COSY INFINITY
Version 8.1
User’s Guide and

Reference Manual *

M. Berz and K. Makino'
Department of Physics and Astronomy
Michigan State University
East Lansing, MI 48824

May, 2001
Revised in October, 2002

Abstract

This is a reference manual for the arbitrary order beam physics code COSY IN-
FINITY. It is current as of October 13, 2002. COSY INFINITY is a powerful new
generation code for the study and design of beam physics systems including accel-
erators, spectrometers, beamlines, electron microscopes, and glass optical systems.
At its core it is using differential algebraic (DA) methods, which allow a systematic
calculation of arbitrary order effects of arbitrary particle optical elements. At the
same time, it allows the computation of dependences on system parameters, which
is often important and can also be used for fitting.

COSY INFINITY has a full structured object oriented language environment.
This provides a simple interface for the casual user. At the same time, it offers the
demanding user a very flexible and powerful tool for the study and design of systems.
Elaborate optimizations are easily customized to the problem. The inclusion of new
particle optical elements is straightforward.

COSY INFINITY provides a powerful environment for efficient utilization of DA
techniques. The power and generality of the environment is perhaps best demon-
strated by the fact that all the physics routines of COSY INFINITY are written in
its own input language.

Altogether, the uniqueness of COSY lies in the ability to handle high order
maps, and the ability to compute maps of arbitrary systems. Furthermore, its
powerful work environment adopts to any conceivable problem. Its interactive,
flexible graphics helps visualize even complicated connections between quantities.

“Supported in part by the U.S. Department of Energy and the Alfred P. Sloan Foundation.
fCurrently at University of Illinois at Urbana-Champaign, Illinois, USA (makino@uiuc.edu).

2 CONTENTS

Contents
1 Before Using COSY INFINITY 5
1.1 User’s Agreement e 5
1.2 How to Obtain Help and to Give Feedback 5
1.3 How to Install the Code 6
1.3.1 Standard UNIX systems 7
1.3.2 VAX/Open VMS systems 7
1.3.3 Windows PC L 8
1.3.4 GT77systems (Linux) 8
1.35 HPsystems 9
1.3.6 IBM Mainframes oL 9
1.3.7 CRAY . . . 10
1.3.8 Possible Memory Limitations 10
1.4 How to Avoid Reading This Manual 10
1.4.1 Syntax Changes 11
2 What is COSY INFINITY 12
2.1 COSY'’s Algorithms and their Implementation 12
2.2 The User Interface L. 13
3 Computing Systems with COSY 15
3.1 General Properties of the COSY Language Environment 15
3.2 Control Commands 15
3.2.1 The Coordinates 16
3.2.2 Defining the Beam 17
3.2.3 The Computation of Maps 18
3.2.4 The Computation of Trajectories 20

3.2.5 Plotting System and Trajectories 22

CONTENTS

3.3 Supported Elements
3.3.1 Multipoles.
3.3.2 Bending Elements
3.3.3 Wien Filters
3.3.4 Wigglers and Undulators
3.3.5 Cavities
3.3.6 Cylindrical Electromagnetic Lenses
3.3.7 Fringe Fields
3.3.8 General Particle Optical Elements
3.3.9 Glass Lenses and Mirrors

3.4 Lattice Converters e
341 MAD Input
342 SXFlInput

3.5 Misalignments.

4 Analyzing Systems with COSY

4.1 Image Aberrations

4.2 Analysis of Spectrographs L.

4.3 Analysisof Rings

4.4 Repetitive Tracking Lo Lo L

4.5 Symplectic Representations 0oL

5 Examples

5.1 A Simple Sequence of Elements

5.2 Maps with Knobs o

5.3 Grouping of Elementso L

5.4 Optimization

5.5 Normal Form, Tune Shifts and Twiss Parameters

5.6 Repetitive Tracking o L oL

23
24
25
27
28
29
29
31
39
42
43
43
44
44

46
46
46
48
50
ol

4 CONTENTS

5.7 Introducing New Elements 62
5.8 Introducing New Features 63
66

6 Acknowledgements

1 Before Using COSY INFINITY

1.1 User’s Agreement

COSY INFINITY can be obtained from M. Berz under the following conditions.

Users are requested not to make the code available to others, but ask them to obtain
it from us. We maintain a list of users to be able to send out regular updates, which
will also include features supplied by other users.

The Fortran portions and the high-level COSY language portions of the code should
not be modified without our consent. This does not include the addition of new optimiz-
ers and new graphics drivers as discussed in [1, Optimization and Graphics]; however, we
would like to receive copies of new routines for possible inclusion in the master version
of the code.

Though we do our best to keep the code free of errors and hope that it is so now, we
do not mind being convinced of the contrary and ask users to report any errors. Users
are also encouraged to make suggestions for upgrades, or send us their tools written in
the COSY language.

If the user thinks the code has been useful, we would like to see this acknowledged
by referencing some of the papers related to the code, for example [2]. Finally, we do
neither guarantee correctness nor usefulness of this code, and we are not liable for any
damage, material or emotional, that results from its use.

By using the code COSY INFINITY, users agree to be bound by the above condi-
tions.

1.2 How to Obtain Help and to Give Feedback

While this manual is intended to describe the use of the code as completely as possible,
there will probably arise questions that this manual cannot answer. Furthermore, we
encourage users to contact us with any suggestions, criticism, praise, or other feedback
they may have. We also appreciate receiving COSY source code for utilities users have
written and find helpful.

We prefer to communicate by www or electronic mail. We can be contacted as
follows:

Prof. Martin Berz

Department of Physics and Astronomy
Michigan State University

East Lansing, MI 48824, USA

Phone: 1-517-355-9200 ex.2130

6 1 BEFORE USING COSY INFINITY

FAX: 1-313-731-0313 (USA)

or 49-89-9218-5422 (Europe/Germany)
email: berzQmsu.edu
http://cosy.pa.msu.edu/

1.3 How to Install the Code

The code for COSY INFINITY consists of the following files:

e FOXY.FOP

DAFOX.FOP

FOXFIT.FOP

FOXGRAF.FOP

COSY.FOX

All the system files of COSY INFINITY are currently distributed via the WWW;
http://cosy.pa.msu.edu/.

Four files, FOXY.FOP, DAFOX.FOP, FOXFIT.FOP and FOXGRAF.FOP, are writ-
ten in Fortran and have to be compiled and linked. FOXY.FOP is the compiler and
executer of the COSY language. DAFOX.FOP contains the routines to perform op-
erations with objects, in particular the differential algebraic routines. FOXFIT.FOP
contains the package of nonlinear optimizers. FOXGRAF.FOP contains the available
graphics output drivers, which are listed in [1, Supported Graphics Drivers].

In FOXGRAF.FOP, the PGPLOT graphics driver routines are contained as standard
graphics output in COSY INFINITY. The PGPLOT graphics library is freely available
from the web page http://astro.caltech.edu/~tjp/pgplot/, and can be installed to VMS,
UNIX, Windows 95/98/NT, etc (see also [1, Supported Graphics Drivers]). See page 8
for an example makefile for a Linux system. If not desired, the PGPLOT driver routines
in FOXGRAF.FOP should be removed and replaced by the provided dummy routines.
Some of the other popular graphics drivers, direct PostScript output and direct KTEX
output, are self contained in FOXGRAF.FOP and don’t require to link to other libraries.

COSY.FOX contains all the physics of COSY INFINITY, and is written in COSY
INFINITY’s own input language. It has to be compiled by FOXY as part of the instal-
lation process. For this purpose, FOXY has to be run with the input file COSY.

All the Fortran parts of COSY INFINITY are written in standard ANSI Fortran
77. However, certain aspects of Fortran 77 are still system dependent; in particular,

1.3 How to Install the Code 7

this concerns file handling. All system dependent features of COSY INFINITY are
coded for various machines, including VAX/VMS, Windows PC, UNIX, Linux, HP,
IBM mainframes, and CRAY (HP, IBM mainframes, CRAY are not actively maintained
at this time).

The type of machine can be changed by selectively adding and removing comment
identifiers from certain lines. To go from UNIX to VAX, for example, all lines that have
the identifier *UNIX somewhere in columns 73 through 80 have to be commented, and all
lines that have the comment *VAX in columns 1 through 5 have to be un-commented.
To automate this process, there is a utility Fortran program called VERSION that
performs all these changes automatically. Should there be additional problems, a short
message to us would be appreciated in order to facilitate life for future users on the same
system.

1.3.1 Standard UNIX systems

The Fortran source is by default compatible with standard UNIX systems. In general,
the compiler optimization option is not recommended, because it sometimes causes
trouble in handling the COSY syntax.

On SunOS/Solaris systems, compilation should be performed with the compiler op-
tion “-Bstatic”.

If PGPLOT graphics is desired, the code has to be linked with the local PGPLOT

libraries.

Currently as of October 13, 2002, the GKS graphics routines are commented out. If
GKS graphics is desired, activate the GKS routines in foxgraf.f using the small program
VERSION as described in [1, Supported Graphics Drivers]. The code has to be linked
to the local GKS object code. On workstations, the graphics can be utilized under
Xwindows and Tektronix. See [1, Supported Graphics Drivers].

1.3.2 VAX/Open VMS systems

On VAX/Open VMS systems, all lines that contain the string *VAX in columns 1 to 5
should be un-commented, and all the lines containing the string *UNIX in columns 73
to 80 should be commented. This can be done using the small program VERSION; at
first, adjust VERSION manually so it performs file handling properly.

Compilation should be done without any options. In order to link and run the code, it
may be necessary to increase certain working set parameters. The following parameters,
generated with the VAX/Open VMS command SHOW WORK, are sufficient:

Working Set (pagelets) /Limit=1408 /Quota=10240 /Extent=128000

8 1 BEFORE USING COSY INFINITY

Adjustment enabled Authorized Quota=10240 Authorized Extent=128000

Working Set (8Kb pages) /Limit=88 /Quota=640 /Extent=8000
Authorized Quota=640 Authorized Extent=8000

If PGPLOT graphics is desired, the code has to be linked with the local PGPLOT
libraries.

Currently as of October 13, 2002, the GKS graphics routines are commented out. If
GKS graphics is desired, activate the GKS routines in FOXGRAF.FOP using the small
program VERSION as described in [1, Supported Graphics Drivers]. The code has to
be linked with the local GKS object code. It can be executed on workstations with
UIS graphics, with Xwindows graphics, and on terminals supporting Tektronix. See [1,
Supported Graphics Drivers].

1.3.3 Windows PC

An executable program for Microsoft Windows 95/98/NT by the DIGITAL Visual For-
tran compiler 5.0 linked with the PGPLOT graphics libraries is available.

In case compilation and linking on local machines are needed, the four Fortran source
files have to be adjusted; all lines that contain the string *PC in columns 1 to 3 should
be un-commented, and all the lines containing the string *UNIX in columns 73 to 80
should be commented. This can be done using the small program VERSION; at first,
adjust VERSION manually so it performs file handling properly.

If PGPLOT graphics is desired, the code has to be linked with the local PGPLOT

libraries.

If VGA graphics packages with Lahey F77/F90 compilers are desired, FOXGRAF.FOP
has to be adjusted; see [1, Supported Graphics Drivers].

1.3.4 G77 systems (Linux)

On systems that use the GNU Fortran 77 compiler g77 and the appropriate GNU li-
braries, all lines that contain the string *G77 in columns 1 to 4 should be un-commented,
and all the lines containing the string *UNIX in columns 73 to 80 should be commented.
This can be done using the small program VERSION; at first, adjust VERSION man-
ually so it performs file handling properly.

The following is an example “Makefile” to compile and link the program with the
PGPLOT graphics libraries. Check the documentation of the GNU Fortran 77 compiler
about platform specific options. In general, the compiler optimization option is not
recommended, because it sometimes causes trouble in handling the COSY syntax.

1.3 How to Install the Code 9

FC=g77 -Wall

FFLAGS=

LIBS=-L/usr/local/pgplot -lpgplot -L/usr/X11R6/1ib -1X11
0BJ = dafox.o foxy.o foxfit.o foxgraf.o

all: $(0BJ)
$(FC) -o cosy $(0BJ) $(LIBS)

1.3.5 HP systems

On HP systems, all lines that contain the string *HP in columns 1 to 3 should be un-
commented, and all the lines containing the string *UNIX in columns 73 to 80 should
be commented. This can be done using the small program VERSION; at first, adjust
VERSION manually so it performs file handling properly.

Compilation should be performed with the compiler option setting static memory
handling.

If PGPLOT graphics is desired, the code has to be linked with the local PGPLOT

libraries.

Currently as of October 13, 2002, the GKS graphics routines are commented out. If
GKS graphics is desired, activate the GKS routines in foxgraf.f using the small program
VERSION as described in [1, Supported Graphics Drivers]. The code should be linked
to the local GKS object code. GKS on HP systems usually requires the use of INCLUDE
files in the beginning of FOXGRAF.FOP as well as in all subroutines. These INCLUDE
statements are contained in the HP version, but they have to be moved from column 6 to
column 1, and possibly the address of the libraries has to be changed.On workstations,
the graphics can be utilized under Xwindows and Tektronix. See [1, Supported Graphics
Drivers].

The last versions of COSY INFINITY have not been explicitly tested on HP systems.
Additional changes may be necessary.

1.3.6 IBM Mainframes

On IBM mainframe systems, all lines that contain the string *IBM in columns 1 to 4
should be un-commented, and all the lines containing the string *UNIX in columns 73
to 80 should be commented. This can be done using the small program VERSION; at
first, adjust VERSION manually so it performs file handling properly.

The last versions of COSY INFINITY have not been explicitly tested on IBM Main-
frames. Additional changes may be necessary.

10 1 BEFORE USING COSY INFINITY

1.3.7 CRAY

The installation to CRAY machines with UNIX operating systems should follow the
instruction in subsection 1.3.1 on Standard UNIX systems.

On CRAY machines with the original CRAY operating systems, all lines that contain
the string *CRAY in columns 1 to 5 should be un-commented, and all the lines containing
the string *UNIX in columns 73 to 80 should be commented. This can be done using
the small program VERSION; at first, adjust VERSION manually so it performs file
handling properly.

The last versions of COSY INFINITY have not been explicitly tested on CRAYs.
Additional changes may be necessary.

1.3.8 Possible Memory Limitations

Being based on Fortran, which does not allow dynamic memory allocation, COSY IN-
FINITY has its own memory management within a large Fortran COMMON block.
On machines supporting virtual memory, the size of this block should not present any
problem. On some other machines, it may be necessary to scale down the length. This
can be achieved by changing the parameter LMEM at all occurrences in FOXY.FOP,
DAFOX.FOP and FOXGRAF.FOP to a lower value. Values of around 500 000 should
be enough for many applications, which brings total system memory down to about 8
Megabytes.

In the case of limited memory resources, it may also be necessary to scale down the
lengths of certain variables in COSY.FOX to lower levels. In particular, this holds for
the variables MAP and MSC which are defined at the very beginning of COSY.FOX.
Possible values for the length are values down to about 500 for work through around
fifth order. For higher orders, larger values are needed.

1.4 How to Avoid Reading This Manual

The input of COSY INFINITY is based on a programming language which is described
in detail in [1, The COSY Language]. The structure and features are quite intuitive, and
we are confident that one can quickly pick up the key ideas following some examples.

COSY INFINITY is written in this language, and all particle optical elements and
control features are invoked by calls to library procedures written in this language. A
detailed description of these features is provided in sections 3 and 4.

Section 5 beginning on page 55 gives several examples for problems occurring in the
computation and analysis of particle optical systems. Reading these sections should

1.4 How to Avoid Reading This Manual 11

enable the user to get a head start in using COSY INFINITY. Another source of infor-
mation is the demonstration file DEMO.FOX.

For sophisticated problems or the development of customized features, the user may
find it helpful to study [1, Optimization and Graphics]. A complete list of all data types
and operations as well as all intrinsic functions and procedures available in the COSY
language is given in [1, The Supported Types and Operations]. Finally, the pages of the
listing of COSY INFINITY can be consulted for existing structures and programming
ideas.

1.4.1 Syntax Changes

With very minor exceptions, version 8 and version 8.1 are downward compatible to the
previously released version 7 of COSY INFINITY. Any user deck for version 7 should
run under versions 8 and 8.1.

As of October 12 2002, the GKS graphics driver routines in FOXGRAF.FOP are
commented out. When the GKS graphics library is not linked, the user does not have to
change FOXGRAF.FOP. The data types for ordered interval (OI) and ordered interval
vectors (OV) are no longer supported, resulting in no support to the command STURNS.

12 2 WHAT IS COSY INFINITY

2 What is COSY INFINITY

The design and analysis of particle optical systems is quite intimately connected with the
computer world. There are numerous more or less widespread codes for the simulation
of particle optical systems. Generally, these codes fall into two categories. One category
includes ray tracing codes which use numerical integrators to determine the trajectories
of individual rays through external and possibly internal electromagnetic fields. The
core of such a code is quite robust and easy to set up; for many applications, however,
certain important information can not be directly extracted from the mere values ray
coordinates. Furthermore, this type of code is often quite slow and does not allow
extensive optimization.

The other category of codes are the map codes, which compute Taylor expansions
to describe the action of the system on phase space. These codes are usually faster
than integration codes, and the expansion coefficients often provide more insight into
the system. On the other hand, in the past the orders of the map, which are a measure
of the accuracy of the approach, have been limited to third order [3, 4] and fifth
order [5, 6]. Furthermore, traditional mapping codes have ounly very limited libraries for
quite standardized external fields and lack the flexibility of the numerical integration
techniques. In particular, fringe fields can only be treated approximately.

2.1 COSY’s Algorithms and their Implementation

It is indeed possible to have the best of both worlds: using differential algebraic tech-
niques, any given numerical integration code can be modified such that it allows the
computation of Taylor maps for arbitrarily complicated fields and to arbitrary order
[7, 8,9, 10, 11]. An offspring of this approach is the computation of maps for large
accelerators where often the system can be described by inexpensive, low order kick
integrators.

The speed of this approach is initially determined by the numerical integration pro-
cess. Using DA techniques, this problem can be overcome too: DA can be used to
automatically generate numerical integrators of arbitrary high orders in the time step,
yet at the computational expense of only little more than a first order integrator [10, 11].
This technique is very versatile, works for a very large class of fields, and the speeds
obtained are similar to classical mapping codes.

In order to make efficient use of DA operations in a computer environment, it has
to be possible to invoke the DA operations from within the language itself. In the
conventional languages used for numerical applications (namely C and Fortran) it is
often difficult to introduce new data types and overload the operations on them. Modern
object oriented languages like C++ and Java on the other hand have the capabilities
of conveniently introducing new data types. However, the added flexibility often comes
with a hefty performance penalty that limits the applicability of these languages to

2.2 The User Interface 13

complicated numerical problems.

Hence, there are strong reasons to stay within the limits of a Fortran environment.
Firstly, almost all software in the field of scientific computing is written in this language,
and the desire to interface to such software is easier if Fortran is used. Furthermore, there
are extensive libraries of support software which are only slowly becoming available in
other languages, including routines for nonlinear optimization and numerical toolboxes.
Finally, the necessity for portability is another strong argument for Fortran; virtually
every machine that is used for numerical applications, starting from personal computers,
continuing through the workstation and mainframe world to the supercomputers, has a
Fortran compiler. Moreover, due to the long experience with them, these compilers are
very mature and produce highly optimized and efficient code.

Consequently, the DA precompiler [12] has been designed in Fortran 77. This pre-
compiler allows the use of a DA data type within otherwise standard Fortran by trans-
forming arithmetic operations containing DA variables into a sequence of calls to sub-
routines. While the DA precompiler is not a full Automatic Differentiation tool like
Adifor [13] or Odyssee, it has been extensively used [11]. It was particularly helpful that
one could use old Fortran tracking codes and just replace the appropriate real variables
by DA variables to very quickly obtain high order maps.

However, with the recently developed C++ and Fortran 90 interfaces to COSY IN-
FINITY, the question of the underlying software architecture has become somewhat
obsolete. It is now possible to access the sophisticated data structures and algorithms of
COSY INFINITY even from within these languages. Moreover, these native-language
interfaces to COSY INFINITY outperform similar attempts at creating differential alge-
braic data types by a wide margin. The performance of the interfaces is within a factor of
two to the regular COSY system on most platforms (detailed performance comparisons
will be published elsewhere). It should however be stressed that these interfaces do not
provide access to the tools required for studying Beam Physics. More information on
the C++ interface is given in [1, The C++ Interface] and [1, The Fortran 90 Interface].

2.2 The User Interface

On the other end of the problems using an accelerator code is the command language
of the code and the description of the beamlines. Various approaches have been used in
the past, starting from coding numbers as in the old versions of TRANSPORT [3] over
more easily readable command structures like in TRIO [4], GIOS, COSY 5.0 [5] and
MARYLIE [14] to the standardized commands of MAD, for which there is a conversion
utility to COSY (see section 3.4.1) [15, 16].

COSY INFINITY approaches this problem by offering the user a full programming
language; in fact, the language is so powerful that all the physics of COSY INFINITY
was written in it.

14 2 WHAT IS COSY INFINITY

For ease of use, this language has a deliberately simple syntax. For the user de-
manding special-purpose features on the other hand, it should be powerful. It should
allow direct and complex interfacing to Fortran routines, and it should allow the use
of DA as a built-in type. Finally, it should be widely portable. Unfortunately, there is
no language readily available that fulfills all these requirements, so COSY INFINITY
contains its own language system.

The problem of simplicity yet power has been quite elegantly solved by the Pascal
concept. In addition, this concept allows compilation in one pass and no linking is
required. This facilitates the connection of the user input, which will turn out to be just
the last procedure of the system, with the optics program itself.

To be relatively machine independent, the output of the compilation is not native
machine code but rather an intermediate byte code that is interpreted in a second
pass. In this respect, the concepts of COSY INFINITY are quite similar to the Java
programming language. However, the COSY INFINITY system has the compiler and
the executer combined into one single program. The byte code used by COSY INFINITY
is portable between machines of the same word size. To match the portability of the
system on the platform dependent parts, it is essential to write the source code of the
compiler in a very portable language. We chose Fortran for the compiler, even though
clearly it is considerably easier to write it in a recursive language like C.

For reasons of speed it is helpful to allow the splitting of the program into pieces, one
containing the optics program and one the user commands. While the Pascal philosophy
does not have provisions for linking, it allows the splitting of the input at any point.
For this purpose, a complete momentary image of the compilation status is written to a
file. When compilation continues with the second portion, this image is read from the
file, and compilation continues in exactly the same way as without the splitting.

The full syntax of the COSY language is described in detail in [1, The COSY Lan-
guage|. Most of the syntax will become apparent from the detailed examples supplied
in the following sections, and we think that it is possible to write most COSY inputs
without explicitly consulting the language reference.

15

3 Computing Systems with COSY

This section describes some core features of COSY’s particle optics and accelerator
physics environment. This provides the backbone for practical use in particle optics.
We assume that the reader has a fundamental knowledge about particle optics, and
refer to the literature, for example [17, 18, 19, 20, 21, 22].

3.1 General Properties of the COSY Language Environment

The physics part of COSY INFINITY is written in its own input language. In this
context, most commands are just calls to previously defined procedures. If desired, the
user can create new commands simply by defining procedures of his own. All commands
within COSY INFINITY consist of two or three letters which are abbreviations for two
or three words describing the action of the procedure. This idea originated in the GIOS
language, and many commands of COSY INFINITY are similar to respective commands
in GIOS. All units used in the physics part of COSY are SI, except for voltages, which
are in kV, and angles, which are in degrees.

Particle optical systems and beamlines are described by a sequence of calls to pro-
cedures representing individual elements. The supported particle optical elements can
be found in section 3.3 beginning on page 23; section 5.7 beginning on page 62 shows
how to generate new particle optical elements.

In a similar way, elements can be grouped, which is described in section 5.3 begin-
ning on page 57. Besides the commands describing particle optical elements, there are
commands to instruct the code what to do.

3.2 Control Commands

All user commands for COSY INFINITY are contained in a file which is compiled by
FOXY. The first command of the file must be

INCLUDE ’COSY’ ;

which makes all the compiled code contained in COSY.FOX known to the user input.
The user input itself is contained in the COSY procedure RUN. Following the syntax of
the COSY language described in [1, The COSY Language], all commands thus have to
be included between the statements

PROCEDURE RUN ;
and

ENDPROCEDURE ;

16 3 COMPUTING SYSTEMS WITH COSY

In order to execute the commands, the ENDPROCEDURE statement has to be followed
by the call to the procedure,

RUN ;
and the command to complete the COSY input file,
END ;

Like any language, the COSY language supports the use of variables and expressions
which often simplifies the description of the system. For the declaration of variables,
see [1, The COSY Language].

The first command sets up the DA tools and has to be called before any DA op-
erations, including the computation of maps, can be executed. The command has the
form

OV <order> <phase space dimension> <number of parameters> ;

and the parameters are the maximum order that is to occur as well as the dimensionality
of phase space (1,2 or 3) and the number of system parameters that are requested. If
the phase space dimensionality is 1, only the x-a motion is computed; if it is 2, the y-b
motion is computed as well, obviously at a slightly higher computation time. If it is 3,
the time of flight and chromatic effects are computed also.

The number of parameters is the number of additional quantities besides the phase
space variables that the final map shall depend on. This is used in connection with the
“maps with knobs” discussed in section 5.2 on page 56 and to obtain mass and charge
dependences if desired, and it is also possible to compute energy dependence without
time-of-flight terms at a reduced computational expense.

The order is arbitrary and denotes the maximum order that computations can be
performed in. It is possible to change the computation order at run time using the
command

CO <order> ;

however, the new order can never exceed the one set in OV. Note that the computation
time naturally increases drastically for higher orders. Under normal circumstances,
orders should not exceed ten very much.

3.2.1 The Coordinates

COSY INFINITY performs all its calculations in the following scaled coordinates:

3.2 Control Commands 17

. = Ty = a=pg/po,

T3 = Y, re = b=py/po,

rys = l=—(t—t0)vg’y/(1+’)/) e =— (5K=(K—K0)/K0
7 = O = (m—mg)/mo rg = 0,=(2—20)/%

The first six variables form three canonically conjugate pairs in which the map is sym-
plectic. The units of the positions # and y is meters. pg, Ko, vp, tp and y are the
momentum, kinetic energy, velocity, time of flight, and total energy over mgc?, respec-
tively. m and z denote mass and charge of the reference particle, respectively.

3.2.2 Defining the Beam

All particle optical coordinates are relative to a reference particle which can be defined
with the command

RP <kinetic energy in MeV> <mass in amu> <charge in units> ;

For convenience, there are two procedures that set the reference particle to be protons
or electrons:

RPP <kinetic energy in MeV> ;
RPE <kinetic energy in MeV> ;

For the masses of the proton and electron and all other quantities in COSY, the values
in [23] have been used (CAUTION: The data was updated in September 2001 in
COSY.FOX). Finally, there is a command that allows to set the reference particle from
the magnetic rigidity in Tesla meters and the momentum in MeV/c:

RPR <magnetic rigidity in Tm> <mass in amu> <charge in units> ;
RPM <momentum in MeV /c> <mass in amu> <charge in units> ;

Finally it is possible to set the magnetic moments of the particle and activate the
computation of spin . This is achieved with the command

RPS <LS><G>;

where LS is the spin mode, 1 indicating spin computation and 0 indicating no spin com-
putation. G = (g—2)/2 is the anomalous spin factor of the particle under consideration.
In case the reference particle has been set to be a proton using RPP or an electron using
RPE, the proper value will be used if G is set to zero.

The command

SB <PX><PA><r12><PY><PB><r34>< PT><PD><r56><PG><PZ> ;

18 3 COMPUTING SYSTEMS WITH COSY

sets half widths of the beam in the z, a, y, b, t, d, g and z directions of phase space as
well as the off diagonal terms of the ellipse in TRANSPORT notation r12, r34, and r56.
The units are meters for PX and PY, radians for PA and PB, vyy/(1 +) times time
for PT, and AE/E for PD, Am/m for PG, and Az/z for PZ. The command

SP <P1> <P2> <P3> <P4> <P5> <P6> ;

sets the maxima of up to six parameters that can be used as knobs in maps (see section
5.2 beginning on page 56).

SBE <EX> <EY> <ET> ;

sets the ellipse of the beam to an invariant ellipse of the current map. The emittances
in z-a, y-b, and 7-9 space being <EX>, <EY>, <ET> respectively.

3.2.3 The Computation of Maps

COSY INFINITY has a global variable called MAP that contains the accumulated
transfer map of the system. Each particle optical element being invoked updates the
momentary contents of this global variable.

The following command is used to prepare the computation of maps. It sets the
transfer map to the identity. It can also be used again later to re-initialize the map.

UM ;
The command
SM <name> ;

saves the momentary transfer matrix to the array name, which has to be specified by
the user. The array can be specified using the VARIABLE command of the COSY
language (see [1, The COSY Language]). It could have the form

VARIABLE <name> 1000 8 ;

which declares a one dimensional array with eight entries. Each entry can hold a maxi-
mum of 1000 16 byte blocks, which should be enough to store the DA numbers occurring
in calculations of at least seventh order.

To copy a map stored in an array namel to another array name2, use the procedure
SNM <namel> <name2> ;
The command
AM <name> ;

applies the previously saved map <name> to the momentary map. AM and PM
are particularly helpful for the handling of maps of subsystems that are expensive to

3.2 Control Commands 19

calculate. In particular in the context of optimization, often substantial amounts of time
can be saved by computing certain maps only once and then re-using them during the
optimization.

It is also sometimes necessary to compose two individual maps into one map without
acting on the current transfer map. This can be achieved with the command

ANM <N> <M> <O>;
which composes the maps N and M to O=N o M. The command
PM <unit> ;

prints the momentary transfer matrix to unit. This number can be associated with a
file name with the OPENF procedure (see index); if OPENF is not used, the name
associated with the unit follows the local Fortran conventions. Unit 6 corresponds to
the screen. The different columns of the output belong to the final values of z, a, y, b
and t of the map, and different lines describe different coefficients of the expansion in
terms of initial values. The coefficients are identified by the last columns which describe
the order as well as the exponents of the initial values of the variables. An example of
the output of a transfer map can be found in section 5 on page 55.

The command
PSM <unit> ;
writes the 3 X 3 spin matrix to unit.

Besides the easily legible form of output of a transfer map produced by PM, it is
also possible to write the map more accurately but less readable with the command

WM <unit> ;

In this case, the transformation of the local coordinate system is also stored and can be
reused when read. Maps written by PM or WM can be read with the command

RM <unit> ;

reads a map generated by PM from the specified unit and applies it to the momentary
transfer map. Often a significant amount of computer time can be saved by comput-
ing certain submaps ahead of time and storing them either in a variable or a file. In
particular this holds for maps which are expensive to compute, for example the ones of
electrostatic cylindrical lenses.

Besides storing maps of an element or system with one specific setting of parameters,
using the technique of symplectic scaling it is possible to save maps with a certain setting
of field strengths and lengths and later re—use them for different settings of lengths or
strengths. This is particularly useful for elements that require a lot of calculation time,
including fringe fields and solenoids. A representation of the map of an element with

20 3 COMPUTING SYSTEMS WITH COSY

typical dimensions and field strength for a typical beam is saved using
WSM < unit> <L> <D>;

This map has to be calculated either in three dimensions (OV order 3 0 ;) or with the
energy as a parameter (OV order 2 1 ;). The parameters are the output unit, length,
pole—tip field, and aperture of the element that created the momentary map. The map
of the motion of a different type of beam through any similar element that differs in
scale or field strength can be approximated quickly by

RSM <unit> <L> <D>;

It is also possible to extract individual matrix elements of transfer maps. This is
achieved with the COSY function

ME (<phase space variable>,<element identifier>)

The element identifier follows TRANSPORT notation; for example, ME(1,122) returns
the momentary value of the matrix element (z,zaa).

The beam’s current sigma matrix is computed from the ellipse data previously set
with SB by the function

SIGMA (<I>,<J>)

Sometimes it is necessary to determine the map of the reversed system, i.e. the
system transversed backwards. In case M is the map of the system, the map MR of the
corresponding reversed system can be computed with the command

MR <M> <MR> ;

Note again that the current transfer map is stored in the global variable MAP. Similarly,
it is sometimes necessary to determine the map of the system in which the coordinates
are twisted by a certain angle. For example, if the direction of bending of all magnets is
exchanged, this corresponds to a rotation by 180 degrees. In case M is the map of the
system, the map MT of the system twisted by angle can be computed with the command

MT <M> <MT> <angle> ;

3.2.4 The Computation of Trajectories

Besides the computation of maps, COSY can also trace rays through the system. The
trajectories of these rays can be plotted or their coordinates printed. If rays are selected,
they are pushed through every new particle element that is invoked. Note that COSY
can also push rays through maps repetitively and display phase space plots. This uses
different methods and is discussed in section 4.4 beginning on page 50.

The following command sets a ray that is to be traced through the system. The

3.2 Control Commands 21

parameters are the eight particle optical coordinates
SR <X> <A> <Y> <T> <D> <G> <Z> <color> ;

Here X and Y are the positions of the ray in meters, A and B are the angles in radians, T
is the time of flight multiplied by vyy/(1+). D, G and Z are the half energy, mass and
charge deviations. For graphics purposes, it is also possible to assign a color. Different
colors are represented by numbers as follows. 1: black, 2: blue, 3: red, 4: yellow, 5:
green. The command

SSR <X> <Y> <Z> ;

sets the spin coordinates of the particle. Note that command has to be used immediately
following the setting of the coordinates of the particle with SR.

It is also possible to automatically set an ensemble of rays. This can be achieved
with the command

ER <NX> <NA> <NY> <NB> <NT> <ND> <NG> <NZ> ;

Here NX, NA ... denote the number of rays in the respective phase space dimension and
have to be greater than or equal to 1. The ray coordinates are equally spaced according
to the values set with the command SB, which has to be called before ER. In case any
of the N’s is 1, only rays with the respective variable equal to 0 will be shown. Note
that the total number of rays is given by NX - NA -...- NZ, which should not exceed 100.
Note that this command is incompatible with the setting of spin coordinates with SSR
as described above. The command

SCDE ;

sets sine like and cosine like rays as well as the dispersive ray and the beam envelope
in accordance with the data provided by SB or SBE. After the envelope has been set
by SCDE it can be displayed alone as it varies along the system with PGE, or together
with the other trajectories with PG. If only the envelope should be evaluated,

ENVEL ;

should be used. The closed orbit for an off energy particle, often called the n function,
is produced by

ENCL <D> ;

The periodic orbit for an off energy particle with the dispersion D is computed from the
one turn map. Therefore a current map has to be produced before calling ENCL. This
is equivalent to the requirement of computing a current map before calling SBE.

CR ;

clears all the rays previously set. The command

22 3 COMPUTING SYSTEMS WITH COSY

PR <unit> ;

prints the momentary coordinates of the rays to the specified unit. Unit 6 corresponds
to the screen. Note that using the WRITE command of the COSY language, it is also
possible to print any other quantity of interest either to the screen or to a file.

3.2.5 Plotting System and Trajectories

Besides computing matrices and rays, COSY also allows to plot the system or any part
of it and the rays going through it. The command

PTY < scale > ;

selects the type of system plot. If scale is zero, the reference trajectory will be plotted as
a straight line; this is also the default if PTY is not called. If scale is nonzero, all rays
including the reference trajectory are displayed in laboratory coordinates. To account
for the fact that in such a view rays are rather close to the reference trajectory and
hence may be hard to distinguish, the coordinates transverse to the optic axis will be
magnified by the value of scale.

BP ;

defines the beginning of a section of the system that is to be plotted, and the command
EP ;

defines the end of the section. The command

PP <unit> <phi> <theta> ;

plots the system to unit. Following the convention of printing graphics objects discussed
in [1, Graphics], positive units produce a low-resolution ASCII plot of 80 columns by
24 lines, which does not require any graphics packages. Negative units correspond to
various graphics standards.

The picture of the trajectories and elements is fully three dimensional and can be
viewed from different angles. Phi=0 and Theta=0 correspond to the standard « projec-
tion; Phi=0 and Theta=90 correspond to the y projection; and Phi=90 and Theta=0
correspond to viewing the rays along the beam.

For use on workstations, there is also an abbreviated way to produce both an z
projection and a y projection simultaneously. The command

PG <Unitl> <Unit2> ;

produces both x and y pictures, including length (lower right), height (upper left) and
depth (lower left) of the system with all selected rays and the envelope if selected. Unitl
and Unit2 denote the Graphics units (see [1, Graphics]). The command

3.3 Supported Elements 23

PGE <Unitl> <Unit2> ;

produces both z and y pictures, including length (lower right), height (upper left) and
depth (lower left) of the system and the beam envelope. Unitl and Unit2 denote the
Graphics units (see [1, Graphics]).

In a picture, it is sometimes advantageous to identify a particular location on the
reference trajectory, for example to identify a focal plane or a plane of interest in a ring.
This can be achieved with the command

PS <d>;

which draws a Poincare section plane with width d at the momentary position of the
reference trajectory.

There are several parameters which control the graphic output of a system. Such a
graphic displays the central trajectory along with all rays and the envelope, the optical
elements, two letters below each element indicating its type and three numbers indicating
the height, width, and depth of the system. Before the system is computed, this default
can be changed by

e LSYS = 0 ; (Suppresses the beamline elements) ,
e LCE = 0 ; (Suppresses the types of the elements) ,

e LAX = 0 ; (Suppresses the numbers describing the size of the system) .

These options can become important when graphic output of huge machines is desired.
These choices can then avoid memory overflow and uncomprehendable picture.

3.3 Supported Elements

In this section we present a list of all elements available in COSY. They range from
standard multipoles and sectors over glass lenses and electromagnetic cylindrical lenses
to a general element, which allows the computation of the map of any element from
measured field data. The maps of all elements can be computed to arbitrary order and
with arbitrarily many parameters.

Elements based on strong focusing devices such as multipoles and sectors can be
computed with their fringe fields or without, which is the default. Section 3.3.7 beginning
on page 31 describes various fringe field computation modes available.

The simplest particle optical element, the field- and material free drift, can be applied
to the map with the command

DL <length> ;

24 3 COMPUTING SYSTEMS WITH COSY

The element
CB ;

changes the bending direction of bending magnets and deflectors. Initially, the bending
direction is clockwise. The procedure CB changes it to counterclockwise, and each
additional CB switches it to the other direction. Note that it is also possible to change
the bending direction of all the elements in an already computed map using the command
MR (see index).

COSY supports a large ensemble of other particle optical elements, and it is very
simple to add more elements. The following subsections contain a list of momentarily
available elements.

3.3.1 Multipoles

COSY supports magnetic and electric multipoles in a variety of ways. There are the
following magnetic multipoles:

MQ <length> <flux deunsity at pole tip> <aperture> ;

MH <length> <flux density at pole tip> <aperture> ;

MO <length> <flux deunsity at pole tip> <aperture> ;

MD <length> <flux deunsity at pole tip> <aperture> ;

MZ <length> <flux density at pole tip> <aperture> ;

which let a magnetic quadrupole, sextupole, octupole, decapole or duodecapole act on
the map. The aperture is the distance from reference trajectory to pole tip. For the
sake of speed, direct formulas for the aberrations are used for orders up to two. There
is also a superimposed multipole for multipole strengths up to order five:

M5 <length> <BQ >< BH >< BO >< BD >< BZ> <aperture> ;

And finally, there is a general superimposed magnetic multipole with arbitrary order
multipoles:

MM <length> <MA> <NMA> <aperture> ;

Contrary to the previous procedure, the arguments now are the array MA and the
number NMA of supplied multipole terms. Besides the magnetic multipole just in-
troduced, which satisfies midplane symmetry, there is also a routine that allows the
computation of skew multipoles. The routine

MMS <length> <MA> <MS> <NMA> <aperture> ;

lets a superposition of midplane symmetric and skew multipoles act on the map. The

3.3 Supported Elements 25

array MA contains the strengths of the midplane symmetric multipoles in the same units
as above. The array MS contains the strengths of the skew multipoles; the units are
such that a pure skew 2n pole corresponds to the midplane symmetric multipole with
the same strength rotated by an angle of 7/2n.

Similar procedures are available for electrostatic multipoles
EQ <length> <voltage at pole tip> <aperture> ;
EH <length> <voltage at pole tip> <aperture> ;
EO <length> <voltage at pole tip> <aperture> ;
ED <length> <voltage at pole tip> <aperture> ;
EZ <length> <voltage at pole tip> <aperture> ;

which let an electric quadrupole, sextupole, octupole, decapole or duodecapole act on
the map. The strengths of the multipoles are described by their voltage in kV. There is
an electric multipole

E5 <length >< EQ >< EH >< EO >< ED >< EZ> <aperture> ;

which lets a superimposed electric multipole with components EQ through EZ act on
the map, and there is the procedure

EM <length> <EA> <NEA> <aperture> ;

which lets a general electrostatic multipole with arbitrary order multipoles act on the
map. Similar to the magnetic case, there are also electric skew multipoles. The routine

EMS <length> <EA> <ES> <NEA> <aperture> ;

lets a superposition of midplane symmetric and skew multipoles act on the map. The
array EA contains the strengths of the midplane symmetric multipoles in the same
units as above. The array ES contains the strengths of the skew multipoles; like in the
magnetic case, the units are such that a pure skew 2n pole corresponds to the midplane
symmetric multipole with the same strength rotated by an angle of 7/2n.

3.3.2 Bending Elements

COSY INFINITY supports both magnetic and electrostatic elements including so called
combined function elements with superimposed multipoles. In the case of magnetic
elements, edge focusing and higher order edge effects are also supported. By default, all
bending elements bend the reference trajectory clockwise, which can be changed with
the command CB (see index).

The following commands let an inhomogeneous combined function bending magnet
and a combined function electrostatic deflector act on the map:

26 3 COMPUTING SYSTEMS WITH COSY

MS <radius> <angle> <aperture> < nj; ><ng >< ng >< ng >< ng > ;
ES <radius> <angle> <aperture> < mnj; ><np ><ng ><ng ><ns > ;

The radius is measured in meters, the angle in degrees, and the aperture is in meters
and corresponds to half of the gap width. The indices n; describe the midplane radial
field dependence which is given by

5
F(z) = Fy - l1 ~S 0, (%)i]
=1

where 7 is the bending radius. Note that an electric cylindrical condenser has n; = 1,
no = —1,n3 =1, ng = —1, nyg = 1, etc, and an electric spherical condenser has n; = 2,
ng = —3, ng = 4, ng = —5, ns = 6, etc. Homogeneous dipole magnets have n; = 0.

Since an electric cylindrical condenser is invariant under translation along the y axis,
the y motion is like a drift. An offset in the y direction does not alter the motion, so
a map produced by ES, Mgg, and a y offset map My, produced by “SA 0 DA(5)
;7 for example, commute. A similar consistency test can be performed for an electric
spherical condenser. Consider an offset A# along the radius R sphere toward the positive
y direction, and call the map Ma. For example, such a map M can be produced by
"SA -R 0; RA DA(5) ; SA R 0;”. The map of a spherical condenser for a 180° travel,
represented by M pgis0, agrees with the map of a A offset, a 180° travel in the condenser
and a A offset again. Another test is based on the observation that the motion is that of
a Kepler problem. The motion should return to the original state after one cycle travel,
thus M ggs6p should become an identity map.

The element
DI <radius> <angle> <aperture> < e > <h; > <€y > <hg > ;

lets a homogeneous dipole with entrance edge angle ¢; and entrance curvature h; as well
as exit edge angle e; and exit curvature hy act on the map. All angles are in degrees,
the curvatures in 1/m, the radius is in m, and the aperture is half of the gap width.
Positive edge angles correspond to weaker = focusing, and positive curvatures to weaker
nonlinear x focusing.

In the sharp cut off approximation, the horizontal motion in the homogeneous dipole
is based on geometry. The vertical effects of edge angle and curvatures is approximated
by a linear and quadratic kick, which is a common approximation of hard-edge fringe—
field effects. As described in section 3.3.7, it is also possible to treat the influence of
extended fringe fields on horizontal and vertical motion in detail and full accuracy.

The element

MSS <radius rg > <angle ¢g > <aperture> < e€; > <h; > <e2 > <hs > <w > ;

3.3 Supported Elements 27

allows users to specify the two dimensional structure of the main field in polar coor-
dinates, which is described by a two dimensional array w; ;). The following factor is
imposed to the main field specified by the first seven arguments with the same meaning
to those of DI.

1
F(r,¢) = Z Zw(i,j)(r —19)" M — ¢o/2)7 L.

i=17=1

A special case of the homogeneous dipole described above is the magnetic rectangle
or parallel-faced dipole, in which both edge angles equal one half of the deflection angle
and the curvatures are zero. For convenience, there is a dedicated routine that lets a
parallel faced magnet act on the map:

DP <radius> <angle> <aperture> ;

Finally, there is a very general combined function bending magnet with shaped
entrance and exit edges

MC <radius> <angle> <aperture> <N> <S1> <S2> <n > ;

Here N is an array containing the above n;, and S1 and S2 are arrays containing the n
coefficients si, ... s, of two n-th order polynomials describing the shape of the entrance
and exit edges as

S(z)=s1 -+ ...+ sy 2"

Again positive zeroth order terms entail weaker z focusing. In the sharp cut off ap-
proximation, the edge effects of the combined function magnet are treated as follows.
All horizontal edge effects of order up to two are treated geometrically like in the case
of the dipole. The vertical motion as well as the contribution to the horizontal motion
due to the non-circular edges are treated by kicks. The treatment of the element in the
presence of extended fringe fields is described in section 3.3.7.

Note that when comparing COSY bending elements without extended fringe fields
to those of other codes, it is important to realize that some codes actually lump some
fringe—field effects into the terms of the main fields. For example, the code TRANSPORT
gives nonzero values for the matrix element (x,yy), which is produced by a fringe-field
effect, even if all TRANSPORT fringe—field options are turned off.

3.3.3 Wien Filters

Besides the purely magnetic and electric bending elements, there are routines for super-
imposed electric and magnetic deflectors, so-called Wien Filters or E cross B devices.

28 3 COMPUTING SYSTEMS WITH COSY

The simplest Wien Filter consists of homogeneous electric and magnetic fields which are
superimposed such that the reference trajectory is straight. This element is called by

WEF <radiusg> <radiusy/> <length> <aperture> ;

The radii describe the bending power of the electric and magnetic fields, respectively.
The strengths are chosen such that each one of them alone would deflect the beam with
the specified radius. For positive radii, the electric field bends in the direction of positive
z, and the magnetic field bends in the direction of negative z. For equal radii, there is
no net deflection. There is also a combined function Wien Filter:

WC <radiusg > <radiusps > <length> <aperture> <NE> <NM> < n > ;

Here NE and NM describe the inhomogeneity of the electric and magnetic fields, respec-
tively via

1+ ER:N(Z) . a;l]
i=1

3.3.4 Wigglers and Undulators

COSY INFINITY allows the computation of the maps of wigglers. For the midplane
field inside the wiggler, we use the following model:

2
By, (z,z) = Bycos <T7Tz +k- z2>

At the entrance and exit, the main field is tapered by an Enge function

_ Bz, z)
- 1+ exp (a1 + azz/d + ...+ am(z/d)g)

B(z, z)

The wiggler is represented by the following routine:
WI<By>< A><L><d><k> <> <A>;

where L is the length and d is the half gap. If I=0, the fringe field is modeled with some
default values of the coefficients a;. If I=1, the user is required to supply the values of
a1 to ayg for the entrance fringe field in the array A. The exit fringe field is assumed to
have the same shape as the entrance fringe field.

3.3 Supported Elements 29

3.3.5 Cayvities

There is a model for a simple cavity in COSY INFINITY. It provides an energy gain
that is position dependent but occurs over an infinitely thin region. The voltage of the
cavity as a function of position and time is described by

V =P(z,y) -sin (27 (v -t + ¢/360)) ,

so that v is the frequency in Hertz, ¢ is the phase in degrees at which the reference
particle enters the cavity. The peak voltage P is given in kV.

The cavity is represented by the following routine:
RF <V><I><v><¢><d>;

where V is a two dimensional array containing the coefficients of a polynomial of order
I describing the influence of the position as

I
P(z,y) = Z VG+1,k+1)-27 - F
J,k=0

and d is the aperture.

3.3.6 Cylindrical Electromagnetic Lenses

COSY INFINITY also allows the use of a variety of cylindrical lenses, in which focusing
effects occur only due to fringe—field effects. The simplest such element consists of only
one ring of radius d that carries a current I. The on-axis field of such a ring is given by

Bs=tol 1 1)
2 (14 (s/ap)"?

using the Biot-Savart law. This current ring is represented by the procedure
CMR <I><d>;

A magnetic field of more practical significance is that of the so-called Glaser lens,
which represents a good approximation of the fields generated by strong magnetic lenses
with short magnetic pole pieces [22]. The lens is characterized by the field

By

PO = TGy

where By is the maximum field in Tesla and d is the half-width of the field. The Glaser
lens is invoked by calling the procedure

30 3 COMPUTING SYSTEMS WITH COSY

CML < By > <d>;
A third and a fourth magnetic round lenses available in COSY are solenoids.
CMSI <I><n><d><Il>;

invokes the solenoid with the theoretical field distribution

_MoIn S B s—1
B(s) = 9 <\/32+d2 \/(s—l)2+d2> ’

obtained from (1), where [is the current, n the number of turns per meter, d the radius
and [the length of the solenoid.

Another solenoid available in COSY has the following field distribution:

By

B(s) = tanh[l/2d] (tanh[s/d] — tanh[(s —[)/d])

where By is the field strength at the center of the solenoid, d is its aperture and [its
length. The field goes down at the fringes much more quickly compared to the theoretical
one for CMSI. This is invoked by the procedure

CMS <By><d><Il>;

There are a variety of more solenoidal elements suitable for simulations for large
aperture solenoids or a combination of many solenoids. Contact Kyoko Makino for the
details (makino@uiuc.edu).

There is a fifth magnetic round lens with a Gaussian potential

V(s) = Vo - exp[—(s/d)’]

which is invoked with the procedure
CMG < Vy > <d>;

Besides the magnetic round lenses, there are various electrostatic round lenses. The
element

CEL<Vy><d><L><c>;

lets an electrostatic lens consisting of three tubes act on the map. This lens is often
called three-cube einzel lens. Figure 1 shows the geometry of the lens which consists
of three coaxial tubes with identical radii d, of which the outer ones are on ground
potential and the inner one is at potential Vj in kV. The length of the middle tube is
L, and the distance between the central tube and each of the outside tubes is ¢. Such

3.3 Supported Elements 31

an arrangement of three tubes can be approximated to produce an axis potential of the
form

V(s) = Vo <n cosh (w(s + L/2)/d) cosh (w(s — L/2)/d) > 7

" 2we/d \ " cosh (w(s + L/2 + ¢)/d) | cosh (w(s — L/2 — ¢)/d)

where the value of the constant w is 1.315. For details, refer to [20].
There is another electrostatic lens,
CEA<W><d><L><c>;

which lets a so-called three-aperture einzel lens act on the map. The geometry of the
lens is shown in Figure 1. The outer apertures are on ground potential and the inner
one is at potential V. The axis potential of the system can be approximated to be

V(s) = L

Y
C

s pf2 gt (Y o gt (220

(s + L/2) tan~" (#) (s —L/2) tan"" (#)] .

An often used approximation for electrostatic lenses is described by a potential dis-
tribution of the following form

V(s) = Vo - exp[—(s/d)?] .

A lens with this field can be invoked by calling the routine
CEG <V > <d>;

All round lenses are computed using COSY’s 8th order Runge Kutta DA integra-
tor. The computational accuracy can be changed from its default of 107!° using the
procedure ESET (see index).

3.3.7 Fringe Fields

A detailed analysis of particle optical systems usually requires the consideration of the
effects of the fringe fields of the elements. While COSY INFINITY does not take
fringe fields into account in its default configuration, there are commands that allow
the computation of their effects with varying degrees of accuracy and computational
expense.

32 3 COMPUTING SYSTEMS WITH COSY

CEL CEA
Three-tube einzel lens Three-aperture einzel lens
V=0 Vo V=0 V=0 Vo V=0
| }
- - | - - s - - - - s
I c 1 L 1 c 1 | I I |
I c I L I c 1

Figure 1: The constitution of electrostatic lenses of the procedure CEL and CEA

There are two main ways of computing fringe fields of particle optical elements,
namely utilizing one of the built-in modes provided by the various modes of the command
FR, or one of the general element procedures described in detail in section 3.3.8.

FR <mode> ;

provides various modes for fringe field map computations, which differ at the level of
accuracy employed for computations. In the following, the modes will be described in
decreasing order of accuracy.

In all cases, the mode set with FR stays effective until the next call to FR, and it
is possible to change the computation mode within the computation. Whenever a new
fringe field mode is desired, FR has to be called again with the new mode (which then
remains in effect until the mode is changed with another call to FR). The default fringe
field mode of COSY INFINITY is FR 0.

FR 3 & FR 2.9

This mode is the most accurate fringe field mode. The fringe field falloff is based on
the standard description of the s-dependence of multipole strengths by a six parameter
Enge function. The Enge function is of the form

1

Fz) = 1 +exp(a; +ay- (2/D)+ ... +as - (z/D)>)’

where z is the distance perpendicular to the effective field boundary. In the case of
multipoles, the distance coincides with the arc length along the reference trajectory. D
is the full aperture (i.e., in case of multipoles D = 2-d) of the particle optical element, and
ay through ag are the Enge coefficients. Using COSY’s DA based numerical integrator
[2], if a supported element is called, the resulting map including fringe field effects is

3.3 Supported Elements 33

computed using the full accuracy of the integrator and a default set of Enge coefficients.
The values of the default set represent measurements of a family of unclamped multipoles
used for PEP [24], and are listed in table 1.

However, while in many cases the bulk of the effects can be described well with
the default values of the coeflicients, they depend on the details of the geometry of the
element including shimming and saturation effects in magnetic elements. The coeflicients
should be adjustable such that the Enge function fits the specific measured or computed
data. Fitting programs for this purpose have been written in COSY’s own language,
or can be obtained as a companion of RAYTRACE [25]. Note that in the optimization
process it is important that the Enge coefficients are chosen such that the effective field
boundary coincides with the origin. It is also important that the fringe field coefficients
lead to an Enge function which represents the fringe field well over an interval ranging
from at least 3- D inside the element to at least 5- D outside the element, where D = 2-d
is as above.

Once an appropriate set of Enge coefficients has been determined, it is possible to
use them by this mode. This is achieved with the command

FC <IMP> <IEE> <IEM> < a1 > < a9 > <az > <ag > <as > <ag>;

which sets the Enge coefficients a; through ag to the specified values. IMP is the
multipole order (1 for dipoles, 2 for quadrupoles, etc). IEE identifies the data belonging
to entrance (1) and exit (2) fringe fields. TEM denotes magnetic (1) or electric (2)
elements. Using FC repeatedly, it is possible to set coeflicients for the description of all
occurring elements.

After setting the Enge coefficients with FC, COSY diagnoses the behavior of the
resulting Enge function, and gives error messages if the resulting fringe fields are inap-
propriate (e.g., if the fields do not not drop monotonically from one in the inside to zero
in the outside). There is a convenient tool to draw Enge functions and the derivatives.
The command

FP <IMP> <IEE> <IEM> <string> <order> <IU> ;

draws a picture of the Enge function (order = 0) or the derivative (order = the desired
order of the derivative) to unit IU. A title can be added to the picture by using the
string parameter. FP uses the Enge coefficients that are loaded ahead of time. Figure
2 is an example of such a picture, and it is produced by the following commands:

FC 111 0.31809 2.11852 -1.0255 0.797148 0 O ;
FP 1 1 1 ’S800-D1’” 0 -7 ;

To illustrate the concept of Enge coefficients, tables 1 through 5 list some sets of
Enge coefficients taken from various magnets.

Cosy uses a set of Enge coefficients for typical magnets based on measured data from

34 3 COMPUTING SYSTEMS WITH COSY

PEP [24] by default, listed in table 1. Unless specified explicitly using FC, regardless
magnetic or electric, and entrance or exit, the following coefficients are used as mentioned
on page 35 in the description of the procedure FD. The user does not have to do anything
except for specifying the fringe field computation mode by the command FR, because
these coefficients are loaded via FD as soon as the command OV is called.

ay a2 as ay as ag

Dipole 0.478959 | 1.911289 | -1.185953 | 1.630554 | -1.082657 | 0.318111
Quadrupole | 0.296471 | 4.533219 | -2.270982 | 1.068627 | -0.036391 | 0.022261
Sextupole 0.176659 | 7.153079 | -3.113116 | 3.444311 | -1.976740 | 0.540068
and higher

Table 1: COSY Enge coefficients by default. They are based on measured data from
PEP at SLAC [24].

A benign Enge function can be achieved by utilizing only 2 coefficients, instead of 6.
Furthermore, one may want the same effective field boundary in both cases. An example
of the resulting Enge coefficients is given in table 2.

ay a9 as a4 ag Qg

Dipole —0.003183 | 1.911302 | 0.00 | 0.00 | 0.00 | 0.00
Quadrupole | 0.00004 | 4.518219 | 0.00 | 0.00 | 0.00 | 0.00
Sextupole —0.000117 | 7.135786 | 0.00 | 0.00 | 0.00 | 0.00

Table 2: Enge coefficients for a simple model.

The Large Hadron Collider’s High Gradient Quadrupoles of the interaction regions
have been designed by G. Sabbi. Based on the magnet end design described in [26], the
Enge coeflicients given in table 3 have been obtained.

a1 a2 as G4 as a6
Lead end —0.939436 | 3.824163 | 3.882214 | 1.776737 | 0.296383 | 0.013670
Return end | —0.77462 | 3.75081 | 2.80154 | 0.833833 | 0.131406 | 0.0362236

Table 3: Enge coefficients of an LHC HGQ [26].

Table 4 lists the Enge coefficients modeling the NSCL’s S800 spectrograph magnets
which were obtained by fitting measured field data by D. Bazin [27].

Finally, table 5 lists a set of Enge coefficients obtained by F. Méot from a warm
large aperture (diameter ~ 30 ¢m) quadrupole that is part of a QD kaon spectrometer
in operation at GSI.

Any set of fringe field parameters (electric/magnetic, entrance/exit) not explicitly
set remains in its default configuration, and each FC command stays in effect until FC
(or FR; see below) is called again. Therefore, if all dipoles, all quadrupoles, etc. in the
system have the same fringe field falloff, it is sufficient to call FC only once for each

3.3 Supported Elements 35

Enge Function, Dipole, Entrance: S800-D1

o 0

-3.56-3 inside 0 outside 555 xAd

Figure 2: COSY LaTeX picture of the S800 D1 magnet’s entrance Enge function.

type. In case there are different types, FC has to be called each time before the specific
element. Sometimes it has proven helpful to lump several calls of FC into a procedure.
One such procedure that is already part of COSY is

FD ;

which sets all values to the default; this procedure is automatically called when COSY’s
DA system is initialized, and it must be called again to reset the Enge coefficients to
their default value, in case they have been changed. The accuracy of this computation
mode is limited only by the accuracy of the numerical integrator, which can be set with
the procedure

ESET <€ > ;

where € is the maximum error in the weighted phase space norm discussed in connection
with the procedure WSET (see index). The default for € is 107! and can be adjusted
downwards if needed.

Since very detailed fringe field calculations are often computationally expensive,
COSY allows to compute their effects with lower degrees of accuracy.

FR 2 & FR 1.9

The fringe field mode FR 2 produces less accurate fringe fields than mode FR 3, at a
gain of computation time of typically more than one order of magnitude. Mode FR 2

36 3 COMPUTING SYSTEMS WITH COSY

a1 a9 as a4 ag ag
Quad. I | Entr. | 0.150894 | 7.26981 | —2.73798 2.0669 | —0.256704 | 0.00
Exit 0.15839 | 7.22058 | —2.93658 | 2.62889 | —0.333535 | 0.00
Quad. II | Entr. | 0.0965371 | 6.63297 —2.718 10.9447 1.64033 | 0.00
Exit 0.235452 | 6.60424 | —3.42864 | 4.38392 | —0.573524 | 0.00
Dipole I | Entr. | 0.31809 | 2.11852 | —1.0255 | 0.797148 0.00 0.00
Exit 0.38027 | 2.01144 | —0.900505 | 0.773862 0.00 0.00
Dipole IT | Entr. | 0.395308 | 2.03151 | —0.910001 | 0.784602 0.00 0.00
Exit 0.326167 | 2.08628 | —1.01685 | 0.803716 0.00 0.00

Table 4: Enge coefficients of the S800 spectrograph at the NSCL [27].

ay az as a4 as ag

0.1122 | 6.2671 | —1.4982 | 3.5882 | —2.1209 | 1.723

Table 5: Enge coefficients of a room temperature quadrupole at GSI.

uses parameter dependent symplectic map representations of fringe field maps stored in
files to approximate the fringe field via symplectic scaling [28] [29]. The default reference
maps are stored in the file SYSCA.DAT. If needed, other reference files that give better
representations of the user data can be created and stored in files by WSM (see index).
How this is done can be seen in the procedure

CRSYSCA ;

This procedure produces the file SYSCA.DAT, which is shipped with the code. Such
maps can be declared to be the new standard with the command

FC2 <IMP> <IEE> <file> ;

which declares file to be the actual reference file for the fringe field described by IMP
and TEE; the meaning of IMP and IEE is discussed above for the command FC. The
original default files can be reactivated by

FD2 ;

The fringe field mode FR 2 is especially helpful in the final design stages of a realistic
system after approximate parameters of the elements have been obtained by neglecting
fringe fields or with fringe field mode FR 1 (see below). The last step of the optimization
can then be made using the default scaled fringe field maps. A high degree of accuracy
almost equal to that of the fringe field mode FR 3 discussed above can be obtained
by computing new fringe field reference maps with the command WSM based on the
approximate values obtained by the previous fits.

Note for the expert user: it is possible to set the fringe field mode to FR 1.9, which
differs from mode FR 2 only by the fact that each fringe field map is composed with
the inverse of its linear part. This approach leaves the linear part of the system’s map

3.3 Supported Elements 37

unaltered, rendering the refitting of the tunes unnecessary, and allows the study of the
nonlinear effects introduced by the fringe fields.

FR 1

This mode entails approximate fringe fields with an accuracy comparable to the fringe
field integral method [17]. In fact, internally mode FR 1 is exactly the same as mode
FR 3, but it forces the numerical integration algorithm to go through the fringe field
region in only two steps.

FR 0

All fringe fields are disregarded in this default mode. In this mode, a sharp cutoff
approximation is used for all elements.

Stand Alone Fringe Fields

It is also possible to calculate stand alone fringe field maps. If the mode is set to FR
-1, only the entrance fringe field maps of all listed elements are computed; if the fringe
field mode is set to FR -2, only exit fringe field maps are computed. In both cases, the
computational accuracy is equivalent to that of mode FR 3.

Fringe fields produced with modes FR -1 or FR -2 can be thought of as fringe field
elements with zero length. However, the apertures, strengths, etc. of the magnets have
an influence on the results. (These are not thin lens models; the finite length fringe field
maps are composed with negative drifts to give in the end a total length of zero.) To
clarify this, notice that the following two code fragments are equivalent:

FR

MQ
FR

o M w
=
o

and

FR -1 ;
MQLQD;
FR 0 ;
MQLQD;
FR -2 ;
MQLQD;
FR 0 ;

The fringe field maps computed using the modes FR -1 or FR -2 can be used in
two ways: if the fringe fields do not change anymore, the data can be stored and re-used
with the commands SM and AM, or PM and RM (see section 3.2.3). In the case the

38 3 COMPUTING SYSTEMS WITH COSY

maps of entrance or exit fringe fields are re-used in this way, it is important to turn all
fringe fields off with the command FR 0, because otherwise the fringe fields would be
taken into account twice. It is also important that in the case of bending elements with
non-perpendicular entrance or exit (see section 3.3.2), the fringe field maps computed
using FR -1 and FR -2 do not contain the effects of any curved entrance and exit
plane. Thus, in the case fringe field maps are re-used later with turned off fringe fields,
it is important to leave all edge effects in the body of the element. Using modes FR -1
and FR -2, it is also possible to determine new fringe field reference maps that can be
used with symplectic scaling using the commands WSM and RSM.

General Fringe Field Maps

Besides the computation of fringe field effects in the formalism of Enge type multipole
functions, fringe field effects can also be computed by any of the general particle optical
elements GE, MGE, or MF discussed in section 3.3.8. This allows the highly accurate
treatment of strongly overlapping fringe fields or fringe fields that cannot be represented
well by Enge functions.

We end this section on fringe field effects with a few general comments. In the
case of straight multipole elements, the total fringe field in the midplane is the sum of
the individual multipole components which fall off with their respective Enge functions.
The nonlinearities of the off-plane fields are computed in COSY from this information in
agreement with Maxwell’s equations [30]. In the case of the dipole element DI, the Enge
function modulates the falloff of the midplane dipole field perpendicular to the edge of
the magnet. As long as the edges are long enough, this allows a very accurate description
both for straight and circular edges, where circular edges may require Enge coefficients
that differ slightly from those of straight edges with the same aperture. Again, the
off-midplane fields are computed in agreement with Maxwell’s equations.

In the case of all other bending elements, certain models have to be used to describe
the details of the fringe field falloff in the Enge model. In the case of the inhomogeneous
magnet MS, the inhomogeneity of the field which is determined by the distance to the
center of deflection is modulated with an Enge falloff. In the case of the combined
function magnet M C, the inhomogeneity of the field is modulated by a falloff function
following as in the case of the dipole whose edge angles and curvatures are chosen
to match the linear and quadratic parts of the curves described by S1 and S2. The
remaining higher order edge effects are superimposed by nonlinear kicks before and
after the element.

For general purpose bending magnets, it is rather difficult to formulate field models
that describe all details to a high accuracy, and hence the accuracy of the computation
of aberrations is limited by these unavoidable deficiencies. In case field measurements
are available, the general element approach described above allows a detailed analysis
of such measured data.

3.3 Supported Elements 39

3.3.8 General Particle Optical Elements

In this section, we present procedures that allow the computation of an arbitrary order
map for a completely general optical element whose fields are described by measure-
ments.

One way to compute a map of a general optical element is to use the procedure GE,
which uses measurements along the independent variable s. Its use ranges from special
measured fringe fields over dedicated electrostatic lenses to the computation of maps for
cyclotron orbits. It can also be used to custom build new elements that are frequently
used (see section 5.7 on page 62).

GE <n> <m> <S> <H> <V> <W> ;

lets an arbitrary particle optical element act on the map. The element is character-
ized by arrays specifying the values of multipole strengths at the n positions along the
independent variable contained in the array S. The array H contains the correspond-
ing curvatures at the positions in S. V and W contain the electric and magnetic scalar
potentials in S.

The elements in V and W have to be DA variables containing the momentary deriva-
tives in the x direction (variable 1) and s direction (variable 2), and m is the order of the
s-derivatives. One way to compute these DA variables is to write two COSY functions
that compute V and W as a function of z and s. Suppose these functions are called
VFUN(X,S) and WFUN(X,S), then the requested DA variable can be stored in V and
W with the commands

V(I)
W(I)

VFUN(O+DA (1) ,S(I)+DA(2)) ;
WFUN(O0+DA(1),S(I)+DA(2)) ;

Another way to compute a map of a general optical element is to use the procedures
MGE and MF. While MGE uses measured data of the field along the independent
variable s, MF uses measured data of the field on the midplane in cartesian coordinates
[31] [32]. For deflecting elements, MF is more direct for users. The command

MF <s> <BY> <N; > <N, > <Az > <Az > <85> <d > <S; > <5, > <S¢y > ;

lets an arbitrary particle optical element act on the map. The element is characterized
by a two dimensional array BY (i, i,) specifying the values of the field strength in the
y direction B, in the midplane along an equidistant grid. Figure 3 shows how the data
grid is specified and the cartesian coordinates corresponding to the data grid. N, and
N, are the numbers of measured data grid points in the and z direction. Az and Az
are the lengths of each grid in the z and z direction. As shown in Figure 3, S, and S,
are the values of (z,z) coordinates of the starting point of the reference particle in the
element, and Sy is the angle (degree) at the starting point of the reference particle. s is
the arclength along the reference particle, and d is the aperture.

40 3 COMPUTING SYSTEMS WITH COSY

e z
4 data grid
N

particle

trajectory
3 Ss
2

(Sz,S:)
1 -z
1 2 3 4 N, — . (0,0)

Figure 3: The specification of measured field data of the procedure MF

The interpolation to evaluate the values of the field strength in the element is done
by the method of Gaussian interpolation. S describes the width of the Gaussian curves.
The value of the field strength B, at the coordinates point (x,z) is interpolated by the
following equation.

o1 (z —2(ia))® (2 —2(i.))?
By(z,2) = ZZBY(%»%)@GXP - A:L‘ZSE N Az2SZ2 ’
13 1z

where z(i,) and z(i,) are the coordinates of the (i,%,)-th grid point. A note has to be
made to choose the suitable S. If S is too small, the mountains structure of Gaussians
is observed. On the other hand, if S is too large, the original value supplied by the
measured data is washed out. The suitable value of S depends on the original function
shape of the measured data. For constant fields, the suitable S may be about 1.8. For
quickly varying fields, it may be about 1.0. And larger values of S provide more accurate
evaluation of the derivatives. In general, suitable values of S may be around 1.2 < S <
1.6.

Another note about the Gaussian interpolation is, since a Gaussian function falls
down quickly, the time consuming summation over all the Gaussians is not necessary.
The summation is well approximated by the 8S neighboring Gaussians of each side. For
the value outside the area, the edge value is used. When such a situation happens, the
total number of such points is reported as follows:

*%x*x WARNING IN MF, OUT OF RANGE OF DATA AT 123 POINTS

In the case of quickly varying fields, a larger area of data has to be prepared.

3.3 Supported Elements 41

Since the procedure MF consumes the memory size in the program, a small size is
prepared for the shipping of COSY.FOX . If the measured data is bigger than 20*20
gridpoints, change the size for the array in COSY.FOX in the following line.

VARIABLE MFD 1 20 20 ; {DATA FOR MEASURED FIELD}

If this modification requires increasing the size of COSY’s internal memory, it is im-
portant to replace all occurrences of the parameter in question in all Fortran files. For
example, if the error message demands the PARAMETER LVAR to be increased, change
the value of LVAR in the PARAMETER statements in FOXY.FOP, FOXGRAF.FOP,
and DAFOX.FOP.

MGE is similar to MF except that data for multipole terms are specified. It can
be used for multipoles whose field distribution cannot be described analytically by Enge
functions etc. The command

MGE < NP > <A> <N; > < As> <S> <d>;

lets a superimposed magnetic multipole based on measured data act on the map. N;
is the number of measured data grid points along s, where each point is spaced equi-
distantly by As. S describes the width of the Gaussian as MF, and d is the aperture.
NP is the maximum number of multipole components. The measured data is passed by
a two dimensional array A(ip,is), where i, denotes the multipole component as 1 for
quadrupole, 2 for sextupole and so on, and i, = 1,..., Vs denotes the i,-th data point.
A should be prepared to represent the field strength of the i,-th component at the pole
tip at the 75-th position.

The same interpolation method is used as MF, so do the same cautions apply includ-
ing the one on the memory size. The value of field strength B of the 4,-th component
at the coordinates point s is interpolated as

s — s(ig))?
Bliy,s) = ZA(ip,is)ﬁ exp [_%l 7

where s(is) = As - (is — 1) is the coordinate of the i4-th grid point. Note that the total
length of the element is As - (Ng — 1).

The map of the general element is computed using COSY’s 8th order Runge Kutta
DA integrator. The computational accuracy can be changed from its default of 10710
using the procedure ESET (see index).

42 3 COMPUTING SYSTEMS WITH COSY

3.3.9 Glass Lenses and Mirrors

COSY INFINITY also allows the computation of higher order effects of general glass
optical systems. At the present time, it contains elements for spherical lenses and
mirrors, parabolic lenses and mirrors, and general surface lenses and mirrors, where the
surface is described by a polynomial. There is also a prism. All these elements can
be combined to systems like particle optical elements, including misalignments. The
dispersion of the glass can be treated very elegantly by making the index of refraction
a parameter using the function PARA.

The command
GLS <R1> <R2> <N> <L> <d > ;

lets a spherical glass lens act on the map. R1 and R2 are the radii of the spheres;
positive radii correspond to the center of the sphere to be to the right. N is the index
of refraction, L is the thickness, and d the aperture radius. The command

GL <P1> <I1> <P2> <I2> <N> <L> < d > ;

lets a glass lens whose surface is specified by two polynomials of orders I1 and 12 act
on the map. P1 and P2 are two dimensional arrays containing the coefficients of the
polynomials in z and y that describe the s position of the entrance and exit surface as
a function of z and y in the following way:

P(k+ 1,1 4 1)zky!

™~

P(‘Tuy) =

ko

J
= P(L,L1)+P(2,1)- 2+ P(L,2)-y+ ...

N is the index of refraction, L the thickness of the lens and d its aperture. The command

GP <PHI1> <PHI2> <N> <L> <d > ;

lets a glass prism act on the map. PHI1 and PHI2 are the entrance and exit angles mea-
sured with respect to the momentary reference trajectory, N is the index of refraction,
L the thickness along the reference trajectory, and d is the aperture radius.

Besides the refractive glass optical elements, there are mirrors. In the following
mirror elements, d is the aperture radius. The command

GMS <R> <d >
lets a spherical mirror with radius R act on the map. The command
GMP <R> <d>;

lets a parabolic mirror with central radius of curvature R act on the map. The command

3.4 Lattice Converters 43

GMF <PHI> <d > ;
lets a flat mirror with the tilt angle PHI act on the map. The command
GM <P> <I> <d>;

lets a general glass mirror act on the map. P is a two dimensional array containing the
coefficients of the polynomial in z and y that describes the surface in the same way as
with GL, and is the dimension.

3.4 Lattice Converters

There are tools to convert existing lattices described in the other formats into COSY
language. The following subsections explain the currently available lattice converters.
The converters are web-based, and the links to the web pages of the converters can be
found in http://cosy.pa.msu.edu/.

We appreciate receiving the other converters into COSY language written by users
to be available to the other users.

3.4.1 MAD Input

Many existing accelerator lattices are described in the MAD standard [15, 16]. To
allow the use of such MAD lattices in COSY, there is a conversion utility that trans-
forms MAD lattices to the COSY lattices. This utility was originally written by Roger
Servranckx using the original MAD compiler source code which was written by Christo-
pher Iselin. The current program has been adjusted to MAD version 8.22 by Weishi
Wan and Kyoko Makino. The MAD to COSY converter is provided on the web at
http://cosy.pa.msu.edu/.

The converter is based on MAD version 5. The important beamline elements are
translated into the respective ones in COSY; these include drifts, multipoles, superim-
posed multipoles, and bends. Some elements supported by MAD are translated to drifts
and may have to be adjusted manually.

To generate a COSY deck from a MAD deck, the end of the MAD deck should have
the form

USE, <name of beamline>
C0osYy
STOP

where according to the MAD syntax, the USE command specifies the beamline to be
translated, and the command COSY actually generates the COSY source.

44 3 COMPUTING SYSTEMS WITH COSY

3.4.2 SXF Input

The SXF format (Standard eXchange Format) is meant to be a general lattice description
language and is intended to facilitate the cooperation between different groups and the
comparison of results obtained with different codes. The language specifications that
are in most parts very similar to MAD were developed by H.Grote, J.Holt, N.Malitsky,
F.Pilat, R.Talman, G.Tahern and W.Wan .

The SXF to COSY converter is provided on the web at http://cosy.pa.msu.edu/.

3.5 Misalignments

The differential algebraic concept allows a particularly simple and systematic treatment
of misalignment errors in optical systems. Such an error is represented by a coordi-
nate change similar to the one discussed in section 4.1. COSY offers three different
misalignment commands. The first command

SA <DX> <DY>;

offsets the optic axis by DX in z direction and DY in y direction. DX and DY are
counted positive if the optic axis is shifted in direction of positive x and y, respectively.
The command

TA <AX> <AY>;

represents a tilt of the optic axis by an angle in degrees of AX in z direction and AY in
y direction. AX and AY are counted positive if the direction of tilt is in the direction
of positive x and y, respectively. The command

RA <ANGLE > ;

represents a rotation of the optic axis around ANGLE measured in degrees. ANGLE
is counted positive if the rotation is counterclockwise if viewed in the direction of the
beam. The routine RA can be used to rotate a given particle optical element by placing
it between counteracting rotations. This can for example be used for the study of skew
multipoles. However, note that it is not possible to rotate different multipole components
by different angles. This can be achieved with the routines MMS and EMS discussed
in section 3.3.1.

In order to simulate a single particle optical element that is offset in positive x
direction, it is necessary to have the element preceded by an axis shift with negative
value and followed by an axis shift with positive value. Similarly simple geometric
considerations tell how to treat single tilted and rotated elements.

The misalignment routines can also be used to study beams that are injected off
the optical axis of the system. In this case, just one of each misalignment commands is
necessary at the beginning of the system.

3.5 Misalignments 45

We note that the misalignment routines, like most other COSY routines, can be
called both with real number and differential algebraic arguments, in particular using
the PARA argument (see section 5.2). The first case allows the simulation of a fixed
given misalignment, whereas the second case allows to compute the map depending on
the misalignment.

In the first case, the values of the computed transfer map are only approximate if SA
and TA are used. The accuracy increases with decreasing misalignments and increasing
calculation orders. For the study of misalignments of elements, the actual accuracy is
usually rather high since the values of the misalignments are usually very small. In
the case of a deliberate offset of the beam, for example for the study of injection and
extraction processes, it may be necessary to increase the computation order to obtain
accurate results. In the second case, the results are always accurate. The command RA
always produces accurate results in both cases.

46 4 ANALYZING SYSTEMS WITH COSY

4 Analyzing Systems with COSY

4.1 TImage Aberrations

Very often not the matrix elements of the transfer map are of primary significance, but
rather the maximum size of the resulting aberration for the phase space defined with SB
and the parameters defined with SP. COSY provides two tools to obtain the aberrations
directly. The command

PA <unit> ;

prints all aberrations to unit in a similar way as PM. If not all aberrations are of interest,
the COSY function

MA (<phase space variable>,<element identifier>)

returns the momentary value of the aberration. The phase space variable is a number
from 1 to 6 corresponding to z, a, y, b, t, d, and the element identifier is an integer whose
digits denote the above variables. For example, M A (1,122) returns the momentary value
of the aberration due to the matrix element (z,zaa).

For comparison and other reasons, it is often helpful to express the map in other
coordinates than those used by COSY (see section 3.2.1, for example the ones used in
TRANSPORT [3] and GIOS. The routine

PT <unit> ;
prints the map in Transport and GIOS coordinates to unit.

We want to point out that in the differential algebraic concept, it is particularly
simple to perform such nonlinear coordinate changes to arbitrary orders. In order to
print maps in yet different coordinates, the user can make a procedure that begins with
a unity map, applies the transformation to COSY coordinates, applies the COSY map,
and then applies the transformation back to the original coordinates.

4.2 Analysis of Spectrographs

To first order, the resolution Ad of an imaging spectrograph is given by the following
simple formula:

_ (#,7) 2%
Ad = @.d)

where X is the half width of the slit or aperture at the entrance of the device. Here
0 can be any one of the quantities g, 0,, and 0,, and it is assumed that to first order,

4.2 Analysis of Spectrographs 47

the final position does not depend on the other quantities, or all particles have the same
initial values for the other quantities.

In all but the simplest spectrographs, however, it is important to consider higher
order effects as well as the finite resolution of the detectors. Usually these effects decrease
the resolution, more so for larger initial phase spaces and low detector resolutions.
The resolution of the spectrograph under these limitations can be computed with the
following command

AR <MAP> <X> <A> <Y> <D> <PR> <N> <R> ;

where MAP is the map of the spectrograph to be studied, X, A, Y, B and D are
the half widths of the beam at the entrance of the spectrograph, PR is the resolution
of the detector, and R is the resulting resolution of the spectrograph. To compute
the resolution, a total of N particles are distributed randomly and uniformly within a
square initial phase space and then sent through the map. Then the measurement error
is introduced by adding a uniformly distributed random number between -PR and PR to
the x coordinate. The width of the resulting blob of measurements is computed, where
it is assumed that the blob is again filled uniformly.

In many cases the resolution of spectrographs can be increased substantially with
the technique of trajectory reconstruction [33]. For this purpose, positions of each
particle are actually measured in two detector planes, which is equivalent to knowing
the particle’s positions and directions.

Assuming that the particle went through the origin, the energy of the particle is
uniquely determined by some complicated nonlinear implicit equations. Using DA meth-
ods, it is possible to solve these equations analytically and relate the energy of the par-
ticle to the four measured quantities. Besides the energy, it is also possible to compute
the initial angle in the dispersive plane, the initial position in the non-dispersive plane,
and the angle in the non-dispersive plane. The accuracy of these equations is limited
only by the measurement accuracy and by the entering spot size in the dispersive plane.
This is performed by the command

RR <MAP> <X> <A> <Y> <D> <PR> <AR> <N> <O> <MR> <R>;

where the parameters are as before, except that AR is the resolution in the measurement
of the angle, and O is the order to which the trajectory reconstruction is to be performed.
On return, MR is the nonlinear four by four map relating initial a, y, b and d to the
measured final z, a, y, b. Using these relationships as well as the measurement errors and
the finite dispersive spot size, the resolution array R containing the resolutions of the
initial a, y, b and d is computed by testing N randomly selected rays and subjecting them
to statistical measurement errors similarly as with the computation of the uncorrected
resolution.

48 4 ANALYZING SYSTEMS WITH COSY

4.3 Analysis of Rings

Instead of by their transfer matrices, the linear motion in particle optical systems is
often described by the tune and twiss parameters. These quantities being particularly
important for repetitive systems, they allow a direct answer to questions of linear stabil-
ity, beam envelopes, etc. In many practical problems, their dependence on parameters
is very important. For example, the dependence of the tune on energy, the chromaticity,
is a very crucial quantity for the design of systems. Using the maps with knobs, they
can be computed totally automatically without any extra effort. The command

TP <MU> ;

computes the tunes which are stored in the one dimensional array with three entries
MU which is defined by the user. In most cases, an allocation length of 100 should be
sufficient, and so the declaration of MU could read

VARIABLE MU 100 3 ;

If the system is run with parameters, MU will contain DA vectors describing how the
respective tunes depend on the parameters. Note that COSY INFINITY can also com-
pute amplitude dependent tune shifts in the framework of normal form theory. This is
described in detail in this section.

For the computation of amplitude tune shifts and other characteristics of the repet-
itive motion, COSY INFINITY contains an implementation of the DA normal form
algorithm described in [34]. This replaces the COSY implementation of the somewhat
less efficient and less general mixed DA-Lie normal form. Normal Form algorithms pro-
vide nonlinear transformations to new coordinates in which the motion is simpler. They
allow the determination of pseudo invariants of the system, and they are the only tool
so far to compute amplitude tune shifts. As pointed out in [35], chromaticities and pa-
rameter dependent tune shifts alone can be computed more directly using the command
TP described above. The command

NF <EPS> <MA> ;

computes the normal form transformation map MA of the momentary transfer map.
This variable has to be allocated by the user, and in most cases

VARIABLE MA 1000 8 ;

should be sufficient. Since the normal form algorithm sometimes has problems with
the possible occurrence of small denominators, it is not always possible to perform a
transformation to coordinates in which the motion is given by circles. The variable EPS
sets the minimum size of a resonance denominator that is not removed. The command

TS <MU> ;

employs the normal form algorithm to compute all the tune shifts of the system, both the

4.3 Analysis of Rings 49

ones depending on amplitude and the ones depending on parameters like chromaticities,
which alone can be computed more efficiently as shown above. MU is a one dimensional
array with three entries which is defined by the user in a similar way to TP. On return,
MU will contain the tune shifts with amplitudes and parameters as DA vectors. If
the system is run with parameters, MU will contain DA vectors describing how the
respective tunes depend on the amplitudes (first, third and possibly fifth exponents for
z, y and t) and parameters (beginning in columns five or 7).

Note that in some cases when the system is on or very near a resonance or is even
unstable, the normal form algorithm may fail due to occurrence of a small denominator.
In this case, the respective tunes will be returned as zero. This also happens sometimes
if the map is supposed to be symplectic yet is slightly off because of computational
inaccuracies. In this case, the use of the procedure SY (see index) is recommended.

The normal form method can also be used to compute resonance strengths, which
tell how seunsitive a system is to certain resonances. Often the behavior of repetitive
systems can be substantially improved by reducing the resonance strengths. These are
computed with the procedure

RS <RES> ;

where upon return RES is a complex DA vector that contains the resonance strengths.
The 2- N exponents nj ,n; in each component describe the resonance of the tunes v as

The linear and nonlinear momentum compaction (dl/dp) - p/l can be computed with
the routine

MCM <M> <L> <C>;

Alternatively, it also possible to compute the Energy compaction (drs/drg) with the
routine

ECM <M> <L> <C> ;

Finally it is also possible to analyze the spin motion with normal form methods. The
command

TSP <MU> <n > <KEY> ;

computes the parameter dependence of spin tune and the invariant spin axis n. The
command

TSS <MU> <n > <KEY> ;

computes the parameter and amplitude dependence of spin tune as well as the invariant
spin axis . The spin tunes are stored in the one dimensional array with three entries

50 4 ANALYZING SYSTEMS WITH COSY

MU which is defined by the user, in a similar way as the array used by TP and TS. If
KEY is 0, the original orbital variables are used. If KEY is not 0, the orbital variables
are transformed to the parameter dependent fixed point.

4.4 Repetitive Tracking

COSY allows efficient repetitive tracking of particles through maps. The command
TR <N> <NP> <ID1> <ID2> <D1> <D2> <TY> <NF> <IU>;

tracks the momentary particles selected with SR or ER through the momentary map
for the required number of iterations N. After each NP iterations the position of the
phase space projection ID1-ID2 is drawn to unit IU. The phase space numbers 1 through
6 correspond to x, a, y, b, d, t, and the numbers -1, -2, -3 correspond to the z, y and z
components of the spin. If any of these components get larger than D1, D2, they will
not be drawn.

If TY is zero, symplectic tracking using the EXPO generating function is per-
formed [36]. If the absolute value of TY is between one and four, symplectic tracking
using the generating function of type |TY| (see page 52) is performed. For positive TY,
a fixed-point iteration is used to determine the symplectified map; for negative TY, a
Newton iteration is used to determine the symplectification. While the Newton method
is more robust, the fixed point iteration tends to be faster if it works. If TY is —12 or
—13, symplectic tracking is performed by symplectifying the linear map My, and repre-
senting the map ' = M o M;! by the generating function of type |TY|. Because the
linear part of AV is the unity map, only the generating functions of type 2 (for TY= —12)
and 3 (for TY=—13) can be used for that purpose. Lastly, if TY is —21, the tracking
is performed without symplectification. If NF is zero, the points will be displayed in
conventional variables, and if NF is one, they will be displayed in normal form variables.

As discussed in [1, Supported Graphics Drivers], if needed the coordinates can also
be output directly for future manipulation.

The algorithm used for tracking is highly optimized for speed. Using the vector
data type for particle coordinates, it works most efficiently if many particles are tracked
simultaneously. On scalar machines, optimum efficiency is obtained when more than
about 20 particles are tracked simultaneously. On vector machines, the algorithm vec-
torizes completely, and for best efficiency, the number of particles should be a multiple
of the length of the hardware vector.

In both cases, logistics overhead necessary for the bookkeeping is almost completely
negligible, and the computation time is almost entirely spent on arithmetic. It is also
worth mentioning that using an optimal tree transversal algorithm, zero terms occurring
in a map do not contribute to computation time.

The command

4.5 Symplectic Representations 51

TRT <string>;

prints the title supplied by the string in a tracking picture produced by TR. The com-
mand TRT should be called just before a TR call, and the title is valid only for that
TR call. If TRT is not called just before TR, no title is printed.

4.5 Symplectic Representations

In this section, we will present two different representations for symplectic maps, each
one of which has certain advantages. Particle optical systems described by Hamiltonian
motion satisfy the symplectic condition

M-J-M'=J

where M is the Jacobian Matrix of partial derivatives of M, and J has the form

l’

SO = O o O
SR O O o O
_ o o o oo
S o oo o
SO OO~ O
OO O = OO

As long as there is no damping, all particle optical systems are Hamiltonian, and
so the maps are symplectic up to possibly computation errors if they are generated
numerically. There is a COSY function that determines the symplectic error of a map:

SE (<M>)

Here M is an array of DA quantities describing the map. Note that the momentary
value of the transfer map is stored in the global COSY variable MAP. The value of the
function is the weighted maximum norm of the matrix (M -J-M" —J). The weighting is
done such that the maximum error on a cubic phase space with half edge W is computed.
The default value for W is 0.1, which may be too large for many cases. The value of W
can be set with the procedure

WSET <W>;

While the orbital part of maps usually satisfies the symplectic symmetry, the spin
matrix must satisfy orthogonality. Similar to the function SE,

OE (<SM>)

52 4 ANALYZING SYSTEMS WITH COSY

determines the orthogonality error of the spin matrix SM. The current system spin
matrix is stored in the array SPNR.

In some instances, it may be desirable to symplectify maps that are not fully symplec-
tic. While the standard elements of COSY are symplectic to close to machine precision,
the low accuracy fringe—field modes (see section 3.3.7) violate symplecticity noticeably.
Depending on the coarseness of the measured field data, this may also occur in the gen-
eral element discussed in section 3.3.8. To a much lesser extent symplecticity is violated
by intrinsic elements requiring numerical integration, like the high-precision fringe fields
and the round lenses discussed in section 3.3.6. The command

SY <M> ;

symplectifies the map M using the generating function (see below) which is most accurate
for the given map.

Symplectic maps can be represented by at least one of four generating functions in
mixed variables:

Py (g, q5) satistying (5,57) = (Vg F1,—V,F)
Fy(qi,py) satisfying (75, @) = (Vg Fa,Vp, Fy)

Fs(pi, qy) satisfying (G,77) = (=Vp,Fs,—Vy,F)
Fy(pi,py) satistying (@i, q7) = (=Vp,Fi, Vy, Fy)

In the generating function representation there are no interrelationships between the
coefficients due to symplecticity like in the transfer map, so the generating function
representation is more compact. Furthermore, it is often an important tool for the
symplectification of tracking data. The command

MGF <M> <F> <I> <IER> ;

attempts to compute the I th generating function of the specified map M. If IER is equal
to zero, this generating function exists and is contained in F. If IER is nonzero, it does
not exist. While in principle, any generating function that exists represents the map,
especially for high order maps, certain inaccuracies often result for numerical reasons.
If I is chosen to be —1, the generating function representing the linear part of the map
best is determined. For I equal to —2, the generating function representing the whole
map best is computed. The case | = —2 is very expensive computationally and should
only be used in crucial cases for high orders. In both cases, on return I contains the
number of the chosen generating function.

The map which corresponds to a generating function F of type I is obtained by

GFM <M> <F> <I> ;

4.5 Symplectic Representations 53

Other redundancy free representations of symplectic transfer maps are Lie factoriza-
tions including the Dragt-Finn factorization [10, 37] . They are based on Lie transfor-
mation operators of the form

:f:2
2

exp(: f:)=1+:f:+ + ...

where f is a function of the canonical coordinates ¢; and p;. The colon denotes a
Poisson bracket waiting to happen, i.e. : f : g = {f,g}. When &; describes a final set of
canonical coordinates with & = (q1,p1,...,qn,pn) and &; describes an initial set, then
Ty = exp(: f :)@; is a symplectic mapping. Those Lie transformation operators have the
property

el (9(7)) = g(e'7)

for any function g : R?® — R with n being the dimension of the required configuration
space. Therefore we find
e:f:(e:g:f) — (B:g:f) o (e:f:f)

The circle o symbolizes the composition of maps. Two composed symplectic maps are
therefore represented by the product of their Lie transformation operators in reversed
order. As an example, a symplectic map can be written in the form

Lef>z+C

were L is an operator such that LZ is the linear part of the map, f is a polynomial in
the x; containing only orders higher than 2. Finally C represents the constant part of
the map. As mentioned previously this representation is equal to

~ —

(e/>:) o (LZ) + C

Besides this factorization, there are various others that are similar and have certain
advantages [10]. They are shown in the table below. As shown in [10], it is one of the
strong points of the map representation and the differential algebraic techniques that
the computation of these Dragt-Finn factorization is possible to arbitrary order with a
relatively simple algorithm. It is actually much easier to compute them from the map
than using Lie algebraic techniques alone. The command

MLF <MA> <C> <M> <F> <[>

computes the factorization from the transfer map MA. On return, the vector C contains
the constant part, M the linear part and F contains the f; from the table. In case of
the last four factorization F has to be an array. I is the identifier of the factorization
following the numbering in the table.

1 : M@ =, Lexp(: f~)@+ C

54 4 ANALYZING SYSTEMS WITH COSY

—1 : M(@) =, exp(: f)LZ+C

2 M(&) =, Lexp(: f3) exp(: f1:)...exp(: ffﬂ)i+ C
-2 M(Z) =, exp(: fns1:)...exp(c fz) LE+C

3 1 M(&) =gt Lexp(c fz3 :)exp(: fas:)exp(: foo:)...exp(: f(2n+2)7(2n+1+1 0T+ +C
=3 ¢ M(Z) =gn+1 exp(: fonypont1y1 1) .. .exp(: foo0 1) exp(: fas 1) exp(: fz3) #+C

Here f; denotes homogeneous polynomials of exact order ¢ and f; ; polynomials with
orders from ¢ to j. Given a factorization, the command

LFM <MA> <C> <M> <F> <I>;
calculates the according map. The command
LFLF <C> <M> <F> <P> <I> <J>;

computes the factorization of type J with exponent P from a factorization of type I
with exponent F. Without the map representation this would be a very elaborate task,
because the Campbell-Baker-Hausdorff formula would be needed to the appropriate
order.

95

5 Examples

This section provides several examples for the use of core features of COSY. The code
DEMO.FOX which is distributed with COSY contains many more programs that can
serve as demonstrations. Further ideas how to use the COSY language can also be
obtained by studying COSY.FOX.

5.1 A Simple Sequence of Elements

After having discussed the particle optical elements and features available in COSY
INFINITY in the previous sections, we now discuss the computation of maps of simple
systems.

We begin with the computation of the transfer map of a quadrupole doublet to tenth
order. Here the COSY input resembles the input of many other optics codes [5].

INCLUDE °COSY’ ;
PROCEDURE RUN ;
OV 10 2 0 ; {order 10, phase space dim 2, # of parameters 0}
RP 10 4 2 ; {kinetic energy 10 MeV, mass 4 amu, charge 2}
UM ; {sets map to unity}
DL .1 ; {drift of length .1 m}
MQ .2 .1 .05 ; {quad; length .2 m, field .1 T, aperture .05 m}
DL .1 ;
MQ .2 -.1 .05 ; {defocussing quad}
DL .1 ;
PM 11 ; {prints map to unit 11}
ENDPROCEDURE ;
RUN ; END ;

The first few lines of the resulting transfer map on unit 11 look like this:

0.7084974 -0.1798230 0.0000000E+00 0.0000000E+00 0.0000000E+00 100000
0.6952214 1.234984 0.0000000E+00 0.0000000E+00 0.0000000E+00 010000
0.0000000E+00 0.0000000E+00 1.234984 -0.1798230 0.0000000E+00 001000
0.0000000E+00 0.0000000E+00 0.6952214 0.7084974 0.0000000E+00 000100
-0.7552782E-01-0.5173663E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 300000
0.2751172 0.1728297 0.0000000E+00 0.0000000E+00 0.0000000E+00 210000
-0.4105719 -0.2057598 0.0000000E+00 0.0000000E+00 0.0000000E+00 120000
0.3541071 0.8137949E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 030000
0.0000000E+00 0.0000000E+00 0.5676311E-01-0.5150457E-01 0.0000000E+00 201000

The different columns correspond to the final coordinates x, a, y, b and t. The lines
contain the various expansion coefficients, which are identified by the exponents of the

56 5 EXAMPLES

initial condition. For example, the last entry in the third column is the expansion
coefficient (y, zzy).

5.2 Maps with Knobs

The DA approach easily allows to compute maps not only depending on phase space
variables, but also on system parameters. This can be very helpful for different reasons.
For example, it directly tells how sensitive the system is to errors in a particular quantity.
In the same way it can be used to find out ideal positions to place correcting elements.
Furthermore, it can be very helpful for the optimization of systems, and sometimes very
fast convergence can be achieved with it (for details, see [1, Optimization and Graphics]).

In the context of COSY INFINITY, the treatment of such system parameters or
knobs is particularly elegant.

In the following example, we compute the map of a system depending on the strength
of one quadrupole. The COSY function PARA (I) is used, which identifies the quantity
as parameter number I by turning it into an appropriate DA vector.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;
ovs521; {order 5, phase space dim 2, parameters 1}
RP 10 4 2 ; {sets kinetic energy, mass and charge}
UM ;
DL .
MQ .
DL .1 ;
MQ .2 -.1 .05 ;
DL .1 ;
PM 11 ; {prints map depending on quad strength}
ENDPROCEDURE ;

RUN ; END ;

’

.1xPARA(1) .05 ; {quadrupole; now field is a DA quantity}

N —~ N B+~

Since the COSY language supports freedom of types at compile time, the second
argument of the quad can be either real or DA. For details, consult [1, The COSY
Language].

The idea of maps with knobs can also be used to compute the dependence on the
particle mass and charge as well as on energy in case time of flight terms are not
needed. In the following example, the map of the quad doublet is computed including
the dependence on energy, mass and charge.

INCLUDE ’COSY’ ;

5.3 Grouping of Elements 57

PROCEDURE RUN ;

v 5 2 3 ; {order 5, phase space dim 2, parameters 3}
RP 10*PARA(1) 4xPARA(2) 2xPARA(3) ; {sets kinetic energy, mass
and charge as DA quantities}
UM ;
DL .1 ;
MQ .2 .1 .05 ;
DL .1 ;
MQ .2 -.1 .05 ;
DL .1 ;
PM 11 ; {prints map with dependence on energy,
mass and charge, to unit 11}
ENDPROCEDURE ;
RUN ; END ;

5.3 Grouping of Elements

Usually it is necessary to group a set of elements together into a cell. For example,
since most circular accelerators are built of several at least almost identical cells, it is
desirable to refer to the cell as a block. Similar situations often occur for spectrometers
or microscopes if similar quad multiplets are used repetitively.

Grouping is easily accomplished in COSY by just putting the elements into a proce-
dure. In the following example, the strength of a quadrupole in the cell of an accelerator
is adjusted manually such that the motion in both planes is stable. Since the motions
are stable if the two traces are less than two in magnitude, the map is printed to the
screen which allows a direct check.

INCLUDE ’COSY’ ;

PROCEDURE RUN ; VARIABLE QS 1 ; {declare a real variable}
PROCEDURE CELL Q H1 H2 ; {defines a cell of a ring}
DL .3 ; DI 1020 .1 000 O ; DL .1 ; MH .1 H1 .05 ;
DL .1 ; MQ .1 Q .05 ; DL .3 ; MH .1 H2 .05 ;
ENDPROCEDURE ;
Ov 3 2 0 ; RPP 1000 ; {third order, one GeV protons}
QS := .1 ; {set initial value for quad}

WHILE QS#0 ; WRITE 6 ’> GIVE QS ’ ; READ 5 QS ;
UM ; CELL QS 0 0 ; PM 6 ; WRITE 6 ME(3,3) ;
ENDWHILE ;

ENDPROCEDURE ; RUN ; END ;

Such groupings can be nested if necessary, and parameters on which the elements in
the group depend can be passed freely. Note that calling a group entails that all elements

o8 5 EXAMPLES

in it are executed; so grouping is not a means to reduce execution time, but a way to
organize complicated systems into easily manageable parts. Reduction of execution time
can be achieved by saving maps of subsystems that do not change using SM and AM
discussed above.

5.4 Optimization

One of the most important tasks in the design of optical systems is the optimization
of certain parameters of the system to meet certain specifications. Because of the im-
portance of optimization, there is direct support from the COSY language via the FIT
and ENDFIT commands. COSY provides several Fortran based optimizers; a detailed
description of the optimizers available in COSY can be found in [1, Optimization and
Graphics].

In the first example we illustrate a simple optimization task: to fit the strengths of
the quadrupoles of a symmetric triplet to perform stigmatic point-to-point imaging.
To monitor the optimization process, the momentary values of the quad strengths and
the objective function are printed to the screen. Furthermore, a graphic display of the
system at each step of the optimizer is displayed in two graphic windows, here identified
with units -101 and -102, one for each phase space projection, creating a movie-like
effect. [1, Supported Graphics Drivers] lists the graphics drivers currently supported in
COSY. At the end, the final pictures of the z and y projection of the system are printed
in WTEX picture format, identified with unit -7, for inclusion in this manual.

INCLUDE ’COSY’ ;
PROCEDURE RUN ;
VARIABLE Q1 1 ; VARIABLE Q2 1 ; VARIABLE 0BJ 1 ;
PROCEDURE TRIPLET A B ;
MQ .1 A .05 ; DL .05 ; MQ .1 -B .05 ; DL .05 ; MQ .1 A .05 ;

ENDPROCEDURE ;
ovi120;
RP 111 ;
SB .15 .15 0 .15 .15 0 0 0 0 0 0 ;
QL := .5 ; Q2 := .5 ;
FIT Q1 Q2 ;

UM ;CR;ER1414 1111 ;

BP ; DL .2 ; TRIPLET Q1 Q2 ; DL .2 ; EP ;

PP -101 0 0 ; PP -102 0 90 ;

0BJ := ABS(ME(1,2))+ABS(ME(3,4)) ;

WRITE 6 ’STRENGTHS Q1, Q2, OBJECTIVE FUNCTION: ’ Q1 Q2 OBJ ;

ENDFIT 1E-5 1000 1 OBJ ; PP -7 0 0 ; PP -7 0 90 ;
ENDPROCEDURE ; RUN ; END ;

5.4 Optimization 59

Figure 4: COSY KTEX picture of the stigmatically focusing system

The x projection picture of the system after optimization is shown in Figure 4. The
IATEX file of this picture, Ipic001.tex, produced by COSY has been copied into the I TEX
source of this manual.

Besides providing “canned” optimization strategies, the COSY language allows to
follow one’s own path of optimizing a system, which typically consists of several runs
with varying parameters and subsequent optimizations.

In the following example, the goal is to vary several parameters of the system man-
ually, fit the quad strengths, and then look at the spherical aberrations. This process is
repeated by inputting different values for the parameters until the spherical aberrations
have been reduced to a satisfactory level. When this is achieved, the pictures of the
system are output directly to PostScript files, identified with unit -10, with the names
pic001.ps and pic002.ps.

INCLUDE ’COSY’ ;
PROCEDURE RUN ;
VARIABLE Q1 1 ; VARIABLE Q2 1 ; VARIABLE L1 1 ; VARIABLE L2 1 ;
VARIABLE OBJ 1 ; VARIABLE ISTOP 1 ;
PROCEDURE TRIPLET ;
UM ; CR;ER14141111; BP;
DL L1 ; MQ .1 Q1 .05 ; DL L2 ; MQ .1 -Q2 .05 ;
DL L2 ; MQ .1 Q1 .05 ; DL L1 ; EP ; PP -101 0 O ;

60 5 EXAMPLES

ENDPROCEDURE ;
Ov320;RP111;SB .08 .080 .08 .0800000O0 ; ISTOP :=1 ;
WHILE ISTOP#0 ;
WRITE 6 ’ GIVE VALUES FOR L1, L2: ’> ; READ 5 L1 ; READ 5 L2 ;
Q1 := .5 ; Q2 := .56 ; CO 1
FIT Q1 Q2 ; TRIPLET ; OBJ :
ENDFIT 1E-5 1000 1 OBJ ;
CO0 3 ; TRIPLET ;
WRITE 6 ’> SPHERICAL ABERRATION FOR THIS SYSTEM: ’ ME(1,222) ;
WRITE 6 ’> CONTINUE SEARCH? (1/0) ’> ; READ 5 ISTOP ;
ENDWHILE ; PP -10 0 O ; PP -10 0 90 ;
ENDPROCEDURE ; RUN ; END ;

1| e

ABS(ME(1,2))+ABS(ME(3,4)) ;

This example shows how it is possible to phrase more complicated interactive opti-
mization tasks in the COSY language. One can even go far beyond the level of sophistica-
tion displayed here; by nesting sufficiently many WHILE, IF, and LOOP statements,
it is often possible to optimize a whole system in one interactive session without ever
leaving COSY. For example, the first order design in [38] which is subject to quite a
number of constraints and requires a sophisticated combination of trial and optimization
was performed in this way.

5.5 Normal Form, Tune Shifts and Twiss Parameters

The following example shows the use of normal form methods and parameter dependent
Twiss parameters for the analysis of a repetitive system. For the sake of simplicity, we
choose here a simple FODO cell that is described by the procedure CELL. The map of
the cell is computed to fifth order, with the energy as a parameter. In the cell itself, the
quadrupole strength is another parameter.

As a first step, the parameter dependent tunes are computed and written to unit 7,
following the algorithm in [35]. Next follow the tunes depending on parameters and am-
plitude; this is done with DA normal form theory [34]. Finally, several other quantities
and their parameter dependence are computed using the procedure GT. They include
the parameter dependent fixed point, the parameter dependent Twiss parameters, as
well as the parameter dependent damping (which here is unity because no radiation
effects are taken into account).

INCLUDE ’COSY’ ;
PROCEDURE RUN ;
VARIABLE A 100 2 ; VARIABLE B 100 2 ; VARIABLE G 100 2 ;
VARIABLE R 100 2 ; VARIABLE MU 100 2 ; VARIABLE F 100 6 ;
PROCEDURE CELL ;
DL .1 ; DI 145 .10000 ; DL .1 ; MQ .1 —.1%PARA(2) .1 ; DL .2 ;

5.6 Repetitive Tracking 61

ENDPROCEDURE ;
OV 5 2 2 ; RP 1xPARA(1) 1 1 ; UM ; CELL ;
TP MU ; WRITE 7 ’ DELTA DEPENDENT TUNES ° MU(1) MU(2) ;

TS MU ; WRITE 7 ’ DELTA AND EPS DEPENDENT TUNES ’ MU(1) MU(2) ;
GT MAP F MU AB GR ;
WRITE 7 °> DELTA DEPENDENT FIXED POINT ’ F(1) F(2) F(3) F(4) ;

WRITE 7 ’> DELTA DEPENDENT ALPHAS °’ A(1) A(2) ;
WRITE 7 ’ DELTA DEPENDENT BETAS ’ B(1) B(2) ;
WRITE 7 ’> DELTA DEPENDENT GAMMAS °’ G(1) G(2) ;
WRITE 7 ’> DELTA DEPENDENT DAMPINGS °’ R(1) R(2) ;

ENDPROCEDURE ; RUN ; END ;

5.6 Repetitive Tracking

In the following example, we want to study the nonlinear behavior of a ring by a qual-
itative analysis of tracking data. The ring consists of 18 identical cells. Nine of these
cells are packed into a half cell by the procedure HALFCELL. At execution, the system
asks for the values of the strengths of the two hexapoles which influence its degree of
nonlinearity. The tracking data for each setting are displayed and then also output in
ITEX format for inclusion in this manual, shown in Figure 5. In order to keep the size
of the IATEX source file limited, only 100 turns were tracked for five particles.

INCLUDE ’COSY’ ;
PROCEDURE RUN ; VARIABLE QS 1 ; VARIABLE H1 1 ; VARIABLE H2 1 ; VARIABLE N 1 ;

PROCEDURE CELL Q H1 H2 ; {defines a cell of a ring}
DL .3 ; DI 1020 .1 000 O ; DL .1 ; MH .1 H1 .05 ;
DL .1 ; MQ .1 Q .05 ; DL .3 ; MH .1 H2 .05 ;
ENDPROCEDURE ;

PROCEDURE HALFRING Q H1 H2 ; VARIABLE I 1 ;
LOOP I 1 9 ; CELL Q H1 H2 ; ENDLOOP ; ENDPROCEDURE ;

o e

SR .01
SR .015

OV 3 2 0 ; RPP 1000 ; {third order, one GeV protons}
QS := -.05 ; H1 := .01 ;
WHILE H1#0 ; WRITE 6 ’ GIVE HEXAPOLE STRENGTHS ’ ; READ 5 H1 ; READ 5 H2 ;
UM ; HALFRING QS H1 H2 ;
WRITE 6 > GIVE NUMBER OF TURNS ’ ; READ 5 N ;
SR .005 0 .006 000001 ;
SR .01 0 .01 000001
SR .015 0 .015000001 ;
SR .02 0 .02 000001
TRN1 12 .03 .002 00 -101 ; CR ;
SR .005 0 .005 O
0
0

0
.01 00
.015 00

o O O
o O O
o O O

e

62 5 EXAMPLES

Figure 5: COSY KTEX tracking picture

SR .02 0 .02 000001 ;
TRN1 12 .03 .002 O O -7 ; ENDWHILE ;
ENDPROCEDURE ; RUN ; END ;

5.7 Introducing New Elements

When looking into the physics part of COSY INFINITY, it becomes apparent that
all particle optical elements described above are nothing but procedures written in the
COSY language. Due to the openness of the approach, users can construct their own
particle optical elements.

Here we want to show how a user can define his own particle optical element and
work with it. As a first example, we begin with a skew quadrupole that is rotated against
the regular orientation by the angle ¢. The action of such a quad can be obtained by
first rotating the map by —¢, then let the quad act, and finally rotate back. All these
steps are performed on the DA variable containing the momentary value of the transfer
map, which is the global COSY array MAP. For the conversion of degrees to radians,
the global COSY variable DEGRAD is used. Note that many important global variables
of COSY are described in section 5.8.

INCLUDE ’COSY’ ;
PROCEDURE RUN ;

5.8 Introducing New Features 63

PROCEDURE SQ PHI L B D ; {computes the action of a skew quad}
PROCEDURE ROTATE PHI ; {local procedure for rotation}
VARIABLE M 1000 4 ; VARIABLE I 1 ;

M(1) := COS(PHI*DEGRAD)*MAP(1) + SIN(PHI*DEGRAD)*MAP(3) ;
M(3) := -SIN(PHI*DEGRAD)*MAP(1) + COS(PHI*DEGRAD)*MAP(3) ;
M(2) := COS(PHI*DEGRAD)*MAP(2) + SIN(PHI*DEGRAD)*MAP(4) ;
M(4) := -SIN(PHI*DEGRAD)*MAP(2) + COS(PHI*DEGRAD)*MAP(4) ;

LOOP I 1 4 ; MAP(I) := M(I) ; ENDLOOP ; ENDPROCEDURE ;
ROTATE -PHI ; MQ L B D ; ROTATE PHI ; ENDPROCEDURE ;
OV520 ;RP111;
UM ; DL .1 ; SQ -30 .2 .1 .1 ; DL .1 ; SQ 30 .2 .1 .1 ; PM 6 ;
ENDPROCEDURE ; RUN ; END ;

It is clear that a similar technique can be used to study misaligned elements. In a
similar way, it is easily possible to generate a “kick-environment” in COSY INFINITY,
where every particle optical element is just represented by a kick in its center.

This technique is also useful in many other ways. For example, if a certain element
is rather time consuming to compute, which can be the case with cylindrical lenses to
high orders, one can write a procedure that computes the map of the element, including
the dependence on some of its parameters, and saves the map somewhere. When called
again with different values, the procedure decides if the values are close enough to the
old ones to just utilize the previously computed map with the parameters plugged in,
or if it is necessary to compute the element again. In case the parameters are varied
only slightly, a very significant speed up can be achieved in this way, yet for the user
the procedure looks like any other element.

5.8 Introducing New Features

The whole concept of COSY INFINITY is very open in that it easily allows extensions for
specific tasks. The user is free to provide his own procedures for particle optical elements
or for many other purposes. To interface with COSY INFINITY most efficiently, it is
important to know the names of certain key global variables, functions and procedures.
Furthermore it is important to know that all quantities in COSY INFINITY are in SI
units, with the exception of voltages, which are in kV.

For some applications, it is helpful to access some of COSY INFINITY’s global
variables. Since the physics of the code is written in its own language, all these variables
are directly visible to the user. The first set of relevant global variables are the natural
constants describing the physics. These variables are set after the routine OV or DEF
is called and can be utilized for calculations by the user. The data are taken from [23]
(CAUTION: The data was updated in September 2001 in COSY.FOX). In order to
match other codes, the variables can be changed by the user in COSY.FOX if necessary.

64 5 EXAMPLES

AMU Atomic Mass Unit 1.66053873 - 10~2" kg
AMUMEYV | Atomic Mass Unit in MeV | computed as AMU-c?/e
= 931.4940136 MeV

EZERO The charge unit e 1.602176462 - 10~ C
CLIGHT The speed of light ¢ 2.99792458 - 10% m/s
PI the value of 7 computed as 4 arctan(1.0)

The second set of variables describes the reference particle. These variables are updated
every time the procedure RP is called.

EO Energy in MeV
MO Mass in AMU
Z0 Charge in units
Vo Velocity in m/s

PO | Momentum pyc in MeV
CHIM Magnetic Rigidity
CHIE Electric Rigidity

ETA | Kinetic Energy over mc

2

Finally, there are the variables that are updated by particle optical elements:

MAP Array of 8 DA vectors containing Map

RAY | Array of 8 VE vectors containing Coordinates
SPOS | Momentary value of the independent variable

COSY INFINITY contains several procedures that are not used explicitly by the user
but are used internally for certain operations. Firstly, there are the three DA functions

DER(<n>,<a>)
INTEG(<n>,<a>)
PB (<a>,)

which compute the DA derivation with respect to variable n, the integral with respect
to variable n, and the Poisson bracket between a and b. Another helpful function is

NMON (<NO>,<NV>)

which returns the maximum number of coefficients in a DA vector in NV variables to
order NO. An important procedure is

POLVAL <L> <P> <NP> <A> <NA> <R> <NR> ;

which lets the polynomial described by the NP DA vectors or Taylor models [1] stored
in the array P act on the NA arguments A, and the result is stored in the NR Vectors
R.

In the normal situation, L should be set 1. After POLVAL is called with L= 1, the

5.8 Introducing New Features 65

analysis of the polynomial array P can be omitted by calling POLVAL with L= —1
or L= 0. The other setting for L is discouraged, because it may interfere with COSY’s
internal use of POLVAL.

The type of A is free, but all the array elements of A have to be the same type; it
can be either DA or CD, in which case the procedure acts as a concatenator, it can be
real, complex or intervals, in which case it acts like a polynomial evaluator, or it can
be of vector type VE, in which case it acts as a very efficient vectorizing map evaluator
and is used for repetitive tracking. If necessary, adding 0*A(1) can make the type of
the argument array element A(I) agreeing to that type of A(1).

Further details on using the COSY INFINITY environment for active programming
tasks can be found in [1].

66 6 ACKNOWLEDGEMENTS

6 Acknowledgements

For very valuable help with an increasing number of parts of the program, we would
like to thank Meng Zhao, Weishi Wan, Georg Hoffstatter, Ralf Degenhardt, Khodr
Shamseddine, Nina Golubeva, Vladimir Balandin, Jens Hoefkens, Béla Erdélyi, Lars
Diening, Michael Lindemann, Jens von Bergmann, and Ralf Tonjes who all at various
times were at Michigan State University. We would also like to thank numerous COSY
users for providing valuable feedback, many good suggestions, and streamlining the
implementation on various machines.

We would like to thank Kurt Overley and Tom Mottershead for their optimizer
QOPT, Jay Dittmann for help with the simplex optimizer, and Jorge More for providing
the public domain optimizer LMDIF. We would like to thank Roger Servranckx for
providing the MAD to COSY converter. We would like to thank Felix Marti for writing
the GKS graphics drivers.

Financial support was appreciated from the Deutsche Forschungsgemeinschaft, the
University of Gieflen, the SSC Central Design Group, Lawrence Berkeley Laboratory,
Michigan State University, the National Superconducting Cyclotron Laboratory, the
Alfred P. Sloan Foundation, the National Science Foundation, and the U.S. Department
of Energy.

REFERENCES 67

References

[1]

2]

3]

8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Berz and J. Hoefkens. COSY INFINITY Version 8.1 - programming man-
ual. Technical Report MSUHEP-20703, Department of Physics and Astron-
omy, Michigan State University, East Lansing, MI 48824, 2002. see also
http://cosy.pa.msu.edu.

K. Makino and M. Berz. COSY INFINITY version 8. Nuclear Instruments and
Methods, A427:338-343, 1999.

K. L. Brown. The ion optical program TRANSPORT. Technical Report 91, SLAC,
1979.

T. Matsuo and H. Matsuda. Computer program TRIO for third order calculations
of ion trajectories. Mass Spectrometry, 24, 1976.

M. Berz, H. C. Hofmann, and H. Wollnik. COSY 5.0, the fifth order code for
corpuscular optical systems. Nuclear Instruments and Methods, A258:402, 1987.

M. Berz and H. Wollnik. The program HAMILTON for the analytic solution of
the equations of motion in particle optical systems through fifth order. Nuclear
Instruments and Methods, A258:364, 1987.

M. Berz. Modern Map Methods in Particle Beam Physics. Academic Press, San
Diego, 1999. Also available at http://bt.pa.msu.edu/pub.

M. Berz. Forward algorithms for high orders and many variables. Automatic Dif-
ferentiation of Algorithms: Theory, Implementation and Application, STAM, 1991.

M. Berz. Automatic differentiation as non-Archimedean analysis. In Computer
Arithmetic and Enclosure Methods, page 439, Amsterdam, 1992. Elsevier Science
Publishers.

M. Berz. Arbitrary order description of arbitrary particle optical systems. Nuclear
Instruments and Methods, A298:426, 1990.

M. Berz. Differential algebraic description of beam dynamics to very high orders.
Particle Accelerators, 24:109, 1989.

M. Berz. Differential algebra precompiler version 3 reference manual. Technical
Report MSUCL-755, Michigan State University, East Lansing, MI 48824, 1990.

Christian Bischof, Alan Carle, George F. Corliss, Andreas Griewank, and Paul
Hovland. ADIFOR: Generating derivative codes from Fortran programs. Scientific
Computing, 1(1):11-29, 1992.

A. J. Dragt, L. M. Healy, F. Neri, and R. Ryne. MARYLIE 3.0 - a program for
nonlinear analysis of accelerators and beamlines. IEEE Transactions on Nuclear
Science, NS-3,5:2311, 1985.

68

[15]

[16]

[17]
[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

REFERENCES

C. Iselin. MAD - a reference manual. Technical Report LEP-TH/85-15, CERN,
1985.

C. Iselin and J. Niederer. The MAD program, version 7.2, user’s reference manual.
Technical Report CERN/LEP-TH/88-38, CERN, 1988.

H. Wollnik. Optics of Charged Particles. Academic Press, Orlando, Florida, 1987.

P. W. Hawkes and E. Kasper. Principles of Electron Optics, volume 1-2. Academic
Press, London, 1989.

D. C. Carey. The Optics of Charged Particle Beams. Harwood Academic, New
York, 1987, 1992.

X. Jiye. Aberration Theory in Electron and Ion Optics. Advances in Electronics
and Electron Physics, Supplement 17. Academic Press, Orlando, Florida, 1986.

K. G. Steffen. High Energy Beam Optics. Wiley-Interscience, New York, 1965.
W. Glaser. Grundlagen der Elektronenoptik. Springer, Wien, 1952.

Particle Data Group. Review of particle physics. Furopean Physical Journal C,
15:1-878, 2000.

K. L. Brown and J. E. Spencer. Non-linear optics for the final focus of the single-
pass-collider. IEEFE Transactions on Nuclear Science, NS-28,3:2568, 1981.

S. Kowalski and H. Enge. RAYTRACE. Technical report, MIT, Cambridge, Mas-
sachussetts, 1985.

G. Sabbi. Magnetic field analysis of HGQ coil ends. Technical Report TD-97-040,
Fermilab, 1997.

J. A. Caggiano, D. Bazin, B. S. Davids, R. Foutus, D. Karnes, P. Johnson, B. Sher-
rill, and A. Zeller. S800 spectrograph dipole mapping. Annual Report of the
Michigan State University National Superconducting Cyclotron Laboratory, 1996.

G. Hoffstatter and M. Berz. Efficient computation of fringe fields using symplectic
scaling. AIP CP, 297:467, 1993.

G. Hoffstatter and M. Berz. Symplectic scaling of transfer maps including fringe
fields. Physical Review E, 54,4, 1996.

M. Berz. Computational aspects of design and simulation: COSY INFINITY.
Nuclear Instruments and Methods, A298:473, 1990.

K. Makino and M. Berz. Arbitrary order aberrations for elements characterized by
measured fields. In Optical Science, Engineering and Instrumentation ’97. SPIE,
1997.

REFERENCES 69

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD
thesis, Michigan State University, East Lansing, Michigan, USA, 1998. Also
MSUCL-1093.

M. Berz, K. Joh, J. A. Nolen, B. M. Sherrill, and A. F. Zeller. Reconstructive
correction of aberrations in nuclear particle spectrographs. Physical Review C,
47,2:537, 1993.

M. Berz. Differential algebraic formulation of normal form theory. In M. Berz,
S. Martin and K. Ziegler (Eds.), Proc. Nonlinear Effects in Accelerators, page 77,
London, 1992. IOP Publishing.

M. Berz. Direct computation and correction of chromaticities and parameter tune
shifts in circular accelerators. In Proceedings XIII International Particle Accelerator
Conference, JINR D9-92-,55, pages 34-47(Vol.2), Dubna, 1992.

B. Erdélyi. Symplectic Approximation of Hamiltonian Flows and Accurate Simul-
tation of Fringe Field Effect. PhD thesis, Michigan State University, East Lansing,
Michigan, USA, 2001.

A. J. Dragt and J. M. Finn. Lie series and invariant functions for analytic symplectic
maps. Journal of Mathematical Physics, 17:2215, 1976.

M. Berz. Isochronous beamlines for free electron lasers. Nuclear Instruments and
Methods, A298:106, 1990.

M. Berz. Differential algebraic description and analysis of spin dynamics. AIP CP,
343, 1995.

V. Balandin, M. Berz, and N. Golubeva. Computation and analysis of spin dynam-
ics. AIP CP, 391:276, 1996.

W. Wan. Theory and Applications of Arbitrary-Order Achromats. PhD thesis,
Michigan State University, East Lansing, Michigan, USA, 1995. also MSUCL-976.

W. Wan and M. Berz. An analytical theory of arbitrary order achromats. Physical
Review E, 54,3:2870, 1996.

Index

dr (COSY Variable), 17
dm (COSY Variable), 17
d, (COSY Variable), 17
v (Relativistic Factor), 17
p (magnetic moment), 17

a (COSY Variable), 17
Aberration, 46

Coefficient, 46

Influence on Resolution, 47

Output, 46

Reconstructive Correction, 47
Acceleration, 29
Accelerator Physics Books, 15
Acknowledgements, 66
AM (Apply Map), 18
Amplitude Tune Shifts, 48
Angle Unit, 15, 62
ANM (Compose Map), 19
Aperture Definition, 24
Applying Map, 18
AR (Aberration Resolution) , 47
Aspherical Lens, 42
Atomic Mass Unit, 64
Automatic Differentiation, 13

b (COSY Variable), 17
Beam
Definition, 17
Physics Books, 15
Bending
Direction
Change in Existing Map, 20
Changing, 24
Default, 24
Elements, 25
Magnet, 26
Blocks of Elements, 57
Books about Beam Physics, 15
BP (Begin Picture), 22

Ct++, 12

70

C++ Interface, 13
Canonical Variables, 17
Cavity, 29
CB (Change Bending), 24
CEA (Cylindrical Electric Lens), 31
CEG (Cylindrical Electric Gaussian), 31
CEL (Cylindrical Electric Lens), 30
Cell in Accelerators (Example), 57
Charge, 17

Dependence (Example), 56

Unit, 64
Chromatic Effects, 16
Chromaticity, 48
CMG (Cylindrical Magnetic Gaussian),

30
CML (Cylindrical Magnetic Lens), 30
CMR (Cylindrical Magnetic Ring), 29
CMS (Cylindrical Magnetic Solenoid), 30
CMSI (Cylindrical Magnetic Solenoid),
30

CO (Calculation Order), 16
Coil Loop, 29
Combined Function Wien Filter, 28
Composing Map, 19
Computational Correction, 47
Condition of Symplecticity, 51
Constants, Physical, 63
Conversion

Lattice Input, 43

MAD Input, 43

SXF Input, 44
Coordinate Transformations, 46
Coordinates, 17
Correction, Reconstructive, 47
COSY

Installation, 6

Obtaining Source, 5

References, 5
COSY 5.0, 12, 13
COSY Variables, 17
CR (Clear Rays), 21

INDEX

CRAY, 7
Installation, 10
Crosscompiler
MAD to COSY, 43
SXF to COSY, 44

CRSYSCA (Create SYSCA.DAT), 36

Current Ring, 29
Customized
Element, 62
Features, 63
Cylindrical Lenses, 29

DA, 12
Normal Form Algorithm, 48
Precompiler, 13
Decapole
Electric, 25
Magnetic, 24
Deflector
Bending Direction, 24
Electric, 26
Inhomogeneities, 26
DER (COSY Function), 64
Derivation, 64
Derivative, 64
DI (Dipole), 26, 38
Differential Algebra, 12
Dipole, 26
Bending Direction, 24
Edge Angles, 27
DL (Drift Length), 23
Dodecapole
Electric, 25
Magnetic, 24
Dragt-Finn Factorization, 53
Drift, 23
Driving Terms of Resonances, 49
Dynamical Variables, 17

E cross B device, 28

E5 (Electric Multipole), 25
ECM (Energy Compaction), 49
ED (Electric Decapole), 25
Edge

Curved, 27

Fields, 31

Focusing, 27

Tilted, 27
EH (Electric Hexapole), 25
Einzel Lens, 30, 31
Electric

Deflector, 26

Rigidity, 64
Electron Beam, 17
Element

General, 39

Grouping, 57

Measured Field, 39, 41

New, 62

Rotated, 44

Shifted, 44

Squew, 62

Supported, 23

Tilted, 44
Ellipse

Sigma matrix, 20
EM (Electric Multipole), 25
EMS (Electric Multipole), 25
ENCL (Energy closed orbit), 21
END (COSY command), 16
ENDFIT (COSY command), 58
Energy, 17

Compaction (ECM), 49
Enge Function, 32
ENVEL (Envelope), 21
EO (Electric Octupole, 25
EP (End Picture), 22
EQ (Electric Quadrupole, 25
ER (Ensemble of Rays), 21
Error, 24, 25, 44
ES (Electric Sector), 26
ESET (Epsilon Set), 31
ESET (Epsilon Set), 35, 41
Examples

Charge Dependent Map, 56

Customized Element, 62

Customized Optimization, 59

Grouping of Elements, 57

71

72

Mass Dependent Map, 56
Normal Form, 60
Optimization, 58
Sequence of Elements, 55
Tracking, 61
Transfer Map Output, 55
Tune Shifts, 60
Twiss Parameters, 60
EXPO, 50
EZ (Electric Dodecapole), 25

F; (Generating Functions), 52
F90 Interface, 13
FC (Fringe-Field Coefficients), 33
FC2 (Fringe-Field Files), 36
FD (Fringe-Field Default), 35
FD2 (Fringe-Field Files Default), 36
Field-Free Region, 23
Fields
Measured, 39, 41
FIT (COSY command), 58
Fitting, 58
Fixed Point, 48
Flat Mirror, 43
Focal Plane (PS), 23
Focusing
Strong, 24, 26, 27
Weak, 29
FP (Fringe-Field Picture), 33
FR (Fringe-Field Mode), 32
FR 1 (Fringe-Field Mode 1), 37
FR 2 (Fringe-Field Mode 0), 37
FR 2 (Fringe-Field Mode 2), 35
FR 3 (Fringe-Field Mode 3), 32
Fringe Field, 31, 32
Coefficients (FC), 33
Default (FD), 35
Files (FC2), 36
Files Default (FD2), 36
General Maps, 38
Mode 0, 37
Mode 1, 37
Mode 2, 35
Mode 3, 32

INDEX

Picture (FP), 33
Standalone, 37

Gaussian

Interpolation, 40

Lens, 30, 31
GE (General Element), 39
General Glass Mirror, 43
Generating Functions, 52
GFM (Generating Function), 52
GIOS, 12, 13, 15

Map in Coordinates, 46
GL (General Glass Lens), 42
Glaser Lens, 30
Glass

Lenses, 42

Mirrors, 42

Prism, 42
Global Variables, 63
GLS (Spherical Glass Lens), 42
GM (General Glass Mirror), 43
GMF (Flat Glass Mirror), 43
GMP (Parabolic Glass Mirror), 42
GMS (Spherical Glass Mirror), 42
GNU Fortran Installation, 8
GP (Glass Prism), 42
Graphics

Example, 59

LaTeX, 6

Output (Example), 59

PGPLOT, 6

PostScript (direct), 6
Grouping of Elements, 57

Example, 57
GT (Get Tune), 60

Hexapole

Electric, 25

Magnetic, 24
Homogeneous Magnet, 26
HP, 7

Installation, 9

IBM Mainframe, 7, 9
Image

INDEX

Aberrations, 46
Fitting of, 58

INCLUDE (COSY command), 15

Inhomogeneous Wien Filter, 28
Insertion Device, 28
Installation, 6
Open VMS, 7
VAX, 7
VAX/Open VMS, 7
CRAY, 10
G77, 8
HP, 9
IBM Mainframe, 9
Linux, 8
Standard UNIX, 7
UNIX, 7
Windows PC, 8
INTEG (COSY Function), 64
Integration, 64
Accuracy, 35
Interface
C++, 13
F90, 13
Invariant ellipse, 18
Ion Beam, 17
Iselin, Christopher, 43

Java, 12

Kick Method, 12
Knobs, 56
Example, 56

1 (COSY Variable), 17
LaTeX
Graphics, 6
Direct, 6
Lattice Converters, 43
Lens
Aspherical Glass, 42
Cylindrical, 29
Glass, 42
Round, 29
Spherical Glass, 42
LFLF (Lie Factorization), 54

73

LFM (Lie Factorization), 54
License, 5
Lie Factorization
Reversed, 54
Superconvergent, 54
Linux, 7
Installation, 8
LMEM, 10

m (Particle Mass), 17
M5 (Magnetic Multipole), 24
MA (Map Aberration, COSY function),
46
MAD
Input for COSY, 43
References, 13
Magnet
Bending Direction, 24
Curved Edges, 27
Homogeneous, 26
Inhomogeneous, 27
Parallel Faced, 27
Magnetic
Current Ring, 29
Moment, 17
Rectangle, 27
Rigidity, 17, 64
Solenoid, 30
Maketile, 8
Map
Application, 18
Codes, 12
Composed, 19
Computation, 18
Depending on Parameters, 56
Element of, 20
Expensive, 19
Global COSY Variable, 64
Modification (Example), 62
Read, 19
Reversed, 20
Save, 18
Set to Unity, 18
Switched, 20

74

Tracking Particles Through, 50
Twisted, 20
with Knobs (Example), 56
Write, 19
Mass, 17
Dependence (Example), 56
Matrix Element, 20
Maximum Order, 16

MC (Magnet, Combined Function), 27,

38
MCM (Momentum Compaction), 49
MD (Magnetic Decapole), 24
ME (Map Element), 20
Memory, 10
MeV/c, 17
MF (Measured Field Element), 39

MGE (Measured Field General Multi-

pole Element), 41

MGF (Generating Function), 52
MH (Magnetic Hexapole), 24
Mirror

Flat Glass, 43

General Glass, 43

Glass, 42

Parabolic Glass, 42

Spherical Glass, 42
Misalignment, 44
MLF (Lie Factorization), 53
MM (Magnetic Multipole), 24
MMS (Magnetic Multipole), 24
MO (Magnetic Octupole), 24
Momentum, 17

Compaction (MCM), 49
MQ (Magnetic Quadrupole), 24
MR (Reversed Map), 20
MS (Magnetic Sector), 38
MS (Magnetic Sector), 26

MSS (Magnetic Sector s-dependent), 26

MT (Twisted Map), 20
Multipole, 24

Electric, 25

Magnetic, 24, 41

Skew, 24, 25
MZ (Magnetic Dodecapole), 24

INDEX

Natural Constants, 63
New Features
Introduction of, 63
NF (Normal Form), 48
Nounlinearities, 46
Normal Form, 48
Example, 60

Octupole

Electric, 25

Magnetic, 24
OE (Orthogonal Error), 51
Offset, 44
On-Line Aberration Correction, 47
Optic Axis

Offset, 44

Rotation, 44

Tilt, 44
Optics Books, 15
Optimization, 58

Customized (Example), 59

Example, 58

Expensive Submaps, 19
Order

Changing, 16

Maximum, 16
Orthogonality Test, 51
Output, see Writing
OV (Order and Variables), 16

p (Particle Momentum) , 17
PA (Print Aberrations), 46
PARA (COSY Function), 45, 56
Parabolic
Mirror, 42
Parallel Faced Magnet, 27
Parameter, 16
Automatic Adjustment, 58
Example, 56
Fixed Point Depending on, 48
Maps Depending on, 56
Maximum Values, 18
Tune Shifts Depending on, 48
Particle Optics Books, 15

INDEX

Pascal, 14
PB (COSY Function), 64
PG (Print Graphics), 22
PGE (Print Envelope), 23
PGPLOT Graphics, 6
Phase Space, 16
Maximum Sizes, 17
Variables, 17
Weight, 51
Physical Constants, 64
Picture, see Graphics
Beginning, 22
End, 22
Type (PTY), 22
Writing, 22
Plane of Interest, 23
PM (Print Map), 19
Poincare Section (PS), 23
Poisson Bracket, 64
POLVAL (Intrinsic Procedure), 64
Polynomial, 64
PostScript Graphics
Direct, 6
PP (Print Picture), 22
PR (Print Rays), 22
Precompiler, 13
Printing, see Writing
Prism, 42
Problems, 5
PROCEDURE RUN, 15
Proton Beam, 17
PS (Poincare Section), 23
PS Graphics
Direct, 6
PSM (Print Spin Matrix), 19
PT (Print TRANSPORT), 46
PTY (Picture Type), 22

Quadrupole
Electric, 25
Magnetic, 24

Questions, 5

RA (Rotate Axis), 44

75

Ray
Clearing, 21
Computation, 20
Energy closed orbit, n function, 21
Envelope, 21
Global COSY Variable), 64
Selection, 21
Selection, Ensemble, 21
Sine, Cosine, Dispersion, Envelope ,
21
Tracing, 12
Trajectories, 22
Writing, 22
Reading
Map, 19
Scaling Map (RSM), 20
Reconstruction of Trajectories, 47
Reconstructive Correction, 47
Reference
files for fringe fields, 36
Particle, 17
Trajectory
Offset, 44
Rotation, 44
Tilt, 44
Repetitive Systems, 50
Resolution, 46
Linear, 46
Reconstructive Correction, 47
Under Aberrations, 47
Resonance Strength, 49
Reversed Map, 20
RF, 29
RF (RF Cavity), 29
Rigidity
Electric, 64
Magnetic, 64
RM (Read Map), 19
Rotation, 44
Round Lenses, 29
RP (Reference Particle), 17
RPE (Electron Reference Particle), 17
RPM (Reference Particle), 17
RPP (Proton Reference Particle), 17

76

RPR (Reference Particle), 17

RPS (Reference Particle Spin), 17
RR (Reconstructive Resolution), 47
RS (Resonance Strength), 49

RSM (Read Scaling Map), 20

RUN (COSY User Procedure), 16

SA (Shift Axis), 44
SB (Set Beam), 17
SBE (Set ellipse), 18
SCDE (Characteristic Rays), 21
SCOFF Approximation, 26
SE (Symplectic Error), 51
Sector
Bending Direction, 24

Combined Function with Edge An-

gles, 27
Electric, 26
Homogeneous Magnetic, 26
Magnetic, 26
Parallel Faced, 27
Servranckx, Roger, 43
Sextupole
Electric, 25
Magnetic, 24
Sharp Cut Off, 26
SI Units, 15
SIGMA, 20
Sigma Matrix, 20
Simple System (Example), 55
Skew
Electric Multipole, 25
Magnetic Multipole, 24
SM (Save Map), 18
SNM (Save Map), 18
Solenoid, 30
Source Files, 6
SP (Set Parameters), 18
Spectrograph, 46
Spectrometer, 46
Speed of Light, 64
Spherical
Lens, 42
Mirror, 42

INDEX

Spin
n, 49
Coordinates for Particle, 21
Initialization, 17
Orthogonality Test, 51
Printing Matrix, 19
Tuneshift, 49
Spot Size, 47
Squew Element, 62
SR (Select Ray), 21
SSR (Select Spin of Ray), 21
Stigmatic Image, 58
Stray Fields, 31
STURNS, 11
Support, 5
Switched Map, 20
SXF
Input for COSY, 44
SY (Symplectification), 52
Symplecticity Test, 51
Symplectification, 52
Syntax Changes, 11
System
of Units, 15
Optimization, 58
Plot, 22

TA (Tilt Axis), 44
Technical Support, 5
Three

Aperture Lens, 31

Tube Leuns, 30
Tilt, 44
Time of Flight Terms, 16
TP (Tune on Parameters), 48
TR (Track Rays), 50
Tracking, 50

Example, 61

EXPO, 50

Symplectic, 52
Trajectories, 20, see Ray, 22
Trajectory Reconstruction, 47
Transfer Map Output(Example), 55
TRANSPORT, 12, 13

INDEX 77

Map in Coordinates, 46 Map in TRANSPORT coordinates,
TRIO, 12, 13 46
TRT (Tracking Title), 51 Picture, 22
TS (Tune Shift), 48 Spin Matrix, 19
TSP (Tune on Parameters, Spin), 49 WSET (Phase Space Weight), 51
TSS (Tune Shift, Spin), 49 WSM (Write Scaling Map), 20
Tune, 48
Shift, 48 x (COSY Variable), 17

Shift (Example), 60
Shift, Spin, 49
Twiss Parameters, 48 z (Particle Charge), 17

Example, 60
Twisted Map, 20

y (COSY Variable), 17

UM (Unity Map), 18
Undulator, 28
Unit, 15

of Coordinates, 17
UNIX, 7

Installation, 7
User’s Agreement, 5

Variable
Important Global, 63
Phase Space, 17
VAX/Open VMS Iunstallation, 7
VERSION, 7
VMS, 7
Voltage Unit, 15

WC (Combined Function Wien Filter),
28
Weak Focusing Lenses, 29
WEF (Wien Filter), 28
WI (Wiggler), 28
Wien Filter, 28
Wiggler, 28
Windows PC, 7
WM (Write Map), 19
Working Set (VAX), 7
Write Scaling Map (WSM), 20
Writing
Aberrations, 46
Map, 19

