTOR_CONFIG"]}_gamma_{eng}GeV_theta_0deg_thru_0.3deg.eicrecon.tree.edm4eic.root')['events']
ecal_reco_energy = tree['EcalFarForwardZDCClusters/EcalFarForwardZDCClusters.energy'].array()
#hcal_reco_energy = tree['HcalFarForwardZDCClusters/HcalFarForwardZDCClusters.energy'].array()
tree = uproot.open(f'sim_output/zdc_lyso/{os.environ["DETECTOR_CONFIG"]}_gamma_{eng}GeV_theta_0deg_thru_0.3deg.edm4hep.root')['events']
ecal_sim_energy = tree['EcalFarForwardZDCHits/EcalFarForwardZDCHits.energy'].array()
hcal_sim_energy = tree['HcalFarForwardZDCHits/HcalFarForwardZDCHits.energy'].array()
par_x = tree['MCParticles/MCParticles.momentum.x'].array()[:,2]
par_y = tree['MCParticles/MCParticles.momentum.y'].array()[:,2]
par_z = tree['MCParticles/MCParticles.momentum.z'].array()[:,2]
eng = int(eng*1000)
ecal_reco_energy = pd.DataFrame({f'ecal_reco_energy_{eng}': np.array(ecal_reco_energy.tolist(), dtype=object)})
#hcal_reco_energy = pd.DataFrame({f'hcal_reco_energy_{eng}': np.array(hcal_reco_energy.tolist(), dtype=object)})
ecal_sim_energy = pd.DataFrame({f'ecal_sim_energy_{eng}': np.array(ecal_sim_energy.tolist(), dtype=object)})
hcal_sim_energy = pd.DataFrame({f'hcal_sim_energy_{eng}': np.array(hcal_sim_energy.tolist(), dtype=object)})
par_x = pd.DataFrame({f'par_x_{eng}': np.array(par_x.tolist(), dtype=object)})
par_y = pd.DataFrame({f'par_y_{eng}': np.array(par_y.tolist(), dtype=object)})
par_z = pd.DataFrame({f'par_z_{eng}': np.array(par_z.tolist(), dtype=object)})
df = pd.concat([df,ecal_reco_energy,ecal_sim_energy,hcal_sim_energy,par_x,par_y,par_z],axis=1)
mu = []
sigma = []
resolution = []
fig1, ax = plt.subplots(3,2,figsize=(20,10))
#fig1.suptitle('ZDC ECal Cluster Energy Reconstruction')
plt.tight_layout()
for i in range(6):
plt.sca(ax[i%3,i//3])
eng = int(Energy[i]*1000)
plt.title(f'Gamma Energy: {eng} MeV')
temp = np.array([sum(item) if (item != 0) else 0 for item in df[f'ecal_reco_energy_{eng}']])
hist, x = np.histogram(np.array(temp)*1000,bins=30)
x = x[1:]/2 + x[:-1]/2
plt.errorbar(x,hist,yerr=np.sqrt(hist),fmt='-o')
temp = np.array([item[0] for item in df[f'ecal_reco_energy_{eng}'] if item])
hist, x = np.histogram(np.array(temp)*1000,bins=30)
x = x[1:]/2 + x[:-1]/2
coeff, covar = curve_fit(gaussian,x,hist,p0=(200,q0[i],q1[i]),maxfev = 80000)
plt.plot(np.linspace(coeff[1]-5*coeff[2],coeff[1]+5*coeff[2],50),gaussian(np.linspace(coeff[1]-5*coeff[2],coeff[1]+5*coeff[2],50),*coeff)
,label = f'$\mu$ = {coeff[1]:.3f} $\pm$ {covar[1][1]:.3f}\n$\sigma$ = {np.abs(coeff[2]):.3f} $\pm$ {covar[2][2]:.3f}\nResolution = {np.abs(coeff[2])*100/coeff[1]:.2f}%')
plt.xlabel('Energy (MeV)')
plt.legend()
mu.append(coeff[1])
sigma.append(coeff[2])
resolution.append(np.abs(coeff[2])*100/coeff[1])
#plt.savefig('results/Energy_reconstruction_cluster.pdf')
#plt.show()
fig2, (ax1,ax2) = plt.subplots(2,1,figsize=(15,10),sharex=True)
plt.tight_layout()
# Plot data on primary axis
ax1.scatter(np.array(Energy)*1000, mu, c='b')
ax1.plot([4.5,1000],[4.5,1000],c='black',label='x=y')
ax1.set_ylabel('Reconstructed Energy (MeV)')
ax1.set_yscale('log')
ax1.legend()
ax1.set_title('ECal Craterlake Cluster Energy Reconstruction')
ax2.plot(np.array(Energy)*1000, resolution, c='r')
ax2.scatter(np.array(Energy)*1000, resolution, c='r')
ax2.set_ylabel('Resolution (%)')
ax2.set_xlabel('Gamma Energy (MeV)')
ax2.set_xscale('log')
#plt.savefig('results/Energy_resolution.pdf')
#plt.show()
htower = []
herr = []
hmean = []
hhits = []
hhits_cut = []
emean = []
ehits = []
etower = []
eerr = []
ehits_cut = []
fig3, ax = plt.subplots(2,3,figsize=(20,10))
fig3.suptitle('ZDC Simulation Energy Reconstruction')
for i in range(6):
plt.sca(ax[i//3,i%3])
eng = int(Energy[i]*1000)
x = df[f'par_x_{eng}'].astype(float).to_numpy()
y = df[f'par_y_{eng}'].astype(float).to_numpy()
z = df[f'par_z_{eng}'].astype(float).to_numpy()
x, z = rotateY(x,z, 0.025)
theta = np.arccos(z/np.sqrt((x**2+y**2+z**2)))*1000
condition = theta <= 3.5
plt.title(f'Gamma Energy: {eng} MeV')
energy1 = np.array([sum(item) if (item != 0) else 0 for item in df[f'hcal_sim_energy_{eng}']])#df.eval(f'hcal_sim_energy_{eng}').apply(lambda row: sum(row))
hist, x = np.histogram(energy1*1000,bins=np.logspace(0,3,200))
x = x[1:]/2 + x[:-1]/2
plt.plot(x,hist,marker='o',label="HCal")
hhits.append(len(energy1[energy1!=0]))
condition1 = energy1!=0
hhits_cut.append(len(energy1[condition & condition1])/len(condition[condition==True]))
energy = np.array([sum(item) if (item != 0) else 0 for item in df[f'ecal_sim_energy_{eng}']])#df.eval(f'ecal_sim_energy_{eng}').apply(lambda row: sum(row))
hist, x = np.histogram(energy*1000,bins=np.logspace(0,3,200))
x = x[1:]/2 + x[:-1]/2
plt.plot(x,hist,marker='o',label="ECal")
emean.append(sum(energy[energy!=0])*1000/len(energy[energy!=0]))
hmean.append(sum(energy1[energy!=0])*1000/len(energy[energy!=0]))
condition1 = energy!=0
ehits_cut.append(len(energy[condition & condition1])/len(condition[condition==True]))
ehits.append(len(energy[energy!=0]))
plt.legend()
plt.xscale('log')
plt.xlim(1e0,1e3)
plt.xlabel('Energy (MeV)')
#plt.savefig('results/Energy_deposition.pdf')
#plt.show()
fig4, ax = plt.subplots(2,1,sharex=True,gridspec_kw={'height_ratios': [2,1]})
plt.sca(ax[0])
plt.errorbar(np.array(Energy)*1000,np.array(hmean)*47.619+np.array(emean),label='HCal+ECal',fmt='-o')
plt.errorbar(np.array(Energy)*1000,emean,label='ECal',fmt='-o')
plt.legend()
plt.yscale('log')
plt.xscale('log')
plt.ylabel('Simulation Energy (MeV)')
plt.sca(ax[1])
plt.errorbar(np.array(Energy)*1000,(1 - np.array(emean)/(np.array(hmean)*47.619+np.array(emean)))*100,label='Total/ECal',fmt='-o')
plt.legend()
plt.ylabel('Fraction of energy\n deposited in Hcal (%)')
plt.xlabel('Truth Energy (MeV)')
#plt.savefig('results/Energy_ratio_and_Leakage.pdf')
plt.tight_layout()
#plt.show()
fig5 = plt.figure()
plt.errorbar(np.array(Energy)*1000,np.array(hhits)/1000*100,label='HCal Hits',fmt='-o')
plt.errorbar(np.array(Energy)*1000,np.array(ehits)/1000*100,label='ECal Hits',fmt='-o')
#plt.errorbar(np.array(Energy)*1000,np.array(hhits)/np.array(ehits)*100,label='HCal / ECal',fmt='-o',c='b')
plt.errorbar(np.array(Energy)*1000,np.array(hhits_cut)*100,label='HCal Hits with 3.5 mRad cut',fmt='-^')
plt.errorbar(np.array(Energy)*1000,np.array(ehits_cut)*100,label='ECal Hits with 3.5 mRad cut',fmt='-^')
#plt.errorbar(np.array(Energy)*1000,np.array(hhits_cut)/np.array(ehits_cut)*100,label='HCal / ECal with 3.5 mRad cut',fmt='-^',c='b')
### 3mrad cuts
plt.legend()
plt.xlabel('Simulation Truth Gamma Energy (MeV)')
plt.ylabel('Fraction of Events with non-zero energy (%)')
#plt.savefig('results/Hits.pdf')
plt.xscale('log')
#plt.show()
#pdfs = ['results/Energy_reconstruction_cluster.pdf','results/Energy_resolution.pdf','results/Energy_deposition.pdf','results/Energy_ratio_and_Leakage.pdf','results/Hits.pdf']
with PdfPages(f'results/{os.environ["DETECTOR_CONFIG"]}/zdc_lyso/plots.pdf') as pdf:
pdf.savefig(fig1)
pdf.savefig(fig2)
pdf.savefig(fig3)
pdf.savefig(fig4)
pdf.savefig(fig5)
sim:zdc_lyso:
extends: .det_benchmark
stage: simulate
script:
- snakemake --cores 1 run_all_locally
retry:
max: 2
when:
- runner_system_failure
collect_results:zdc_lyso:
extends: .det_benchmark
stage: collect
needs:
- "sim:zdc_lyso"
script:
- ls -lrht
#include "HepMC3/GenEvent.h"
#include "HepMC3/ReaderAscii.h"
#include "HepMC3/WriterAscii.h"
#include "HepMC3/Print.h"
#include "TRandom3.h"
#include "TVector3.h"
#include <iostream>
#include <random>
#include <cmath>
#include <math.h>
#include <TMath.h>
#include <TDatabasePDG.h>
#include <TParticlePDG.h>
using namespace HepMC3;
// Generate single electron as input to the Insert simulation.
// --
// We generate events with a constant polar angle with respect to
// the proton direction and then rotate so that the events are given
// in normal lab coordinate system
// --
void gen_particles(
int n_events = 10,
const char* out_fname = "gen_particles.hepmc",
TString particle_name = "e-",
double th_min = 3., // Minimum polar angle, in degrees
double th_max = 3., // Maximum polar angle, in degrees
double phi_min = 0., // Minimum azimuthal angle, in degrees
double phi_max = 360., // Maximum azimuthal angle, in degrees
double p = 10., // Momentum in GeV/c
int dist = 0 //Momentum distribution: 0=fixed, 1=uniform, 2=Gaussian
)
{
WriterAscii hepmc_output(out_fname);
int events_parsed = 0;
GenEvent evt(Units::GEV, Units::MM);
// Random number generator
TRandom3 *r1 = new TRandom3(0); //Use time as random seed
// Getting generated particle information
TDatabasePDG *pdg = new TDatabasePDG();
TParticlePDG *particle = pdg->GetParticle(particle_name);
const double mass = particle->Mass();
const int pdgID = particle->PdgCode();
for (events_parsed = 0; events_parsed < n_events; events_parsed++) {
//Set the event number
evt.set_event_number(events_parsed);
// FourVector(px,py,pz,e,pdgid,status)
// type 4 is beam
// pdgid 11 - electron
// pdgid 111 - pi0
// pdgid 2212 - proton
GenParticlePtr p1 =
std::make_shared<GenParticle>(FourVector(0.0, 0.0, 10.0, 10.0), 11, 4);
GenParticlePtr p2 = std::make_shared<GenParticle>(
FourVector(0.0, 0.0, 0.0, 0.938), 2212, 4);
// Define momentum with respect to proton direction
double phi = r1->Uniform(phi_min*TMath::DegToRad(),phi_max*TMath::DegToRad());
double th = r1->Uniform(th_min*TMath::DegToRad(),th_max*TMath::DegToRad());
//Total momentum distribution
double pevent = -1;
if(dist==0){ //fixed
pevent = p;
}
else if(dist==1){ //Uniform: +-50% variation
pevent = p*(1. + r1->Uniform(-0.5,0.5) );
}
else if(dist==2){ //Gaussian: Sigma = 0.1*mean
while(pevent<0) //Avoid negative values
pevent = r1->Gaus(p,0.1*p);
}
double px = pevent * std::cos(phi) * std::sin(th);
double py = pevent * std::sin(phi) * std::sin(th);
double pz = pevent * std::cos(th);
TVector3 pvec(px,py,pz);
//Rotate to lab coordinate system
double cross_angle = -25./1000.; //in Rad
TVector3 pbeam_dir(sin(cross_angle),0,cos(cross_angle)); //proton beam direction
pvec.RotateY(-pbeam_dir.Theta()); // Theta is returned positive, beam in negative X
// type 1 is final state
// pdgid 11 - electron 0.510 MeV/c^2
GenParticlePtr p3 = std::make_shared<GenParticle>(
FourVector(
pvec.X(), pvec.Y(), pvec.Z(),
sqrt(pevent*pevent + (mass * mass))),
pdgID, 1);
//If wanted, set non-zero vertex
double vx = 0.;
double vy = 0.;
double vz = 0.;
double vt = 0.;
GenVertexPtr v1 = std::make_shared<GenVertex>();
evt.shift_position_by(FourVector(vx, vy, vz, vt));
v1->add_particle_in(p1);
v1->add_particle_in(p2);
v1->add_particle_out(p3);
evt.add_vertex(v1);
if (events_parsed == 0) {
std::cout << "First event: " << std::endl;
Print::listing(evt);
}
hepmc_output.write_event(evt);
if (events_parsed % 100 == 0) {
std::cout << "Event: " << events_parsed << std::endl;
}
evt.clear();
}
hepmc_output.close();
std::cout << "Events parsed and written: " << events_parsed << std::endl;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment