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51 Before Using COSY INFINITY1.1 User's AgreementCOSY INFINITY 
an be obtained from M. Berz under the following 
onditions.Users are requested not to make the 
ode available to others, but ask them to obtainit from us. We maintain a list of users to be able to send out regular updates, whi
hwill also in
lude features supplied by other users.The Fortran portions and the high-level COSY language portions of the 
ode shouldnot be modi�ed without our 
onsent. This does not in
lude the addition of new optimiz-ers and new graphi
s drivers as dis
ussed in [1, Optimization and Graphi
s℄; however, wewould like to re
eive 
opies of new routines for possible in
lusion in the master versionof the 
ode.Though we do our best to keep the 
ode free of errors and hope that it is so now, wedo not mind being 
onvin
ed of the 
ontrary and ask users to report any errors. Usersare also en
ouraged to make suggestions for upgrades, or send us their tools written inthe COSY language.If the user thinks the 
ode has been useful, we would like to see this a
knowledgedby referen
ing some of the papers related to the 
ode, for example [2℄. Finally, we doneither guarantee 
orre
tness nor usefulness of this 
ode, and we are not liable for anydamage, material or emotional, that results from its use.By using the 
ode COSY INFINITY, users agree to be bound by the above 
ondi-tions.1.2 How to Obtain Help and to Give Feedba
kWhile this manual is intended to des
ribe the use of the 
ode as 
ompletely as possible,there will probably arise questions that this manual 
annot answer. Furthermore, ween
ourage users to 
onta
t us with any suggestions, 
riti
ism, praise, or other feedba
kthey may have. We also appre
iate re
eiving COSY sour
e 
ode for utilities users havewritten and �nd helpful.We prefer to 
ommuni
ate by www or ele
troni
 mail. We 
an be 
onta
ted asfollows:Prof. Martin BerzDepartment of Physi
s and AstronomyMi
higan State UniversityEast Lansing, MI 48824, USAPhone: 1-517-355-9200 ex.2130



6 1 BEFORE USING COSY INFINITYFAX: 1-313-731-0313 (USA)or 49-89-9218-5422 (Europe/Germany)email: berz�msu.eduhttp://
osy.pa.msu.edu/1.3 How to Install the CodeThe 
ode for COSY INFINITY 
onsists of the following �les:� FOXY.FOP� DAFOX.FOP� FOXFIT.FOP� FOXGRAF.FOP� COSY.FOXAll the system �les of COSY INFINITY are 
urrently distributed via the WWW;http://
osy.pa.msu.edu/.Four �les, FOXY.FOP, DAFOX.FOP, FOXFIT.FOP and FOXGRAF.FOP, are writ-ten in Fortran and have to be 
ompiled and linked. FOXY.FOP is the 
ompiler andexe
uter of the COSY language. DAFOX.FOP 
ontains the routines to perform op-erations with obje
ts, in parti
ular the di�erential algebrai
 routines. FOXFIT.FOP
ontains the pa
kage of nonlinear optimizers. FOXGRAF.FOP 
ontains the availablegraphi
s output drivers, whi
h are listed in [1, Supported Graphi
s Drivers℄.In FOXGRAF.FOP, the PGPLOT graphi
s driver routines are 
ontained as standardgraphi
s output in COSY INFINITY. The PGPLOT graphi
s library is freely availablefrom the web page http://astro.
alte
h.edu/�tjp/pgplot/, and 
an be installed to VMS,UNIX, Windows 95/98/NT, et
 (see also [1, Supported Graphi
s Drivers℄). See page 8for an example make�le for a Linux system. If not desired, the PGPLOT driver routinesin FOXGRAF.FOP should be removed and repla
ed by the provided dummy routines.Some of the other popular graphi
s drivers, dire
t PostS
ript output and dire
t LATEXoutput, are self 
ontained in FOXGRAF.FOP and don't require to link to other libraries.COSY.FOX 
ontains all the physi
s of COSY INFINITY, and is written in COSYINFINITY's own input language. It has to be 
ompiled by FOXY as part of the instal-lation pro
ess. For this purpose, FOXY has to be run with the input �le COSY.All the Fortran parts of COSY INFINITY are written in standard ANSI Fortran77. However, 
ertain aspe
ts of Fortran 77 are still system dependent; in parti
ular,



1.3 How to Install the Code 7this 
on
erns �le handling. All system dependent features of COSY INFINITY are
oded for various ma
hines, in
luding VAX/VMS, Windows PC, UNIX, Linux, HP,IBM mainframes, and CRAY (HP, IBM mainframes, CRAY are not a
tively maintainedat this time).The type of ma
hine 
an be 
hanged by sele
tively adding and removing 
ommentidenti�ers from 
ertain lines. To go from UNIX to VAX, for example, all lines that havethe identi�er *UNIX somewhere in 
olumns 73 through 80 have to be 
ommented, and alllines that have the 
omment *VAX in 
olumns 1 through 5 have to be un-
ommented.To automate this pro
ess, there is a utility Fortran program 
alled VERSION thatperforms all these 
hanges automati
ally. Should there be additional problems, a shortmessage to us would be appre
iated in order to fa
ilitate life for future users on the samesystem.1.3.1 Standard UNIX systemsThe Fortran sour
e is by default 
ompatible with standard UNIX systems. In general,the 
ompiler optimization option is not re
ommended, be
ause it sometimes 
ausestrouble in handling the COSY syntax.On SunOS/Solaris systems, 
ompilation should be performed with the 
ompiler op-tion \-Bstati
".If PGPLOT graphi
s is desired, the 
ode has to be linked with the lo
al PGPLOTlibraries.Currently as of O
tober 13, 2002, the GKS graphi
s routines are 
ommented out. IfGKS graphi
s is desired, a
tivate the GKS routines in foxgraf.f using the small programVERSION as des
ribed in [1, Supported Graphi
s Drivers℄. The 
ode has to be linkedto the lo
al GKS obje
t 
ode. On workstations, the graphi
s 
an be utilized underXwindows and Tektronix. See [1, Supported Graphi
s Drivers℄.1.3.2 VAX/Open VMS systemsOn VAX/Open VMS systems, all lines that 
ontain the string *VAX in 
olumns 1 to 5should be un-
ommented, and all the lines 
ontaining the string *UNIX in 
olumns 73to 80 should be 
ommented. This 
an be done using the small program VERSION; at�rst, adjust VERSION manually so it performs �le handling properly.Compilation should be done without any options. In order to link and run the 
ode, itmay be ne
essary to in
rease 
ertain working set parameters. The following parameters,generated with the VAX/Open VMS 
ommand SHOW WORK, are suÆ
ient:Working Set (pagelets) /Limit=1408 /Quota=10240 /Extent=128000



8 1 BEFORE USING COSY INFINITYAdjustment enabled Authorized Quota=10240 Authorized Extent=128000Working Set (8Kb pages) /Limit=88 /Quota=640 /Extent=8000Authorized Quota=640 Authorized Extent=8000If PGPLOT graphi
s is desired, the 
ode has to be linked with the lo
al PGPLOTlibraries.Currently as of O
tober 13, 2002, the GKS graphi
s routines are 
ommented out. IfGKS graphi
s is desired, a
tivate the GKS routines in FOXGRAF.FOP using the smallprogram VERSION as des
ribed in [1, Supported Graphi
s Drivers℄. The 
ode has tobe linked with the lo
al GKS obje
t 
ode. It 
an be exe
uted on workstations withUIS graphi
s, with Xwindows graphi
s, and on terminals supporting Tektronix. See [1,Supported Graphi
s Drivers℄.1.3.3 Windows PCAn exe
utable program for Mi
rosoft Windows 95/98/NT by the DIGITAL Visual For-tran 
ompiler 5.0 linked with the PGPLOT graphi
s libraries is available.In 
ase 
ompilation and linking on lo
al ma
hines are needed, the four Fortran sour
e�les have to be adjusted; all lines that 
ontain the string *PC in 
olumns 1 to 3 shouldbe un-
ommented, and all the lines 
ontaining the string *UNIX in 
olumns 73 to 80should be 
ommented. This 
an be done using the small program VERSION; at �rst,adjust VERSION manually so it performs �le handling properly.If PGPLOT graphi
s is desired, the 
ode has to be linked with the lo
al PGPLOTlibraries.If VGA graphi
s pa
kages with Lahey F77/F90 
ompilers are desired, FOXGRAF.FOPhas to be adjusted; see [1, Supported Graphi
s Drivers℄.1.3.4 G77 systems (Linux)On systems that use the GNU Fortran 77 
ompiler g77 and the appropriate GNU li-braries, all lines that 
ontain the string *G77 in 
olumns 1 to 4 should be un-
ommented,and all the lines 
ontaining the string *UNIX in 
olumns 73 to 80 should be 
ommented.This 
an be done using the small program VERSION; at �rst, adjust VERSION man-ually so it performs �le handling properly.The following is an example \Make�le" to 
ompile and link the program with thePGPLOT graphi
s libraries. Che
k the do
umentation of the GNU Fortran 77 
ompilerabout platform spe
i�
 options. In general, the 
ompiler optimization option is notre
ommended, be
ause it sometimes 
auses trouble in handling the COSY syntax.



1.3 How to Install the Code 9FC=g77 -WallFFLAGS=LIBS=-L/usr/lo
al/pgplot -lpgplot -L/usr/X11R6/lib -lX11OBJ = dafox.o foxy.o foxfit.o foxgraf.oall: $(OBJ)$(FC) -o 
osy $(OBJ) $(LIBS)1.3.5 HP systemsOn HP systems, all lines that 
ontain the string *HP in 
olumns 1 to 3 should be un-
ommented, and all the lines 
ontaining the string *UNIX in 
olumns 73 to 80 shouldbe 
ommented. This 
an be done using the small program VERSION; at �rst, adjustVERSION manually so it performs �le handling properly.Compilation should be performed with the 
ompiler option setting stati
 memoryhandling.If PGPLOT graphi
s is desired, the 
ode has to be linked with the lo
al PGPLOTlibraries.Currently as of O
tober 13, 2002, the GKS graphi
s routines are 
ommented out. IfGKS graphi
s is desired, a
tivate the GKS routines in foxgraf.f using the small programVERSION as des
ribed in [1, Supported Graphi
s Drivers℄. The 
ode should be linkedto the lo
al GKS obje
t 
ode. GKS on HP systems usually requires the use of INCLUDE�les in the beginning of FOXGRAF.FOP as well as in all subroutines. These INCLUDEstatements are 
ontained in the HP version, but they have to be moved from 
olumn 6 to
olumn 1, and possibly the address of the libraries has to be 
hanged.On workstations,the graphi
s 
an be utilized under Xwindows and Tektronix. See [1, Supported Graphi
sDrivers℄.The last versions of COSY INFINITY have not been expli
itly tested on HP systems.Additional 
hanges may be ne
essary.1.3.6 IBM MainframesOn IBM mainframe systems, all lines that 
ontain the string *IBM in 
olumns 1 to 4should be un-
ommented, and all the lines 
ontaining the string *UNIX in 
olumns 73to 80 should be 
ommented. This 
an be done using the small program VERSION; at�rst, adjust VERSION manually so it performs �le handling properly.The last versions of COSY INFINITY have not been expli
itly tested on IBM Main-frames. Additional 
hanges may be ne
essary.



10 1 BEFORE USING COSY INFINITY1.3.7 CRAYThe installation to CRAY ma
hines with UNIX operating systems should follow theinstru
tion in subse
tion 1.3.1 on Standard UNIX systems.On CRAY ma
hines with the original CRAY operating systems, all lines that 
ontainthe string *CRAY in 
olumns 1 to 5 should be un-
ommented, and all the lines 
ontainingthe string *UNIX in 
olumns 73 to 80 should be 
ommented. This 
an be done usingthe small program VERSION; at �rst, adjust VERSION manually so it performs �lehandling properly.The last versions of COSY INFINITY have not been expli
itly tested on CRAYs.Additional 
hanges may be ne
essary.1.3.8 Possible Memory LimitationsBeing based on Fortran, whi
h does not allow dynami
 memory allo
ation, COSY IN-FINITY has its own memory management within a large Fortran COMMON blo
k.On ma
hines supporting virtual memory, the size of this blo
k should not present anyproblem. On some other ma
hines, it may be ne
essary to s
ale down the length. This
an be a
hieved by 
hanging the parameter LMEM at all o

urren
es in FOXY.FOP,DAFOX.FOP and FOXGRAF.FOP to a lower value. Values of around 500 000 shouldbe enough for many appli
ations, whi
h brings total system memory down to about 8Megabytes.In the 
ase of limited memory resour
es, it may also be ne
essary to s
ale down thelengths of 
ertain variables in COSY.FOX to lower levels. In parti
ular, this holds forthe variables MAP and MSC whi
h are de�ned at the very beginning of COSY.FOX.Possible values for the length are values down to about 500 for work through around�fth order. For higher orders, larger values are needed.1.4 How to Avoid Reading This ManualThe input of COSY INFINITY is based on a programming language whi
h is des
ribedin detail in [1, The COSY Language℄. The stru
ture and features are quite intuitive, andwe are 
on�dent that one 
an qui
kly pi
k up the key ideas following some examples.COSY INFINITY is written in this language, and all parti
le opti
al elements and
ontrol features are invoked by 
alls to library pro
edures written in this language. Adetailed des
ription of these features is provided in se
tions 3 and 4.Se
tion 5 beginning on page 55 gives several examples for problems o

urring in the
omputation and analysis of parti
le opti
al systems. Reading these se
tions should



1.4 How to Avoid Reading This Manual 11enable the user to get a head start in using COSY INFINITY. Another sour
e of infor-mation is the demonstration �le DEMO.FOX.For sophisti
ated problems or the development of 
ustomized features, the user may�nd it helpful to study [1, Optimization and Graphi
s℄. A 
omplete list of all data typesand operations as well as all intrinsi
 fun
tions and pro
edures available in the COSYlanguage is given in [1, The Supported Types and Operations℄. Finally, the pages of thelisting of COSY INFINITY 
an be 
onsulted for existing stru
tures and programmingideas.1.4.1 Syntax ChangesWith very minor ex
eptions, version 8 and version 8.1 are downward 
ompatible to thepreviously released version 7 of COSY INFINITY. Any user de
k for version 7 shouldrun under versions 8 and 8.1.As of O
tober 12 2002, the GKS graphi
s driver routines in FOXGRAF.FOP are
ommented out. When the GKS graphi
s library is not linked, the user does not have to
hange FOXGRAF.FOP. The data types for ordered interval (OI) and ordered intervalve
tors (OV) are no longer supported, resulting in no support to the 
ommand STURNS.



12 2 WHAT IS COSY INFINITY2 What is COSY INFINITYThe design and analysis of parti
le opti
al systems is quite intimately 
onne
ted with the
omputer world. There are numerous more or less widespread 
odes for the simulationof parti
le opti
al systems. Generally, these 
odes fall into two 
ategories. One 
ategoryin
ludes ray tra
ing 
odes whi
h use numeri
al integrators to determine the traje
toriesof individual rays through external and possibly internal ele
tromagneti
 �elds. The
ore of su
h a 
ode is quite robust and easy to set up; for many appli
ations, however,
ertain important information 
an not be dire
tly extra
ted from the mere values ray
oordinates. Furthermore, this type of 
ode is often quite slow and does not allowextensive optimization.The other 
ategory of 
odes are the map 
odes, whi
h 
ompute Taylor expansionsto des
ribe the a
tion of the system on phase spa
e. These 
odes are usually fasterthan integration 
odes, and the expansion 
oeÆ
ients often provide more insight intothe system. On the other hand, in the past the orders of the map, whi
h are a measureof the a

ura
y of the approa
h, have been limited to third order [3, 4℄ and �fthorder [5, 6℄. Furthermore, traditional mapping 
odes have only very limited libraries forquite standardized external �elds and la
k the 
exibility of the numeri
al integrationte
hniques. In parti
ular, fringe �elds 
an only be treated approximately.2.1 COSY's Algorithms and their ImplementationIt is indeed possible to have the best of both worlds: using di�erential algebrai
 te
h-niques, any given numeri
al integration 
ode 
an be modi�ed su
h that it allows the
omputation of Taylor maps for arbitrarily 
ompli
ated �elds and to arbitrary order[7, 8, 9, 10, 11℄. An o�spring of this approa
h is the 
omputation of maps for largea

elerators where often the system 
an be des
ribed by inexpensive, low order ki
kintegrators.The speed of this approa
h is initially determined by the numeri
al integration pro-
ess. Using DA te
hniques, this problem 
an be over
ome too: DA 
an be used toautomati
ally generate numeri
al integrators of arbitrary high orders in the time step,yet at the 
omputational expense of only little more than a �rst order integrator [10, 11℄.This te
hnique is very versatile, works for a very large 
lass of �elds, and the speedsobtained are similar to 
lassi
al mapping 
odes.In order to make eÆ
ient use of DA operations in a 
omputer environment, it hasto be possible to invoke the DA operations from within the language itself. In the
onventional languages used for numeri
al appli
ations (namely C and Fortran) it isoften diÆ
ult to introdu
e new data types and overload the operations on them. Modernobje
t oriented languages like C++ and Java on the other hand have the 
apabilitiesof 
onveniently introdu
ing new data types. However, the added 
exibility often 
omeswith a hefty performan
e penalty that limits the appli
ability of these languages to



2.2 The User Interfa
e 13
ompli
ated numeri
al problems.Hen
e, there are strong reasons to stay within the limits of a Fortran environment.Firstly, almost all software in the �eld of s
ienti�
 
omputing is written in this language,and the desire to interfa
e to su
h software is easier if Fortran is used. Furthermore, thereare extensive libraries of support software whi
h are only slowly be
oming available inother languages, in
luding routines for nonlinear optimization and numeri
al toolboxes.Finally, the ne
essity for portability is another strong argument for Fortran; virtuallyevery ma
hine that is used for numeri
al appli
ations, starting from personal 
omputers,
ontinuing through the workstation and mainframe world to the super
omputers, has aFortran 
ompiler. Moreover, due to the long experien
e with them, these 
ompilers arevery mature and produ
e highly optimized and eÆ
ient 
ode.Consequently, the DA pre
ompiler [12℄ has been designed in Fortran 77. This pre-
ompiler allows the use of a DA data type within otherwise standard Fortran by trans-forming arithmeti
 operations 
ontaining DA variables into a sequen
e of 
alls to sub-routines. While the DA pre
ompiler is not a full Automati
 Di�erentiation tool likeAdifor [13℄ or Odyssee, it has been extensively used [11℄. It was parti
ularly helpful thatone 
ould use old Fortran tra
king 
odes and just repla
e the appropriate real variablesby DA variables to very qui
kly obtain high order maps.However, with the re
ently developed C++ and Fortran 90 interfa
es to COSY IN-FINITY, the question of the underlying software ar
hite
ture has be
ome somewhatobsolete. It is now possible to a

ess the sophisti
ated data stru
tures and algorithms ofCOSY INFINITY even from within these languages. Moreover, these native-languageinterfa
es to COSY INFINITY outperform similar attempts at 
reating di�erential alge-brai
 data types by a wide margin. The performan
e of the interfa
es is within a fa
tor oftwo to the regular COSY system on most platforms (detailed performan
e 
omparisonswill be published elsewhere). It should however be stressed that these interfa
es do notprovide a

ess to the tools required for studying Beam Physi
s. More information onthe C++ interfa
e is given in [1, The C++ Interfa
e℄ and [1, The Fortran 90 Interfa
e℄.2.2 The User Interfa
eOn the other end of the problems using an a

elerator 
ode is the 
ommand languageof the 
ode and the des
ription of the beamlines. Various approa
hes have been used inthe past, starting from 
oding numbers as in the old versions of TRANSPORT [3℄ overmore easily readable 
ommand stru
tures like in TRIO [4℄, GIOS, COSY 5.0 [5℄ andMARYLIE [14℄ to the standardized 
ommands of MAD, for whi
h there is a 
onversionutility to COSY (see se
tion 3.4.1) [15, 16℄.COSY INFINITY approa
hes this problem by o�ering the user a full programminglanguage; in fa
t, the language is so powerful that all the physi
s of COSY INFINITYwas written in it.



14 2 WHAT IS COSY INFINITYFor ease of use, this language has a deliberately simple syntax. For the user de-manding spe
ial-purpose features on the other hand, it should be powerful. It shouldallow dire
t and 
omplex interfa
ing to Fortran routines, and it should allow the useof DA as a built-in type. Finally, it should be widely portable. Unfortunately, there isno language readily available that ful�lls all these requirements, so COSY INFINITY
ontains its own language system.The problem of simpli
ity yet power has been quite elegantly solved by the Pas
al
on
ept. In addition, this 
on
ept allows 
ompilation in one pass and no linking isrequired. This fa
ilitates the 
onne
tion of the user input, whi
h will turn out to be justthe last pro
edure of the system, with the opti
s program itself.To be relatively ma
hine independent, the output of the 
ompilation is not nativema
hine 
ode but rather an intermediate byte 
ode that is interpreted in a se
ondpass. In this respe
t, the 
on
epts of COSY INFINITY are quite similar to the Javaprogramming language. However, the COSY INFINITY system has the 
ompiler andthe exe
uter 
ombined into one single program. The byte 
ode used by COSY INFINITYis portable between ma
hines of the same word size. To mat
h the portability of thesystem on the platform dependent parts, it is essential to write the sour
e 
ode of the
ompiler in a very portable language. We 
hose Fortran for the 
ompiler, even though
learly it is 
onsiderably easier to write it in a re
ursive language like C.For reasons of speed it is helpful to allow the splitting of the program into pie
es, one
ontaining the opti
s program and one the user 
ommands. While the Pas
al philosophydoes not have provisions for linking, it allows the splitting of the input at any point.For this purpose, a 
omplete momentary image of the 
ompilation status is written to a�le. When 
ompilation 
ontinues with the se
ond portion, this image is read from the�le, and 
ompilation 
ontinues in exa
tly the same way as without the splitting.The full syntax of the COSY language is des
ribed in detail in [1, The COSY Lan-guage℄. Most of the syntax will be
ome apparent from the detailed examples suppliedin the following se
tions, and we think that it is possible to write most COSY inputswithout expli
itly 
onsulting the language referen
e.



153 Computing Systems with COSYThis se
tion des
ribes some 
ore features of COSY's parti
le opti
s and a

eleratorphysi
s environment. This provides the ba
kbone for pra
ti
al use in parti
le opti
s.We assume that the reader has a fundamental knowledge about parti
le opti
s, andrefer to the literature, for example [17, 18, 19, 20, 21, 22℄.3.1 General Properties of the COSY Language EnvironmentThe physi
s part of COSY INFINITY is written in its own input language. In this
ontext, most 
ommands are just 
alls to previously de�ned pro
edures. If desired, theuser 
an 
reate new 
ommands simply by de�ning pro
edures of his own. All 
ommandswithin COSY INFINITY 
onsist of two or three letters whi
h are abbreviations for twoor three words des
ribing the a
tion of the pro
edure. This idea originated in the GIOSlanguage, and many 
ommands of COSY INFINITY are similar to respe
tive 
ommandsin GIOS. All units used in the physi
s part of COSY are SI, ex
ept for voltages, whi
hare in kV, and angles, whi
h are in degrees.Parti
le opti
al systems and beamlines are des
ribed by a sequen
e of 
alls to pro-
edures representing individual elements. The supported parti
le opti
al elements 
anbe found in se
tion 3.3 beginning on page 23; se
tion 5.7 beginning on page 62 showshow to generate new parti
le opti
al elements.In a similar way, elements 
an be grouped, whi
h is des
ribed in se
tion 5.3 begin-ning on page 57. Besides the 
ommands des
ribing parti
le opti
al elements, there are
ommands to instru
t the 
ode what to do.3.2 Control CommandsAll user 
ommands for COSY INFINITY are 
ontained in a �le whi
h is 
ompiled byFOXY. The �rst 
ommand of the �le must beINCLUDE 'COSY' ;whi
h makes all the 
ompiled 
ode 
ontained in COSY.FOX known to the user input.The user input itself is 
ontained in the COSY pro
edure RUN. Following the syntax ofthe COSY language des
ribed in [1, The COSY Language℄, all 
ommands thus have tobe in
luded between the statementsPROCEDURE RUN ;andENDPROCEDURE ;



16 3 COMPUTING SYSTEMS WITH COSYIn order to exe
ute the 
ommands, the ENDPROCEDURE statement has to be followedby the 
all to the pro
edure,RUN ;and the 
ommand to 
omplete the COSY input �le,END ;Like any language, the COSY language supports the use of variables and expressionswhi
h often simpli�es the des
ription of the system. For the de
laration of variables,see [1, The COSY Language℄.The �rst 
ommand sets up the DA tools and has to be 
alled before any DA op-erations, in
luding the 
omputation of maps, 
an be exe
uted. The 
ommand has theformOV <order> <phase spa
e dimension> <number of parameters> ;and the parameters are the maximum order that is to o

ur as well as the dimensionalityof phase spa
e (1,2 or 3) and the number of system parameters that are requested. Ifthe phase spa
e dimensionality is 1, only the x-a motion is 
omputed; if it is 2, the y-bmotion is 
omputed as well, obviously at a slightly higher 
omputation time. If it is 3,the time of 
ight and 
hromati
 e�e
ts are 
omputed also.The number of parameters is the number of additional quantities besides the phasespa
e variables that the �nal map shall depend on. This is used in 
onne
tion with the\maps with knobs" dis
ussed in se
tion 5.2 on page 56 and to obtain mass and 
hargedependen
es if desired, and it is also possible to 
ompute energy dependen
e withouttime-of-
ight terms at a redu
ed 
omputational expense.The order is arbitrary and denotes the maximum order that 
omputations 
an beperformed in. It is possible to 
hange the 
omputation order at run time using the
ommandCO <order> ;however, the new order 
an never ex
eed the one set in OV. Note that the 
omputationtime naturally in
reases drasti
ally for higher orders. Under normal 
ir
umstan
es,orders should not ex
eed ten very mu
h.3.2.1 The CoordinatesCOSY INFINITY performs all its 
al
ulations in the following s
aled 
oordinates:



3.2 Control Commands 17r1 = x; r2 = a = px=p0;r3 = y; r4 = b = py=p0;r5 = l = �(t� t0)v0
=(1 + 
) r6 = ÆK = (K �K0)=K0r7 = Æm = (m�m0)=m0 r8 = Æz = (z � z0)=z0The �rst six variables form three 
anoni
ally 
onjugate pairs in whi
h the map is sym-ple
ti
. The units of the positions x and y is meters. p0, K0, v0, t0 and 
 are themomentum, kineti
 energy, velo
ity, time of 
ight, and total energy over m0
2, respe
-tively. m and z denote mass and 
harge of the referen
e parti
le, respe
tively.3.2.2 De�ning the BeamAll parti
le opti
al 
oordinates are relative to a referen
e parti
le whi
h 
an be de�nedwith the 
ommandRP <kineti
 energy in MeV> <mass in amu> <
harge in units> ;For 
onvenien
e, there are two pro
edures that set the referen
e parti
le to be protonsor ele
trons:RPP <kineti
 energy in MeV> ;RPE <kineti
 energy in MeV> ;For the masses of the proton and ele
tron and all other quantities in COSY, the valuesin [23℄ have been used (CAUTION: The data was updated in September 2001 inCOSY.FOX). Finally, there is a 
ommand that allows to set the referen
e parti
le fromthe magneti
 rigidity in Tesla meters and the momentum in MeV/
:RPR <magneti
 rigidity in Tm> <mass in amu> <
harge in units> ;RPM <momentum in MeV/
> <mass in amu> <
harge in units> ;Finally it is possible to set the magneti
 moments of the parti
le and a
tivate the
omputation of spin . This is a
hieved with the 
ommandRPS < LS > < G > ;where LS is the spin mode, 1 indi
ating spin 
omputation and 0 indi
ating no spin 
om-putation. G = (g�2)=2 is the anomalous spin fa
tor of the parti
le under 
onsideration.In 
ase the referen
e parti
le has been set to be a proton usingRPP or an ele
tron usingRPE, the proper value will be used if G is set to zero.The 
ommandSB <PX><PA><r12><PY><PB><r34>< PT><PD><r56><PG><PZ> ;



18 3 COMPUTING SYSTEMS WITH COSYsets half widths of the beam in the x; a; y; b; t; d; g and z dire
tions of phase spa
e aswell as the o� diagonal terms of the ellipse in TRANSPORT notation r12, r34, and r56.The units are meters for PX and PY, radians for PA and PB, v0
=(1 + 
) times timefor PT, and �E=E for PD, �m=m for PG, and �z=z for PZ. The 
ommandSP <P1> <P2> <P3> <P4> <P5> <P6> ;sets the maxima of up to six parameters that 
an be used as knobs in maps (see se
tion5.2 beginning on page 56).SBE <EX> <EY> <ET> ;sets the ellipse of the beam to an invariant ellipse of the 
urrent map. The emittan
esin x-a; y-b; and � -Æ spa
e being <EX>, <EY>, <ET> respe
tively.3.2.3 The Computation of MapsCOSY INFINITY has a global variable 
alled MAP that 
ontains the a

umulatedtransfer map of the system. Ea
h parti
le opti
al element being invoked updates themomentary 
ontents of this global variable.The following 
ommand is used to prepare the 
omputation of maps. It sets thetransfer map to the identity. It 
an also be used again later to re-initialize the map.UM ;The 
ommandSM <name> ;saves the momentary transfer matrix to the array name, whi
h has to be spe
i�ed bythe user. The array 
an be spe
i�ed using the VARIABLE 
ommand of the COSYlanguage (see [1, The COSY Language℄). It 
ould have the formVARIABLE <name> 1000 8 ;whi
h de
lares a one dimensional array with eight entries. Ea
h entry 
an hold a maxi-mum of 1000 16 byte blo
ks, whi
h should be enough to store the DA numbers o

urringin 
al
ulations of at least seventh order.To 
opy a map stored in an array name1 to another array name2, use the pro
edureSNM <name1> <name2> ;The 
ommandAM <name> ;applies the previously saved map <name> to the momentary map. AM and PMare parti
ularly helpful for the handling of maps of subsystems that are expensive to
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al
ulate. In parti
ular in the 
ontext of optimization, often substantial amounts of time
an be saved by 
omputing 
ertain maps only on
e and then re-using them during theoptimization.It is also sometimes ne
essary to 
ompose two individual maps into one map withouta
ting on the 
urrent transfer map. This 
an be a
hieved with the 
ommandANM <N> <M> <O> ;whi
h 
omposes the maps N and M to O=N Æ M. The 
ommandPM <unit> ;prints the momentary transfer matrix to unit. This number 
an be asso
iated with a�le name with the OPENF pro
edure (see index); if OPENF is not used, the nameasso
iated with the unit follows the lo
al Fortran 
onventions. Unit 6 
orresponds tothe s
reen. The di�erent 
olumns of the output belong to the �nal values of x; a; y; band t of the map, and di�erent lines des
ribe di�erent 
oeÆ
ients of the expansion interms of initial values. The 
oeÆ
ients are identi�ed by the last 
olumns whi
h des
ribethe order as well as the exponents of the initial values of the variables. An example ofthe output of a transfer map 
an be found in se
tion 5 on page 55.The 
ommandPSM <unit> ;writes the 3� 3 spin matrix to unit.Besides the easily legible form of output of a transfer map produ
ed by PM, it isalso possible to write the map more a

urately but less readable with the 
ommandWM <unit> ;In this 
ase, the transformation of the lo
al 
oordinate system is also stored and 
an bereused when read. Maps written by PM or WM 
an be read with the 
ommandRM <unit> ;reads a map generated by PM from the spe
i�ed unit and applies it to the momentarytransfer map. Often a signi�
ant amount of 
omputer time 
an be saved by 
omput-ing 
ertain submaps ahead of time and storing them either in a variable or a �le. Inparti
ular this holds for maps whi
h are expensive to 
ompute, for example the ones ofele
trostati
 
ylindri
al lenses.Besides storing maps of an element or system with one spe
i�
 setting of parameters,using the te
hnique of symple
ti
 s
aling it is possible to save maps with a 
ertain settingof �eld strengths and lengths and later re{use them for di�erent settings of lengths orstrengths. This is parti
ularly useful for elements that require a lot of 
al
ulation time,in
luding fringe �elds and solenoids. A representation of the map of an element with
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al dimensions and �eld strength for a typi
al beam is saved usingWSM < unit> <L> <B> <D> ;This map has to be 
al
ulated either in three dimensions (OV order 3 0 ;) or with theenergy as a parameter (OV order 2 1 ;). The parameters are the output unit, length,pole{tip �eld, and aperture of the element that 
reated the momentary map. The mapof the motion of a di�erent type of beam through any similar element that di�ers ins
ale or �eld strength 
an be approximated qui
kly byRSM <unit> <L> <B> <D> ;It is also possible to extra
t individual matrix elements of transfer maps. This isa
hieved with the COSY fun
tionME (<phase spa
e variable>,<element identi�er>)The element identi�er follows TRANSPORT notation; for example, ME(1,122) returnsthe momentary value of the matrix element (x; xaa):The beam's 
urrent sigma matrix is 
omputed from the ellipse data previously setwith SB by the fun
tionSIGMA (<I>,<J>)Sometimes it is ne
essary to determine the map of the reversed system, i.e. thesystem transversed ba
kwards. In 
ase M is the map of the system, the map MR of the
orresponding reversed system 
an be 
omputed with the 
ommandMR <M> <MR> ;Note again that the 
urrent transfer map is stored in the global variable MAP. Similarly,it is sometimes ne
essary to determine the map of the system in whi
h the 
oordinatesare twisted by a 
ertain angle. For example, if the dire
tion of bending of all magnets isex
hanged, this 
orresponds to a rotation by 180 degrees. In 
ase M is the map of thesystem, the map MT of the system twisted by angle 
an be 
omputed with the 
ommandMT <M> <MT> <angle> ;3.2.4 The Computation of Traje
toriesBesides the 
omputation of maps, COSY 
an also tra
e rays through the system. Thetraje
tories of these rays 
an be plotted or their 
oordinates printed. If rays are sele
ted,they are pushed through every new parti
le element that is invoked. Note that COSY
an also push rays through maps repetitively and display phase spa
e plots. This usesdi�erent methods and is dis
ussed in se
tion 4.4 beginning on page 50.The following 
ommand sets a ray that is to be tra
ed through the system. The



3.2 Control Commands 21parameters are the eight parti
le opti
al 
oordinatesSR <X> <A> <Y> <B> <T> <D> <G> <Z> <
olor> ;Here X and Y are the positions of the ray in meters, A and B are the angles in radians, Tis the time of 
ight multiplied by v0
=(1+
). D, G and Z are the half energy, mass and
harge deviations. For graphi
s purposes, it is also possible to assign a 
olor. Di�erent
olors are represented by numbers as follows. 1: bla
k, 2: blue, 3: red, 4: yellow, 5:green. The 
ommandSSR <X> <Y> <Z> ;sets the spin 
oordinates of the parti
le. Note that 
ommand has to be used immediatelyfollowing the setting of the 
oordinates of the parti
le with SR.It is also possible to automati
ally set an ensemble of rays. This 
an be a
hievedwith the 
ommandER <NX> <NA> <NY> <NB> <NT> <ND> <NG> <NZ> ;Here NX, NA ... denote the number of rays in the respe
tive phase spa
e dimension andhave to be greater than or equal to 1. The ray 
oordinates are equally spa
ed a

ordingto the values set with the 
ommand SB, whi
h has to be 
alled before ER. In 
ase anyof the N's is 1, only rays with the respe
tive variable equal to 0 will be shown. Notethat the total number of rays is given by NX � NA �:::� NZ, whi
h should not ex
eed 100.Note that this 
ommand is in
ompatible with the setting of spin 
oordinates with SSRas des
ribed above. The 
ommandSCDE ;sets sine like and 
osine like rays as well as the dispersive ray and the beam envelopein a

ordan
e with the data provided by SB or SBE. After the envelope has been setby SCDE it 
an be displayed alone as it varies along the system with PGE, or togetherwith the other traje
tories with PG. If only the envelope should be evaluated,ENVEL ;should be used. The 
losed orbit for an o� energy parti
le, often 
alled the � fun
tion,is produ
ed byENCL <D> ;The periodi
 orbit for an o� energy parti
le with the dispersion D is 
omputed from theone turn map. Therefore a 
urrent map has to be produ
ed before 
alling ENCL. Thisis equivalent to the requirement of 
omputing a 
urrent map before 
alling SBE.CR ;
lears all the rays previously set. The 
ommand



22 3 COMPUTING SYSTEMS WITH COSYPR <unit> ;prints the momentary 
oordinates of the rays to the spe
i�ed unit. Unit 6 
orrespondsto the s
reen. Note that using the WRITE 
ommand of the COSY language, it is alsopossible to print any other quantity of interest either to the s
reen or to a �le.3.2.5 Plotting System and Traje
toriesBesides 
omputing matri
es and rays, COSY also allows to plot the system or any partof it and the rays going through it. The 
ommandPTY < s
ale > ;sele
ts the type of system plot. If s
ale is zero, the referen
e traje
tory will be plotted asa straight line; this is also the default if PTY is not 
alled. If s
ale is nonzero, all raysin
luding the referen
e traje
tory are displayed in laboratory 
oordinates. To a

ountfor the fa
t that in su
h a view rays are rather 
lose to the referen
e traje
tory andhen
e may be hard to distinguish, the 
oordinates transverse to the opti
 axis will bemagni�ed by the value of s
ale.BP ;de�nes the beginning of a se
tion of the system that is to be plotted, and the 
ommandEP ;de�nes the end of the se
tion. The 
ommandPP <unit> <phi> <theta> ;plots the system to unit. Following the 
onvention of printing graphi
s obje
ts dis
ussedin [1, Graphi
s℄, positive units produ
e a low-resolution ASCII plot of 80 
olumns by24 lines, whi
h does not require any graphi
s pa
kages. Negative units 
orrespond tovarious graphi
s standards.The pi
ture of the traje
tories and elements is fully three dimensional and 
an beviewed from di�erent angles. Phi=0 and Theta=0 
orrespond to the standard x proje
-tion; Phi=0 and Theta=90 
orrespond to the y proje
tion; and Phi=90 and Theta=0
orrespond to viewing the rays along the beam.For use on workstations, there is also an abbreviated way to produ
e both an xproje
tion and a y proje
tion simultaneously. The 
ommandPG <Unit1> <Unit2> ;produ
es both x and y pi
tures, in
luding length (lower right), height (upper left) anddepth (lower left) of the system with all sele
ted rays and the envelope if sele
ted. Unit1and Unit2 denote the Graphi
s units (see [1, Graphi
s℄). The 
ommand



3.3 Supported Elements 23PGE <Unit1> <Unit2> ;produ
es both x and y pi
tures, in
luding length (lower right), height (upper left) anddepth (lower left) of the system and the beam envelope. Unit1 and Unit2 denote theGraphi
s units (see [1, Graphi
s℄).In a pi
ture, it is sometimes advantageous to identify a parti
ular lo
ation on thereferen
e traje
tory, for example to identify a fo
al plane or a plane of interest in a ring.This 
an be a
hieved with the 
ommandPS <d> ;whi
h draws a Poin
are se
tion plane with width d at the momentary position of thereferen
e traje
tory.There are several parameters whi
h 
ontrol the graphi
 output of a system. Su
h agraphi
 displays the 
entral traje
tory along with all rays and the envelope, the opti
alelements, two letters below ea
h element indi
ating its type and three numbers indi
atingthe height, width, and depth of the system. Before the system is 
omputed, this default
an be 
hanged by� LSYS = 0 ; (Suppresses the beamline elements) ,� LCE = 0 ; (Suppresses the types of the elements) ,� LAX = 0 ; (Suppresses the numbers des
ribing the size of the system) .These options 
an be
ome important when graphi
 output of huge ma
hines is desired.These 
hoi
es 
an then avoid memory over
ow and un
omprehendable pi
ture.3.3 Supported ElementsIn this se
tion we present a list of all elements available in COSY. They range fromstandard multipoles and se
tors over glass lenses and ele
tromagneti
 
ylindri
al lensesto a general element, whi
h allows the 
omputation of the map of any element frommeasured �eld data. The maps of all elements 
an be 
omputed to arbitrary order andwith arbitrarily many parameters.Elements based on strong fo
using devi
es su
h as multipoles and se
tors 
an be
omputed with their fringe �elds or without, whi
h is the default. Se
tion 3.3.7 beginningon page 31 des
ribes various fringe �eld 
omputation modes available.The simplest parti
le opti
al element, the �eld- and material free drift, 
an be appliedto the map with the 
ommandDL <length> ;



24 3 COMPUTING SYSTEMS WITH COSYThe elementCB ;
hanges the bending dire
tion of bending magnets and de
e
tors. Initially, the bendingdire
tion is 
lo
kwise. The pro
edure CB 
hanges it to 
ounter
lo
kwise, and ea
hadditional CB swit
hes it to the other dire
tion. Note that it is also possible to 
hangethe bending dire
tion of all the elements in an already 
omputed map using the 
ommandMR (see index).COSY supports a large ensemble of other parti
le opti
al elements, and it is verysimple to add more elements. The following subse
tions 
ontain a list of momentarilyavailable elements.3.3.1 MultipolesCOSY supports magneti
 and ele
tri
 multipoles in a variety of ways. There are thefollowing magneti
 multipoles:MQ <length> <
ux density at pole tip> <aperture> ;MH <length> <
ux density at pole tip> <aperture> ;MO <length> <
ux density at pole tip> <aperture> ;MD <length> <
ux density at pole tip> <aperture> ;MZ <length> <
ux density at pole tip> <aperture> ;whi
h let a magneti
 quadrupole, sextupole, o
tupole, de
apole or duode
apole a
t onthe map. The aperture is the distan
e from referen
e traje
tory to pole tip. For thesake of speed, dire
t formulas for the aberrations are used for orders up to two. Thereis also a superimposed multipole for multipole strengths up to order �ve:M5 <length> <BQ >< BH >< BO >< BD >< BZ> <aperture> ;And �nally, there is a general superimposed magneti
 multipole with arbitrary ordermultipoles:MM <length> <MA> <NMA> <aperture> ;Contrary to the previous pro
edure, the arguments now are the array MA and thenumber NMA of supplied multipole terms. Besides the magneti
 multipole just in-trodu
ed, whi
h satis�es midplane symmetry, there is also a routine that allows the
omputation of skew multipoles. The routineMMS <length> <MA> <MS> <NMA> <aperture> ;lets a superposition of midplane symmetri
 and skew multipoles a
t on the map. The
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ontains the strengths of the midplane symmetri
 multipoles in the same unitsas above. The array MS 
ontains the strengths of the skew multipoles; the units aresu
h that a pure skew 2n pole 
orresponds to the midplane symmetri
 multipole withthe same strength rotated by an angle of �=2n.Similar pro
edures are available for ele
trostati
 multipolesEQ <length> <voltage at pole tip> <aperture> ;EH <length> <voltage at pole tip> <aperture> ;EO <length> <voltage at pole tip> <aperture> ;ED <length> <voltage at pole tip> <aperture> ;EZ <length> <voltage at pole tip> <aperture> ;whi
h let an ele
tri
 quadrupole, sextupole, o
tupole, de
apole or duode
apole a
t onthe map. The strengths of the multipoles are des
ribed by their voltage in kV. There isan ele
tri
 multipoleE5 <length >< EQ >< EH >< EO >< ED >< EZ> <aperture> ;whi
h lets a superimposed ele
tri
 multipole with 
omponents EQ through EZ a
t onthe map, and there is the pro
edureEM <length> <EA> <NEA> <aperture> ;whi
h lets a general ele
trostati
 multipole with arbitrary order multipoles a
t on themap. Similar to the magneti
 
ase, there are also ele
tri
 skew multipoles. The routineEMS <length> <EA> <ES> <NEA> <aperture> ;lets a superposition of midplane symmetri
 and skew multipoles a
t on the map. Thearray EA 
ontains the strengths of the midplane symmetri
 multipoles in the sameunits as above. The array ES 
ontains the strengths of the skew multipoles; like in themagneti
 
ase, the units are su
h that a pure skew 2n pole 
orresponds to the midplanesymmetri
 multipole with the same strength rotated by an angle of �=2n.3.3.2 Bending ElementsCOSY INFINITY supports both magneti
 and ele
trostati
 elements in
luding so 
alled
ombined fun
tion elements with superimposed multipoles. In the 
ase of magneti
elements, edge fo
using and higher order edge e�e
ts are also supported. By default, allbending elements bend the referen
e traje
tory 
lo
kwise, whi
h 
an be 
hanged withthe 
ommand CB (see index).The following 
ommands let an inhomogeneous 
ombined fun
tion bending magnetand a 
ombined fun
tion ele
trostati
 de
e
tor a
t on the map:



26 3 COMPUTING SYSTEMS WITH COSYMS <radius> <angle> <aperture> < n1 >< n2 >< n3 >< n4 >< n5 > ;ES <radius> <angle> <aperture> < n1 >< n2 >< n3 >< n4 >< n5 > ;The radius is measured in meters, the angle in degrees, and the aperture is in metersand 
orresponds to half of the gap width. The indi
es ni des
ribe the midplane radial�eld dependen
e whi
h is given byF (x) = F0 � "1� 5Xi=1 ni � ( xr0 )i#where r0 is the bending radius. Note that an ele
tri
 
ylindri
al 
ondenser has n1 = 1,n2 = �1, n3 = 1, n4 = �1, n5 = 1, et
, and an ele
tri
 spheri
al 
ondenser has n1 = 2,n2 = �3, n3 = 4, n4 = �5, n5 = 6, et
. Homogeneous dipole magnets have ni = 0.Sin
e an ele
tri
 
ylindri
al 
ondenser is invariant under translation along the y axis,the y motion is like a drift. An o�set in the y dire
tion does not alter the motion, soa map produ
ed by ES, MES; and a y o�set map M4y; produ
ed by \SA 0 DA(5);" for example, 
ommute. A similar 
onsisten
y test 
an be performed for an ele
tri
spheri
al 
ondenser. Consider an o�set4� along the radius R sphere toward the positivey dire
tion, and 
all the map M4: For example, su
h a map M4 
an be produ
ed by"SA -R 0 ; RA DA(5) ; SA R 0 ;". The map of a spheri
al 
ondenser for a 180Æ travel,represented byMES180; agrees with the map of a4 o�set, a 180Æ travel in the 
ondenserand a 4 o�set again. Another test is based on the observation that the motion is that ofa Kepler problem. The motion should return to the original state after one 
y
le travel,thus MES360 should be
ome an identity map.The elementDI <radius> <angle> <aperture> < �1 > <h1 > < �2 > <h2 > ;lets a homogeneous dipole with entran
e edge angle �1 and entran
e 
urvature h1 as wellas exit edge angle �2 and exit 
urvature h2 a
t on the map. All angles are in degrees,the 
urvatures in 1/m, the radius is in m, and the aperture is half of the gap width.Positive edge angles 
orrespond to weaker x fo
using, and positive 
urvatures to weakernonlinear x fo
using.In the sharp 
ut o� approximation, the horizontal motion in the homogeneous dipoleis based on geometry. The verti
al e�e
ts of edge angle and 
urvatures is approximatedby a linear and quadrati
 ki
k, whi
h is a 
ommon approximation of hard-edge fringe{�eld e�e
ts. As des
ribed in se
tion 3.3.7, it is also possible to treat the in
uen
e ofextended fringe �elds on horizontal and verti
al motion in detail and full a

ura
y.The elementMSS <radius r0 > <angle �0 > <aperture> < �1 > <h1 > < �2 > <h2 > < w > ;



3.3 Supported Elements 27allows users to spe
ify the two dimensional stru
ture of the main �eld in polar 
oor-dinates, whi
h is des
ribed by a two dimensional array w(i;j): The following fa
tor isimposed to the main �eld spe
i�ed by the �rst seven arguments with the same meaningto those of DI. F (r; �) = 4Xi=1 4Xj=1w(i;j)(r � r0)i�1(�� �0=2)j�1:A spe
ial 
ase of the homogeneous dipole des
ribed above is the magneti
 re
tangleor parallel-fa
ed dipole, in whi
h both edge angles equal one half of the de
e
tion angleand the 
urvatures are zero. For 
onvenien
e, there is a dedi
ated routine that lets aparallel fa
ed magnet a
t on the map:DP <radius> <angle> <aperture> ;Finally, there is a very general 
ombined fun
tion bending magnet with shapedentran
e and exit edgesMC <radius> <angle> <aperture> <N> <S1> <S2> < n > ;Here N is an array 
ontaining the above ni, and S1 and S2 are arrays 
ontaining the n
oeÆ
ients s1, ... sn of two n-th order polynomials des
ribing the shape of the entran
eand exit edges as S(x) = s1 � x+ :::+ sn � xnAgain positive zeroth order terms entail weaker x fo
using. In the sharp 
ut o� ap-proximation, the edge e�e
ts of the 
ombined fun
tion magnet are treated as follows.All horizontal edge e�e
ts of order up to two are treated geometri
ally like in the 
aseof the dipole. The verti
al motion as well as the 
ontribution to the horizontal motiondue to the non-
ir
ular edges are treated by ki
ks. The treatment of the element in thepresen
e of extended fringe �elds is des
ribed in se
tion 3.3.7.Note that when 
omparing COSY bending elements without extended fringe �eldsto those of other 
odes, it is important to realize that some 
odes a
tually lump somefringe{�eld e�e
ts into the terms of the main �elds. For example, the 
ode TRANSPORTgives nonzero values for the matrix element (x; yy); whi
h is produ
ed by a fringe{�elde�e
t, even if all TRANSPORT fringe{�eld options are turned o�.3.3.3 Wien FiltersBesides the purely magneti
 and ele
tri
 bending elements, there are routines for super-imposed ele
tri
 and magneti
 de
e
tors, so-
alled Wien Filters or E 
ross B devi
es.



28 3 COMPUTING SYSTEMS WITH COSYThe simplest Wien Filter 
onsists of homogeneous ele
tri
 and magneti
 �elds whi
h aresuperimposed su
h that the referen
e traje
tory is straight. This element is 
alled byWF <radiusE> <radiusM> <length> <aperture> ;The radii des
ribe the bending power of the ele
tri
 and magneti
 �elds, respe
tively.The strengths are 
hosen su
h that ea
h one of them alone would de
e
t the beam withthe spe
i�ed radius. For positive radii, the ele
tri
 �eld bends in the dire
tion of positivex; and the magneti
 �eld bends in the dire
tion of negative x: For equal radii, there isno net de
e
tion. There is also a 
ombined fun
tion Wien Filter:WC <radiusE > <radiusM > <length> <aperture> <NE> <NM> < n > ;Here NE and NM des
ribe the inhomogeneity of the ele
tri
 and magneti
 �elds, respe
-tively via F (x) = F0 � "1 + nXi=1N(i) � xi#3.3.4 Wigglers and UndulatorsCOSY INFINITY allows the 
omputation of the maps of wigglers. For the midplane�eld inside the wiggler, we use the following model:Bm(x; z) = B0 
os�2�� z + k � z2�At the entran
e and exit, the main �eld is tapered by an Enge fun
tionB(x; z) = Bm(x; z)1 + exp (a1 + a2z=d + :::+ a10(z=d)9)The wiggler is represented by the following routine:WI < B0 > < � > <L> < d > <k> <I> <A> ;where L is the length and d is the half gap. If I=0, the fringe �eld is modeled with somedefault values of the 
oeÆ
ients ai. If I=1, the user is required to supply the values ofa1 to a10 for the entran
e fringe �eld in the array A. The exit fringe �eld is assumed tohave the same shape as the entran
e fringe �eld.



3.3 Supported Elements 293.3.5 CavitiesThere is a model for a simple 
avity in COSY INFINITY. It provides an energy gainthat is position dependent but o

urs over an in�nitely thin region. The voltage of the
avity as a fun
tion of position and time is des
ribed byV = P (x; y) � sin (2�(� � t+ �=360)) ;so that � is the frequen
y in Hertz, � is the phase in degrees at whi
h the referen
eparti
le enters the 
avity. The peak voltage P is given in kV.The 
avity is represented by the following routine:RF <V> <I> < � > < � > < d > ;where V is a two dimensional array 
ontaining the 
oeÆ
ients of a polynomial of orderI des
ribing the in
uen
e of the position asP (x; y) = IXj;k=0V (j + 1; k + 1) � xj � ykand d is the aperture.3.3.6 Cylindri
al Ele
tromagneti
 LensesCOSY INFINITY also allows the use of a variety of 
ylindri
al lenses, in whi
h fo
usinge�e
ts o

ur only due to fringe{�eld e�e
ts. The simplest su
h element 
onsists of onlyone ring of radius d that 
arries a 
urrent I. The on-axis �eld of su
h a ring is given byB(s) = �0I2d � 1�1 + (s=d)2�3=2 ; (1)using the Biot-Savart law. This 
urrent ring is represented by the pro
edureCMR < I > < d > ;A magneti
 �eld of more pra
ti
al signi�
an
e is that of the so-
alled Glaser lens,whi
h represents a good approximation of the �elds generated by strong magneti
 lenseswith short magneti
 pole pie
es [22℄. The lens is 
hara
terized by the �eldB(s) = B01 + (s=d)2 ;where B0 is the maximum �eld in Tesla and d is the half-width of the �eld. The Glaserlens is invoked by 
alling the pro
edure



30 3 COMPUTING SYSTEMS WITH COSYCML < B0 > < d > ;A third and a fourth magneti
 round lenses available in COSY are solenoids.CMSI < I > < n > < d > < l > ;invokes the solenoid with the theoreti
al �eld distributionB(s) = �0In2  sps2 + d2 � s� lp(s� l)2 + d2! ;obtained from (1), where I is the 
urrent, n the number of turns per meter, d the radiusand l the length of the solenoid.Another solenoid available in COSY has the following �eld distribution:B(s) = B02 tanh[l=2d℄ (tanh[s=d℄� tanh[(s� l)=d℄)where B0 is the �eld strength at the 
enter of the solenoid, d is its aperture and l itslength. The �eld goes down at the fringes mu
h more qui
kly 
ompared to the theoreti
alone for CMSI. This is invoked by the pro
edureCMS < B0 > < d > < l > ;There are a variety of more solenoidal elements suitable for simulations for largeaperture solenoids or a 
ombination of many solenoids. Conta
t Kyoko Makino for thedetails (makino�uiu
.edu).There is a �fth magneti
 round lens with a Gaussian potentialV (s) = V0 � exp[�(s=d)2℄whi
h is invoked with the pro
edureCMG < V0 > < d > ;Besides the magneti
 round lenses, there are various ele
trostati
 round lenses. TheelementCEL < V0 > < d > < L > < 
 > ;lets an ele
trostati
 lens 
onsisting of three tubes a
t on the map. This lens is often
alled three-
ube einzel lens. Figure 1 shows the geometry of the lens whi
h 
onsistsof three 
oaxial tubes with identi
al radii d, of whi
h the outer ones are on groundpotential and the inner one is at potential V0 in kV. The length of the middle tube isL, and the distan
e between the 
entral tube and ea
h of the outside tubes is 
. Su
h



3.3 Supported Elements 31an arrangement of three tubes 
an be approximated to produ
e an axis potential of theform V (s) = � V02!
=d �ln 
osh (!(s+ L=2)=d)
osh (!(s+ L=2 + 
)=d) + ln 
osh (!(s� L=2)=d)
osh (!(s� L=2� 
)=d)� ;where the value of the 
onstant ! is 1.315. For details, refer to [20℄.There is another ele
trostati
 lens,CEA < V0 > < d > < L > < 
 > ;whi
h lets a so-
alled three-aperture einzel lens a
t on the map. The geometry of thelens is shown in Figure 1. The outer apertures are on ground potential and the innerone is at potential V0. The axis potential of the system 
an be approximated to beV (s) = V0�
�(s+ L=2 + 
) tan�1 �s+ L=2 + 
d �+ (s� L=2� 
) tan�1 �s� L=2� 
d ��(s+ L=2) tan�1 �s+ L=2d �� (s� L=2) tan�1 �s� L=2d �� :An often used approximation for ele
trostati
 lenses is des
ribed by a potential dis-tribution of the following formV (s) = V0 � exp[�(s=d)2℄ :A lens with this �eld 
an be invoked by 
alling the routineCEG < V0 > < d > ;All round lenses are 
omputed using COSY's 8th order Runge Kutta DA integra-tor. The 
omputational a

ura
y 
an be 
hanged from its default of 10�10 using thepro
edure ESET (see index).3.3.7 Fringe FieldsA detailed analysis of parti
le opti
al systems usually requires the 
onsideration of thee�e
ts of the fringe �elds of the elements. While COSY INFINITY does not takefringe �elds into a

ount in its default 
on�guration, there are 
ommands that allowthe 
omputation of their e�e
ts with varying degrees of a

ura
y and 
omputationalexpense.
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Figure 1: The 
onstitution of ele
trostati
 lenses of the pro
edure CEL and CEAThere are two main ways of 
omputing fringe �elds of parti
le opti
al elements,namely utilizing one of the built-in modes provided by the various modes of the 
ommandFR, or one of the general element pro
edures des
ribed in detail in se
tion 3.3.8.FR <mode> ;provides various modes for fringe �eld map 
omputations, whi
h di�er at the level ofa

ura
y employed for 
omputations. In the following, the modes will be des
ribed inde
reasing order of a

ura
y.In all 
ases, the mode set with FR stays e�e
tive until the next 
all to FR, and itis possible to 
hange the 
omputation mode within the 
omputation. Whenever a newfringe �eld mode is desired, FR has to be 
alled again with the new mode (whi
h thenremains in e�e
t until the mode is 
hanged with another 
all to FR). The default fringe�eld mode of COSY INFINITY is FR 0.FR 3 & FR 2.9This mode is the most a

urate fringe �eld mode. The fringe �eld fallo� is based onthe standard des
ription of the s-dependen
e of multipole strengths by a six parameterEnge fun
tion. The Enge fun
tion is of the formF (z) = 11 + exp(a1 + a2 � (z=D) + :::+ a6 � (z=D)5) ;where z is the distan
e perpendi
ular to the e�e
tive �eld boundary. In the 
ase ofmultipoles, the distan
e 
oin
ides with the ar
 length along the referen
e traje
tory. Dis the full aperture (i.e., in 
ase of multipolesD = 2�d) of the parti
le opti
al element, anda1 through a6 are the Enge 
oeÆ
ients. Using COSY's DA based numeri
al integrator[2℄, if a supported element is 
alled, the resulting map in
luding fringe �eld e�e
ts is
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omputed using the full a

ura
y of the integrator and a default set of Enge 
oeÆ
ients.The values of the default set represent measurements of a family of un
lamped multipolesused for PEP [24℄, and are listed in table 1.However, while in many 
ases the bulk of the e�e
ts 
an be des
ribed well withthe default values of the 
oeÆ
ients, they depend on the details of the geometry of theelement in
luding shimming and saturation e�e
ts in magneti
 elements. The 
oeÆ
ientsshould be adjustable su
h that the Enge fun
tion �ts the spe
i�
 measured or 
omputeddata. Fitting programs for this purpose have been written in COSY's own language,or 
an be obtained as a 
ompanion of RAYTRACE [25℄. Note that in the optimizationpro
ess it is important that the Enge 
oeÆ
ients are 
hosen su
h that the e�e
tive �eldboundary 
oin
ides with the origin. It is also important that the fringe �eld 
oeÆ
ientslead to an Enge fun
tion whi
h represents the fringe �eld well over an interval rangingfrom at least 3 �D inside the element to at least 5 �D outside the element, where D = 2 �dis as above.On
e an appropriate set of Enge 
oeÆ
ients has been determined, it is possible touse them by this mode. This is a
hieved with the 
ommandFC <IMP> <IEE> <IEM> < a1 > < a2 > < a3 > < a4 > < a5 > < a6 > ;whi
h sets the Enge 
oeÆ
ients a1 through a6 to the spe
i�ed values. IMP is themultipole order (1 for dipoles, 2 for quadrupoles, et
). IEE identi�es the data belongingto entran
e (1) and exit (2) fringe �elds. IEM denotes magneti
 (1) or ele
tri
 (2)elements. Using FC repeatedly, it is possible to set 
oeÆ
ients for the des
ription of allo

urring elements.After setting the Enge 
oeÆ
ients with FC, COSY diagnoses the behavior of theresulting Enge fun
tion, and gives error messages if the resulting fringe �elds are inap-propriate (e.g., if the �elds do not not drop monotoni
ally from one in the inside to zeroin the outside). There is a 
onvenient tool to draw Enge fun
tions and the derivatives.The 
ommandFP <IMP> <IEE> <IEM> <string> <order> <IU> ;draws a pi
ture of the Enge fun
tion (order = 0) or the derivative (order = the desiredorder of the derivative) to unit IU. A title 
an be added to the pi
ture by using thestring parameter. FP uses the Enge 
oeÆ
ients that are loaded ahead of time. Figure2 is an example of su
h a pi
ture, and it is produ
ed by the following 
ommands:FC 1 1 1 0.31809 2.11852 -1.0255 0.797148 0 0 ;FP 1 1 1 'S800-D1' 0 -7 ;To illustrate the 
on
ept of Enge 
oeÆ
ients, tables 1 through 5 list some sets ofEnge 
oeÆ
ients taken from various magnets.Cosy uses a set of Enge 
oeÆ
ients for typi
al magnets based on measured data from



34 3 COMPUTING SYSTEMS WITH COSYPEP [24℄ by default, listed in table 1. Unless spe
i�ed expli
itly using FC, regardlessmagneti
 or ele
tri
, and entran
e or exit, the following 
oeÆ
ients are used as mentionedon page 35 in the des
ription of the pro
edure FD. The user does not have to do anythingex
ept for spe
ifying the fringe �eld 
omputation mode by the 
ommand FR, be
ausethese 
oeÆ
ients are loaded via FD as soon as the 
ommand OV is 
alled.a1 a2 a3 a4 a5 a6Dipole 0.478959 1.911289 -1.185953 1.630554 -1.082657 0.318111Quadrupole 0.296471 4.533219 -2.270982 1.068627 -0.036391 0.022261Sextupole 0.176659 7.153079 -3.113116 3.444311 -1.976740 0.540068and higherTable 1: COSY Enge 
oeÆ
ients by default. They are based on measured data fromPEP at SLAC [24℄.A benign Enge fun
tion 
an be a
hieved by utilizing only 2 
oeÆ
ients, instead of 6.Furthermore, one may want the same e�e
tive �eld boundary in both 
ases. An exampleof the resulting Enge 
oeÆ
ients is given in table 2.a1 a2 a3 a4 a5 a6Dipole �0:003183 1:911302 0:00 0:00 0:00 0:00Quadrupole 0:00004 4:518219 0:00 0:00 0:00 0:00Sextupole �0:000117 7:135786 0:00 0:00 0:00 0:00Table 2: Enge 
oeÆ
ients for a simple model.The Large Hadron Collider's High Gradient Quadrupoles of the intera
tion regionshave been designed by G. Sabbi. Based on the magnet end design des
ribed in [26℄, theEnge 
oeÆ
ients given in table 3 have been obtained.a1 a2 a3 a4 a5 a6Lead end �0:939436 3:824163 3:882214 1:776737 0:296383 0:013670Return end �0:77462 3:75081 2:80154 0:833833 0:131406 0:0362236Table 3: Enge 
oeÆ
ients of an LHC HGQ [26℄.Table 4 lists the Enge 
oeÆ
ients modeling the NSCL's S800 spe
trograph magnetswhi
h were obtained by �tting measured �eld data by D. Bazin [27℄.Finally, table 5 lists a set of Enge 
oeÆ
ients obtained by F. M�eot from a warmlarge aperture (diameter � 30 
m) quadrupole that is part of a QD kaon spe
trometerin operation at GSI.Any set of fringe �eld parameters (ele
tri
/magneti
, entran
e/exit) not expli
itlyset remains in its default 
on�guration, and ea
h FC 
ommand stays in e�e
t until FC(or FR; see below) is 
alled again. Therefore, if all dipoles, all quadrupoles, et
. in thesystem have the same fringe �eld fallo�, it is suÆ
ient to 
all FC only on
e for ea
h
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005.5-3.5 5-3 0 outsideinside x 2d

Enge Fun
tion, Dipole, Entran
e: S800-D1

Figure 2: COSY LaTeX pi
ture of the S800 D1 magnet's entran
e Enge fun
tion.type. In 
ase there are di�erent types, FC has to be 
alled ea
h time before the spe
i�
element. Sometimes it has proven helpful to lump several 
alls of FC into a pro
edure.One su
h pro
edure that is already part of COSY isFD ;whi
h sets all values to the default; this pro
edure is automati
ally 
alled when COSY'sDA system is initialized, and it must be 
alled again to reset the Enge 
oeÆ
ients totheir default value, in 
ase they have been 
hanged. The a

ura
y of this 
omputationmode is limited only by the a

ura
y of the numeri
al integrator, whi
h 
an be set withthe pro
edureESET < � > ;where � is the maximum error in the weighted phase spa
e norm dis
ussed in 
onne
tionwith the pro
edure WSET (see index). The default for � is 10�10 and 
an be adjusteddownwards if needed.Sin
e very detailed fringe �eld 
al
ulations are often 
omputationally expensive,COSY allows to 
ompute their e�e
ts with lower degrees of a

ura
y.FR 2 & FR 1.9The fringe �eld mode FR 2 produ
es less a

urate fringe �elds than mode FR 3, at again of 
omputation time of typi
ally more than one order of magnitude. Mode FR 2



36 3 COMPUTING SYSTEMS WITH COSYa1 a2 a3 a4 a5 a6Quad. I Entr. 0:150894 7:26981 �2:73798 2:0669 �0:256704 0:00Exit 0:15839 7:22058 �2:93658 2:62889 �0:333535 0:00Quad. II Entr. 0:0965371 6:63297 �2:718 10:9447 1:64033 0:00Exit 0:235452 6:60424 �3:42864 4:38392 �0:573524 0:00Dipole I Entr. 0:31809 2:11852 �1:0255 0:797148 0:00 0:00Exit 0:38027 2:01144 �0:900505 0:773862 0:00 0:00Dipole II Entr. 0:395308 2:03151 �0:910001 0:784602 0:00 0:00Exit 0:326167 2:08628 �1:01685 0:803716 0:00 0:00Table 4: Enge 
oeÆ
ients of the S800 spe
trograph at the NSCL [27℄.a1 a2 a3 a4 a5 a60:1122 6:2671 �1:4982 3:5882 �2:1209 1:723Table 5: Enge 
oeÆ
ients of a room temperature quadrupole at GSI.uses parameter dependent symple
ti
 map representations of fringe �eld maps stored in�les to approximate the fringe �eld via symple
ti
 s
aling [28℄ [29℄. The default referen
emaps are stored in the �le SYSCA.DAT. If needed, other referen
e �les that give betterrepresentations of the user data 
an be 
reated and stored in �les byWSM (see index).How this is done 
an be seen in the pro
edureCRSYSCA ;This pro
edure produ
es the �le SYSCA.DAT, whi
h is shipped with the 
ode. Su
hmaps 
an be de
lared to be the new standard with the 
ommandFC2 <IMP> <IEE> <�le> ;whi
h de
lares �le to be the a
tual referen
e �le for the fringe �eld des
ribed by IMPand IEE; the meaning of IMP and IEE is dis
ussed above for the 
ommand FC. Theoriginal default �les 
an be rea
tivated byFD2 ;The fringe �eld mode FR 2 is espe
ially helpful in the �nal design stages of a realisti
system after approximate parameters of the elements have been obtained by negle
tingfringe �elds or with fringe �eld mode FR 1 (see below). The last step of the optimization
an then be made using the default s
aled fringe �eld maps. A high degree of a

ura
yalmost equal to that of the fringe �eld mode FR 3 dis
ussed above 
an be obtainedby 
omputing new fringe �eld referen
e maps with the 
ommand WSM based on theapproximate values obtained by the previous �ts.Note for the expert user: it is possible to set the fringe �eld mode to FR 1.9, whi
hdi�ers from mode FR 2 only by the fa
t that ea
h fringe �eld map is 
omposed withthe inverse of its linear part. This approa
h leaves the linear part of the system's map



3.3 Supported Elements 37unaltered, rendering the re�tting of the tunes unne
essary, and allows the study of thenonlinear e�e
ts introdu
ed by the fringe �elds.FR 1This mode entails approximate fringe �elds with an a

ura
y 
omparable to the fringe�eld integral method [17℄. In fa
t, internally mode FR 1 is exa
tly the same as modeFR 3, but it for
es the numeri
al integration algorithm to go through the fringe �eldregion in only two steps.FR 0All fringe �elds are disregarded in this default mode. In this mode, a sharp 
uto�approximation is used for all elements.Stand Alone Fringe FieldsIt is also possible to 
al
ulate stand alone fringe �eld maps. If the mode is set to FR-1, only the entran
e fringe �eld maps of all listed elements are 
omputed; if the fringe�eld mode is set to FR -2, only exit fringe �eld maps are 
omputed. In both 
ases, the
omputational a

ura
y is equivalent to that of mode FR 3.Fringe �elds produ
ed with modes FR -1 or FR -2 
an be thought of as fringe �eldelements with zero length. However, the apertures, strengths, et
. of the magnets havean in
uen
e on the results. (These are not thin lens models; the �nite length fringe �eldmaps are 
omposed with negative drifts to give in the end a total length of zero.) To
larify this, noti
e that the following two 
ode fragments are equivalent:FR 3 ;MQ L Q D ;FR 0 ;andFR -1 ;MQ L Q D ;FR 0 ;MQ L Q D ;FR -2 ;MQ L Q D ;FR 0 ;The fringe �eld maps 
omputed using the modes FR -1 or FR -2 
an be used intwo ways: if the fringe �elds do not 
hange anymore, the data 
an be stored and re-usedwith the 
ommands SM and AM, or PM and RM (see se
tion 3.2.3). In the 
ase the
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e or exit fringe �elds are re-used in this way, it is important to turn allfringe �elds o� with the 
ommand FR 0, be
ause otherwise the fringe �elds would betaken into a

ount twi
e. It is also important that in the 
ase of bending elements withnon-perpendi
ular entran
e or exit (see se
tion 3.3.2), the fringe �eld maps 
omputedusing FR -1 and FR -2 do not 
ontain the e�e
ts of any 
urved entran
e and exitplane. Thus, in the 
ase fringe �eld maps are re-used later with turned o� fringe �elds,it is important to leave all edge e�e
ts in the body of the element. Using modes FR -1and FR -2, it is also possible to determine new fringe �eld referen
e maps that 
an beused with symple
ti
 s
aling using the 
ommands WSM and RSM.General Fringe Field MapsBesides the 
omputation of fringe �eld e�e
ts in the formalism of Enge type multipolefun
tions, fringe �eld e�e
ts 
an also be 
omputed by any of the general parti
le opti
alelements GE, MGE, or MF dis
ussed in se
tion 3.3.8. This allows the highly a

uratetreatment of strongly overlapping fringe �elds or fringe �elds that 
annot be representedwell by Enge fun
tions.We end this se
tion on fringe �eld e�e
ts with a few general 
omments. In the
ase of straight multipole elements, the total fringe �eld in the midplane is the sum ofthe individual multipole 
omponents whi
h fall o� with their respe
tive Enge fun
tions.The nonlinearities of the o�-plane �elds are 
omputed in COSY from this information inagreement with Maxwell's equations [30℄. In the 
ase of the dipole element DI, the Engefun
tion modulates the fallo� of the midplane dipole �eld perpendi
ular to the edge ofthe magnet. As long as the edges are long enough, this allows a very a

urate des
riptionboth for straight and 
ir
ular edges, where 
ir
ular edges may require Enge 
oeÆ
ientsthat di�er slightly from those of straight edges with the same aperture. Again, theo�-midplane �elds are 
omputed in agreement with Maxwell's equations.In the 
ase of all other bending elements, 
ertain models have to be used to des
ribethe details of the fringe �eld fallo� in the Enge model. In the 
ase of the inhomogeneousmagnet MS, the inhomogeneity of the �eld whi
h is determined by the distan
e to the
enter of de
e
tion is modulated with an Enge fallo�. In the 
ase of the 
ombinedfun
tion magnet MC, the inhomogeneity of the �eld is modulated by a fallo� fun
tionfollowing as in the 
ase of the dipole whose edge angles and 
urvatures are 
hosento mat
h the linear and quadrati
 parts of the 
urves des
ribed by S1 and S2. Theremaining higher order edge e�e
ts are superimposed by nonlinear ki
ks before andafter the element.For general purpose bending magnets, it is rather diÆ
ult to formulate �eld modelsthat des
ribe all details to a high a

ura
y, and hen
e the a

ura
y of the 
omputationof aberrations is limited by these unavoidable de�
ien
ies. In 
ase �eld measurementsare available, the general element approa
h des
ribed above allows a detailed analysisof su
h measured data.



3.3 Supported Elements 393.3.8 General Parti
le Opti
al ElementsIn this se
tion, we present pro
edures that allow the 
omputation of an arbitrary ordermap for a 
ompletely general opti
al element whose �elds are des
ribed by measure-ments.One way to 
ompute a map of a general opti
al element is to use the pro
edure GE,whi
h uses measurements along the independent variable s. Its use ranges from spe
ialmeasured fringe �elds over dedi
ated ele
trostati
 lenses to the 
omputation of maps for
y
lotron orbits. It 
an also be used to 
ustom build new elements that are frequentlyused (see se
tion 5.7 on page 62).GE <n> <m> <S> <H> <V> <W> ;lets an arbitrary parti
le opti
al element a
t on the map. The element is 
hara
ter-ized by arrays spe
ifying the values of multipole strengths at the n positions along theindependent variable 
ontained in the array S. The array H 
ontains the 
orrespond-ing 
urvatures at the positions in S. V and W 
ontain the ele
tri
 and magneti
 s
alarpotentials in S.The elements in V and W have to be DA variables 
ontaining the momentary deriva-tives in the x dire
tion (variable 1) and s dire
tion (variable 2), and m is the order of thes-derivatives. One way to 
ompute these DA variables is to write two COSY fun
tionsthat 
ompute V and W as a fun
tion of x and s: Suppose these fun
tions are 
alledVFUN(X,S) and WFUN(X,S), then the requested DA variable 
an be stored in V andW with the 
ommandsV(I) := VFUN(0+DA(1),S(I)+DA(2)) ;W(I) := WFUN(0+DA(1),S(I)+DA(2)) ;Another way to 
ompute a map of a general opti
al element is to use the pro
eduresMGE and MF. While MGE uses measured data of the �eld along the independentvariable s;MF uses measured data of the �eld on the midplane in 
artesian 
oordinates[31℄ [32℄. For de
e
ting elements, MF is more dire
t for users. The 
ommandMF <s> <BY> <Nx > <Nz > < 4x > < 4z > <S> < d > <Sx > <Sz > <S� > ;lets an arbitrary parti
le opti
al element a
t on the map. The element is 
hara
terizedby a two dimensional array BY(ix; iz) spe
ifying the values of the �eld strength in they dire
tion By in the midplane along an equidistant grid. Figure 3 shows how the datagrid is spe
i�ed and the 
artesian 
oordinates 
orresponding to the data grid. Nx andNz are the numbers of measured data grid points in the x and z dire
tion. 4x and 4zare the lengths of ea
h grid in the x and z dire
tion. As shown in Figure 3, Sx and Szare the values of (x; z) 
oordinates of the starting point of the referen
e parti
le in theelement, and S� is the angle (degree) at the starting point of the referen
e parti
le. s isthe ar
length along the referen
e parti
le, and d is the aperture.
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Figure 3: The spe
i�
ation of measured �eld data of the pro
edure MFThe interpolation to evaluate the values of the �eld strength in the element is doneby the method of Gaussian interpolation. S des
ribes the width of the Gaussian 
urves.The value of the �eld strength By at the 
oordinates point (x; z) is interpolated by thefollowing equation.By(x; z) =Xix Xiz BY(ix; iz) 1�S2 exp "�(x� x(ix))24x2S2 � (z � z(iz))24z2S2 # ;where x(ix) and z(iz) are the 
oordinates of the (ix; iz)-th grid point. A note has to bemade to 
hoose the suitable S. If S is too small, the mountains stru
ture of Gaussiansis observed. On the other hand, if S is too large, the original value supplied by themeasured data is washed out. The suitable value of S depends on the original fun
tionshape of the measured data. For 
onstant �elds, the suitable S may be about 1.8. Forqui
kly varying �elds, it may be about 1.0. And larger values of S provide more a

urateevaluation of the derivatives. In general, suitable values of S may be around 1.2 < S <1.6.Another note about the Gaussian interpolation is, sin
e a Gaussian fun
tion fallsdown qui
kly, the time 
onsuming summation over all the Gaussians is not ne
essary.The summation is well approximated by the 8S neighboring Gaussians of ea
h side. Forthe value outside the area, the edge value is used. When su
h a situation happens, thetotal number of su
h points is reported as follows:*** WARNING IN MF, OUT OF RANGE OF DATA AT 123 POINTSIn the 
ase of qui
kly varying �elds, a larger area of data has to be prepared.
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e the pro
edure MF 
onsumes the memory size in the program, a small size isprepared for the shipping of COSY.FOX . If the measured data is bigger than 20*20gridpoints, 
hange the size for the array in COSY.FOX in the following line.VARIABLE MFD 1 20 20 ; {DATA FOR MEASURED FIELD}If this modi�
ation requires in
reasing the size of COSY's internal memory, it is im-portant to repla
e all o

urren
es of the parameter in question in all Fortran �les. Forexample, if the error message demands the PARAMETER LVAR to be in
reased, 
hangethe value of LVAR in the PARAMETER statements in FOXY.FOP, FOXGRAF.FOP,and DAFOX.FOP.MGE is similar to MF ex
ept that data for multipole terms are spe
i�ed. It 
anbe used for multipoles whose �eld distribution 
annot be des
ribed analyti
ally by Engefun
tions et
. The 
ommandMGE < NP > <A> <Ns > <4s > <S> < d > ;lets a superimposed magneti
 multipole based on measured data a
t on the map. Nsis the number of measured data grid points along s; where ea
h point is spa
ed equi-distantly by 4s: S des
ribes the width of the Gaussian as MF, and d is the aperture.NP is the maximum number of multipole 
omponents. The measured data is passed bya two dimensional array A(ip; is); where ip denotes the multipole 
omponent as 1 forquadrupole, 2 for sextupole and so on, and is = 1; :::; Ns denotes the is-th data point.A should be prepared to represent the �eld strength of the ip-th 
omponent at the poletip at the is-th position.The same interpolation method is used asMF, so do the same 
autions apply in
lud-ing the one on the memory size. The value of �eld strength B of the ip-th 
omponentat the 
oordinates point s is interpolated asB(ip; s) =Xis A(ip; is) 1p�S exp "�(s� s(is))24s2S2 # ;where s(is) = 4s � (is � 1) is the 
oordinate of the is-th grid point. Note that the totallength of the element is 4s � (Ns � 1):The map of the general element is 
omputed using COSY's 8th order Runge KuttaDA integrator. The 
omputational a

ura
y 
an be 
hanged from its default of 10�10using the pro
edure ESET (see index).



42 3 COMPUTING SYSTEMS WITH COSY3.3.9 Glass Lenses and MirrorsCOSY INFINITY also allows the 
omputation of higher order e�e
ts of general glassopti
al systems. At the present time, it 
ontains elements for spheri
al lenses andmirrors, paraboli
 lenses and mirrors, and general surfa
e lenses and mirrors, where thesurfa
e is des
ribed by a polynomial. There is also a prism. All these elements 
anbe 
ombined to systems like parti
le opti
al elements, in
luding misalignments. Thedispersion of the glass 
an be treated very elegantly by making the index of refra
tiona parameter using the fun
tion PARA.The 
ommandGLS <R1> <R2> <N> <L> < d > ;lets a spheri
al glass lens a
t on the map. R1 and R2 are the radii of the spheres;positive radii 
orrespond to the 
enter of the sphere to be to the right. N is the indexof refra
tion, L is the thi
kness, and d the aperture radius. The 
ommandGL <P1> <I1> <P2> <I2> <N> <L> < d > ;lets a glass lens whose surfa
e is spe
i�ed by two polynomials of orders I1 and I2 a
ton the map. P1 and P2 are two dimensional arrays 
ontaining the 
oeÆ
ients of thepolynomials in x and y that des
ribe the s position of the entran
e and exit surfa
e asa fun
tion of x and y in the following way:P (x; y) = IXk;l P (k + 1; l + 1)xkyl= P (1; 1) + P (2; 1) � x+ P (1; 2) � y + :::N is the index of refra
tion, L the thi
kness of the lens and d its aperture. The 
ommandGP <PHI1> <PHI2> <N> <L> < d > ;lets a glass prism a
t on the map. PHI1 and PHI2 are the entran
e and exit angles mea-sured with respe
t to the momentary referen
e traje
tory, N is the index of refra
tion,L the thi
kness along the referen
e traje
tory, and d is the aperture radius.Besides the refra
tive glass opti
al elements, there are mirrors. In the followingmirror elements, d is the aperture radius. The 
ommandGMS <R> < d > ;lets a spheri
al mirror with radius R a
t on the map. The 
ommandGMP <R> < d > ;lets a paraboli
 mirror with 
entral radius of 
urvature R a
t on the map. The 
ommand



3.4 Latti
e Converters 43GMF <PHI> < d > ;lets a 
at mirror with the tilt angle PHI a
t on the map. The 
ommandGM <P> <I> < d > ;lets a general glass mirror a
t on the map. P is a two dimensional array 
ontaining the
oeÆ
ients of the polynomial in x and y that des
ribes the surfa
e in the same way aswith GL, and is the dimension.3.4 Latti
e ConvertersThere are tools to 
onvert existing latti
es des
ribed in the other formats into COSYlanguage. The following subse
tions explain the 
urrently available latti
e 
onverters.The 
onverters are web-based, and the links to the web pages of the 
onverters 
an befound in http://
osy.pa.msu.edu/.We appre
iate re
eiving the other 
onverters into COSY language written by usersto be available to the other users.3.4.1 MAD InputMany existing a

elerator latti
es are des
ribed in the MAD standard [15, 16℄. Toallow the use of su
h MAD latti
es in COSY, there is a 
onversion utility that trans-forms MAD latti
es to the COSY latti
es. This utility was originally written by RogerServran
kx using the original MAD 
ompiler sour
e 
ode whi
h was written by Christo-pher Iselin. The 
urrent program has been adjusted to MAD version 8.22 by WeishiWan and Kyoko Makino. The MAD to COSY 
onverter is provided on the web athttp://
osy.pa.msu.edu/.The 
onverter is based on MAD version 5. The important beamline elements aretranslated into the respe
tive ones in COSY; these in
lude drifts, multipoles, superim-posed multipoles, and bends. Some elements supported by MAD are translated to driftsand may have to be adjusted manually.To generate a COSY de
k from a MAD de
k, the end of the MAD de
k should havethe formUSE, <name of beamline>COSYSTOPwhere a

ording to the MAD syntax, the USE 
ommand spe
i�es the beamline to betranslated, and the 
ommand COSY a
tually generates the COSY sour
e.



44 3 COMPUTING SYSTEMS WITH COSY3.4.2 SXF InputThe SXF format (Standard eX
hange Format) is meant to be a general latti
e des
riptionlanguage and is intended to fa
ilitate the 
ooperation between di�erent groups and the
omparison of results obtained with di�erent 
odes. The language spe
i�
ations thatare in most parts very similar to MAD were developed by H.Grote, J.Holt, N.Malitsky,F.Pilat, R.Talman, G.Tahern and W.Wan .The SXF to COSY 
onverter is provided on the web at http://
osy.pa.msu.edu/.3.5 MisalignmentsThe di�erential algebrai
 
on
ept allows a parti
ularly simple and systemati
 treatmentof misalignment errors in opti
al systems. Su
h an error is represented by a 
oordi-nate 
hange similar to the one dis
ussed in se
tion 4.1. COSY o�ers three di�erentmisalignment 
ommands. The �rst 
ommandSA <DX> <DY> ;o�sets the opti
 axis by DX in x dire
tion and DY in y dire
tion. DX and DY are
ounted positive if the opti
 axis is shifted in dire
tion of positive x and y; respe
tively.The 
ommandTA <AX> <AY> ;represents a tilt of the opti
 axis by an angle in degrees of AX in x dire
tion and AY iny dire
tion. AX and AY are 
ounted positive if the dire
tion of tilt is in the dire
tionof positive x and y; respe
tively. The 
ommandRA <ANGLE > ;represents a rotation of the opti
 axis around ANGLE measured in degrees. ANGLEis 
ounted positive if the rotation is 
ounter
lo
kwise if viewed in the dire
tion of thebeam. The routine RA 
an be used to rotate a given parti
le opti
al element by pla
ingit between 
ountera
ting rotations. This 
an for example be used for the study of skewmultipoles. However, note that it is not possible to rotate di�erent multipole 
omponentsby di�erent angles. This 
an be a
hieved with the routines MMS and EMS dis
ussedin se
tion 3.3.1.In order to simulate a single parti
le opti
al element that is o�set in positive xdire
tion, it is ne
essary to have the element pre
eded by an axis shift with negativevalue and followed by an axis shift with positive value. Similarly simple geometri

onsiderations tell how to treat single tilted and rotated elements.The misalignment routines 
an also be used to study beams that are inje
ted o�the opti
al axis of the system. In this 
ase, just one of ea
h misalignment 
ommands isne
essary at the beginning of the system.



3.5 Misalignments 45We note that the misalignment routines, like most other COSY routines, 
an be
alled both with real number and di�erential algebrai
 arguments, in parti
ular usingthe PARA argument (see se
tion 5.2). The �rst 
ase allows the simulation of a �xedgiven misalignment, whereas the se
ond 
ase allows to 
ompute the map depending onthe misalignment.In the �rst 
ase, the values of the 
omputed transfer map are only approximate if SAand TA are used. The a

ura
y in
reases with de
reasing misalignments and in
reasing
al
ulation orders. For the study of misalignments of elements, the a
tual a

ura
y isusually rather high sin
e the values of the misalignments are usually very small. Inthe 
ase of a deliberate o�set of the beam, for example for the study of inje
tion andextra
tion pro
esses, it may be ne
essary to in
rease the 
omputation order to obtaina

urate results. In the se
ond 
ase, the results are always a

urate. The 
ommand RAalways produ
es a

urate results in both 
ases.



46 4 ANALYZING SYSTEMS WITH COSY4 Analyzing Systems with COSY4.1 Image AberrationsVery often not the matrix elements of the transfer map are of primary signi�
an
e, butrather the maximum size of the resulting aberration for the phase spa
e de�ned with SBand the parameters de�ned with SP. COSY provides two tools to obtain the aberrationsdire
tly. The 
ommandPA <unit> ;prints all aberrations to unit in a similar way as PM. If not all aberrations are of interest,the COSY fun
tionMA (<phase spa
e variable>,<element identi�er>)returns the momentary value of the aberration. The phase spa
e variable is a numberfrom 1 to 6 
orresponding to x; a; y; b; t; d; and the element identi�er is an integer whosedigits denote the above variables. For example,MA(1,122) returns the momentary valueof the aberration due to the matrix element (x; xaa):For 
omparison and other reasons, it is often helpful to express the map in other
oordinates than those used by COSY (see se
tion 3.2.1, for example the ones used inTRANSPORT [3℄ and GIOS. The routinePT <unit> ;prints the map in Transport and GIOS 
oordinates to unit.We want to point out that in the di�erential algebrai
 
on
ept, it is parti
ularlysimple to perform su
h nonlinear 
oordinate 
hanges to arbitrary orders. In order toprint maps in yet di�erent 
oordinates, the user 
an make a pro
edure that begins witha unity map, applies the transformation to COSY 
oordinates, applies the COSY map,and then applies the transformation ba
k to the original 
oordinates.4.2 Analysis of Spe
trographsTo �rst order, the resolution �Æ of an imaging spe
trograph is given by the followingsimple formula: �Æ = (x; x) � 2X0(x; d)where X0 is the half width of the slit or aperture at the entran
e of the devi
e. HereÆ 
an be any one of the quantities Æk, Æm and Æz, and it is assumed that to �rst order,



4.2 Analysis of Spe
trographs 47the �nal position does not depend on the other quantities, or all parti
les have the sameinitial values for the other quantities.In all but the simplest spe
trographs, however, it is important to 
onsider higherorder e�e
ts as well as the �nite resolution of the dete
tors. Usually these e�e
ts de
reasethe resolution, more so for larger initial phase spa
es and low dete
tor resolutions.The resolution of the spe
trograph under these limitations 
an be 
omputed with thefollowing 
ommandAR <MAP> <X> <A> <Y> <B> <D> <PR> <N> <R> ;where MAP is the map of the spe
trograph to be studied, X, A, Y, B and D arethe half widths of the beam at the entran
e of the spe
trograph, PR is the resolutionof the dete
tor, and R is the resulting resolution of the spe
trograph. To 
omputethe resolution, a total of N parti
les are distributed randomly and uniformly within asquare initial phase spa
e and then sent through the map. Then the measurement erroris introdu
ed by adding a uniformly distributed random number between -PR and PR tothe x 
oordinate. The width of the resulting blob of measurements is 
omputed, whereit is assumed that the blob is again �lled uniformly.In many 
ases the resolution of spe
trographs 
an be in
reased substantially withthe te
hnique of traje
tory re
onstru
tion [33℄. For this purpose, positions of ea
hparti
le are a
tually measured in two dete
tor planes, whi
h is equivalent to knowingthe parti
le's positions and dire
tions.Assuming that the parti
le went through the origin, the energy of the parti
le isuniquely determined by some 
ompli
ated nonlinear impli
it equations. Using DA meth-ods, it is possible to solve these equations analyti
ally and relate the energy of the par-ti
le to the four measured quantities. Besides the energy, it is also possible to 
omputethe initial angle in the dispersive plane, the initial position in the non-dispersive plane,and the angle in the non-dispersive plane. The a

ura
y of these equations is limitedonly by the measurement a

ura
y and by the entering spot size in the dispersive plane.This is performed by the 
ommandRR <MAP> <X> <A> <Y> <B> <D> <PR> <AR> <N> <O> <MR> <R> ;where the parameters are as before, ex
ept that AR is the resolution in the measurementof the angle, and O is the order to whi
h the traje
tory re
onstru
tion is to be performed.On return, MR is the nonlinear four by four map relating initial a; y; b and d to themeasured �nal x; a; y; b: Using these relationships as well as the measurement errors andthe �nite dispersive spot size, the resolution array R 
ontaining the resolutions of theinitial a; y; b and d is 
omputed by testing N randomly sele
ted rays and subje
ting themto statisti
al measurement errors similarly as with the 
omputation of the un
orre
tedresolution.



48 4 ANALYZING SYSTEMS WITH COSY4.3 Analysis of RingsInstead of by their transfer matri
es, the linear motion in parti
le opti
al systems isoften des
ribed by the tune and twiss parameters. These quantities being parti
ularlyimportant for repetitive systems, they allow a dire
t answer to questions of linear stabil-ity, beam envelopes, et
. In many pra
ti
al problems, their dependen
e on parametersis very important. For example, the dependen
e of the tune on energy, the 
hromati
ity,is a very 
ru
ial quantity for the design of systems. Using the maps with knobs, they
an be 
omputed totally automati
ally without any extra e�ort. The 
ommandTP <MU> ;
omputes the tunes whi
h are stored in the one dimensional array with three entriesMU whi
h is de�ned by the user. In most 
ases, an allo
ation length of 100 should besuÆ
ient, and so the de
laration of MU 
ould readVARIABLE MU 100 3 ;If the system is run with parameters, MU will 
ontain DA ve
tors des
ribing how therespe
tive tunes depend on the parameters. Note that COSY INFINITY 
an also 
om-pute amplitude dependent tune shifts in the framework of normal form theory. This isdes
ribed in detail in this se
tion.For the 
omputation of amplitude tune shifts and other 
hara
teristi
s of the repet-itive motion, COSY INFINITY 
ontains an implementation of the DA normal formalgorithm des
ribed in [34℄. This repla
es the COSY implementation of the somewhatless eÆ
ient and less general mixed DA-Lie normal form. Normal Form algorithms pro-vide nonlinear transformations to new 
oordinates in whi
h the motion is simpler. Theyallow the determination of pseudo invariants of the system, and they are the only toolso far to 
ompute amplitude tune shifts. As pointed out in [35℄, 
hromati
ities and pa-rameter dependent tune shifts alone 
an be 
omputed more dire
tly using the 
ommandTP des
ribed above. The 
ommandNF <EPS> <MA> ;
omputes the normal form transformation map MA of the momentary transfer map.This variable has to be allo
ated by the user, and in most 
asesVARIABLE MA 1000 8 ;should be suÆ
ient. Sin
e the normal form algorithm sometimes has problems withthe possible o

urren
e of small denominators, it is not always possible to perform atransformation to 
oordinates in whi
h the motion is given by 
ir
les. The variable EPSsets the minimum size of a resonan
e denominator that is not removed. The 
ommandTS <MU> ;employs the normal form algorithm to 
ompute all the tune shifts of the system, both the



4.3 Analysis of Rings 49ones depending on amplitude and the ones depending on parameters like 
hromati
ities,whi
h alone 
an be 
omputed more eÆ
iently as shown above. MU is a one dimensionalarray with three entries whi
h is de�ned by the user in a similar way to TP. On return,MU will 
ontain the tune shifts with amplitudes and parameters as DA ve
tors. Ifthe system is run with parameters, MU will 
ontain DA ve
tors des
ribing how therespe
tive tunes depend on the amplitudes (�rst, third and possibly �fth exponents forx; y and t) and parameters (beginning in 
olumns �ve or 7).Note that in some 
ases when the system is on or very near a resonan
e or is evenunstable, the normal form algorithm may fail due to o

urren
e of a small denominator.In this 
ase, the respe
tive tunes will be returned as zero. This also happens sometimesif the map is supposed to be symple
ti
 yet is slightly o� be
ause of 
omputationalina

ura
ies. In this 
ase, the use of the pro
edure SY (see index) is re
ommended.The normal form method 
an also be used to 
ompute resonan
e strengths, whi
htell how sensitive a system is to 
ertain resonan
es. Often the behavior of repetitivesystems 
an be substantially improved by redu
ing the resonan
e strengths. These are
omputed with the pro
edureRS <RES> ;where upon return RES is a 
omplex DA ve
tor that 
ontains the resonan
e strengths.The 2 �N exponents n+i ; n�i in ea
h 
omponent des
ribe the resonan
e of the tunes � as(~n+i � ~n�i ) � ~�:The linear and nonlinear momentum 
ompa
tion (dl=dp) � p=l 
an be 
omputed withthe routineMCM <M> <L> <C> ;Alternatively, it also possible to 
ompute the Energy 
ompa
tion (dr5=dr6) with theroutineECM <M> <L> <C> ;Finally it is also possible to analyze the spin motion with normal form methods. The
ommandTSP <MU> < �n > <KEY> ;
omputes the parameter dependen
e of spin tune and the invariant spin axis �n. The
ommandTSS <MU> < �n > <KEY> ;
omputes the parameter and amplitude dependen
e of spin tune as well as the invariantspin axis �n. The spin tunes are stored in the one dimensional array with three entries
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h is de�ned by the user, in a similar way as the array used by TP and TS. IfKEY is 0, the original orbital variables are used. If KEY is not 0, the orbital variablesare transformed to the parameter dependent �xed point.4.4 Repetitive Tra
kingCOSY allows eÆ
ient repetitive tra
king of parti
les through maps. The 
ommandTR <N> <NP> <ID1> <ID2> <D1> <D2> <TY> <NF> <IU>;tra
ks the momentary parti
les sele
ted with SR or ER through the momentary mapfor the required number of iterations N. After ea
h NP iterations the position of thephase spa
e proje
tion ID1-ID2 is drawn to unit IU. The phase spa
e numbers 1 through6 
orrespond to x; a; y; b; d; t; and the numbers -1, -2, -3 
orrespond to the x; y and z
omponents of the spin. If any of these 
omponents get larger than D1, D2, they willnot be drawn.If TY is zero, symple
ti
 tra
king using the EXPO generating fun
tion is per-formed [36℄. If the absolute value of TY is between one and four, symple
ti
 tra
kingusing the generating fun
tion of type jTYj (see page 52) is performed. For positive TY,a �xed-point iteration is used to determine the symple
ti�ed map; for negative TY, aNewton iteration is used to determine the symple
ti�
ation. While the Newton methodis more robust, the �xed point iteration tends to be faster if it works. If TY is �12 or�13, symple
ti
 tra
king is performed by symple
tifying the linear mapML and repre-senting the map N = MÆM�1L by the generating fun
tion of type jTYj. Be
ause thelinear part of N is the unity map, only the generating fun
tions of type 2 (for TY= �12)and 3 (for TY=�13) 
an be used for that purpose. Lastly, if TY is �21, the tra
kingis performed without symple
ti�
ation. If NF is zero, the points will be displayed in
onventional variables, and if NF is one, they will be displayed in normal form variables.As dis
ussed in [1, Supported Graphi
s Drivers℄, if needed the 
oordinates 
an alsobe output dire
tly for future manipulation.The algorithm used for tra
king is highly optimized for speed. Using the ve
tordata type for parti
le 
oordinates, it works most eÆ
iently if many parti
les are tra
kedsimultaneously. On s
alar ma
hines, optimum eÆ
ien
y is obtained when more thanabout 20 parti
les are tra
ked simultaneously. On ve
tor ma
hines, the algorithm ve
-torizes 
ompletely, and for best eÆ
ien
y, the number of parti
les should be a multipleof the length of the hardware ve
tor.In both 
ases, logisti
s overhead ne
essary for the bookkeeping is almost 
ompletelynegligible, and the 
omputation time is almost entirely spent on arithmeti
. It is alsoworth mentioning that using an optimal tree transversal algorithm, zero terms o

urringin a map do not 
ontribute to 
omputation time.The 
ommand



4.5 Symple
ti
 Representations 51TRT <string>;prints the title supplied by the string in a tra
king pi
ture produ
ed by TR. The 
om-mand TRT should be 
alled just before a TR 
all, and the title is valid only for thatTR 
all. If TRT is not 
alled just before TR, no title is printed.4.5 Symple
ti
 RepresentationsIn this se
tion, we will present two di�erent representations for symple
ti
 maps, ea
hone of whi
h has 
ertain advantages. Parti
le opti
al systems des
ribed by Hamiltonianmotion satisfy the symple
ti
 
onditionM � J �M t = Jwhere M is the Ja
obian Matrix of partial derivatives of M, and J has the form
J = 0BBBBBBB� 0 0 0 +1 0 00 0 0 0 +1 00 0 0 0 0 +1�1 0 0 0 0 00 �1 0 0 0 00 0 �1 0 0 0

1CCCCCCCAAs long as there is no damping, all parti
le opti
al systems are Hamiltonian, andso the maps are symple
ti
 up to possibly 
omputation errors if they are generatednumeri
ally. There is a COSY fun
tion that determines the symple
ti
 error of a map:SE (<M>)Here M is an array of DA quantities des
ribing the map. Note that the momentaryvalue of the transfer map is stored in the global COSY variable MAP. The value of thefun
tion is the weighted maximum norm of the matrix (M �J �M t�J). The weighting isdone su
h that the maximum error on a 
ubi
 phase spa
e with half edge W is 
omputed.The default value for W is 0.1, whi
h may be too large for many 
ases. The value of W
an be set with the pro
edureWSET <W> ;While the orbital part of maps usually satis�es the symple
ti
 symmetry, the spinmatrix must satisfy orthogonality. Similar to the fun
tion SE,OE (<SM>)



52 4 ANALYZING SYSTEMS WITH COSYdetermines the orthogonality error of the spin matrix SM. The 
urrent system spinmatrix is stored in the array SPNR.In some instan
es, it may be desirable to symple
tify maps that are not fully symple
-ti
. While the standard elements of COSY are symple
ti
 to 
lose to ma
hine pre
ision,the low a

ura
y fringe{�eld modes (see se
tion 3.3.7) violate symple
ti
ity noti
eably.Depending on the 
oarseness of the measured �eld data, this may also o

ur in the gen-eral element dis
ussed in se
tion 3.3.8. To a mu
h lesser extent symple
ti
ity is violatedby intrinsi
 elements requiring numeri
al integration, like the high-pre
ision fringe �eldsand the round lenses dis
ussed in se
tion 3.3.6. The 
ommandSY <M> ;symple
ti�es the map M using the generating fun
tion (see below) whi
h is most a

uratefor the given map.Symple
ti
 maps 
an be represented by at least one of four generating fun
tions inmixed variables: F1(qi; qf ) satisfying (~pi; ~pf ) = (~rqiF1;�~rqfF1)F2(qi; pf ) satisfying (~pi; ~qf ) = (~rqiF2; ~rPfF2)F3(pi; qf ) satisfying (~qi; ~pf ) = (�~rpiF3;�~rqfF3)F4(pi; pf ) satisfying (~qi; ~qf ) = (�~rpiF4; ~rpfF4)In the generating fun
tion representation there are no interrelationships between the
oeÆ
ients due to symple
ti
ity like in the transfer map, so the generating fun
tionrepresentation is more 
ompa
t. Furthermore, it is often an important tool for thesymple
ti�
ation of tra
king data. The 
ommandMGF <M> <F> <I> <IER> ;attempts to 
ompute the I th generating fun
tion of the spe
i�ed map M. If IER is equalto zero, this generating fun
tion exists and is 
ontained in F. If IER is nonzero, it doesnot exist. While in prin
iple, any generating fun
tion that exists represents the map,espe
ially for high order maps, 
ertain ina

ura
ies often result for numeri
al reasons.If I is 
hosen to be �1, the generating fun
tion representing the linear part of the mapbest is determined. For I equal to �2, the generating fun
tion representing the wholemap best is 
omputed. The 
ase I = �2 is very expensive 
omputationally and shouldonly be used in 
ru
ial 
ases for high orders. In both 
ases, on return I 
ontains thenumber of the 
hosen generating fun
tion.The map whi
h 
orresponds to a generating fun
tion F of type I is obtained byGFM <M> <F> <I> ;



4.5 Symple
ti
 Representations 53Other redundan
y free representations of symple
ti
 transfer maps are Lie fa
toriza-tions in
luding the Dragt-Finn fa
torization [10, 37℄ . They are based on Lie transfor-mation operators of the formexp(: f :) = 1+ : f : +: f :22 + :::where f is a fun
tion of the 
anoni
al 
oordinates qi and pi. The 
olon denotes aPoisson bra
ket waiting to happen, i.e. : f : g = ff; gg. When ~xf des
ribes a �nal set of
anoni
al 
oordinates with ~x = (q1; p1; : : : ; qn; pn) and ~xi des
ribes an initial set, then~xf = exp(: f :)~xi is a symple
ti
 mapping. Those Lie transformation operators have theproperty e:f :(g(~x)) = g(e:f :~x)for any fun
tion g : R2n ! R with n being the dimension of the required 
on�gurationspa
e. Therefore we �nd e:f :(e:g:~x) = (e:g:~x) Æ (e:f :~x)The 
ir
le Æ symbolizes the 
omposition of maps. Two 
omposed symple
ti
 maps aretherefore represented by the produ
t of their Lie transformation operators in reversedorder. As an example, a symple
ti
 map 
an be written in the form~Le:f>:~x+ ~Cwere ~L is an operator su
h that ~L~x is the linear part of the map, f> is a polynomial inthe xi 
ontaining only orders higher than 2. Finally ~C represents the 
onstant part ofthe map. As mentioned previously this representation is equal to(e:f>:~x) Æ (~L~x) + ~CBesides this fa
torization, there are various others that are similar and have 
ertainadvantages [10℄. They are shown in the table below. As shown in [10℄, it is one of thestrong points of the map representation and the di�erential algebrai
 te
hniques thatthe 
omputation of these Dragt-Finn fa
torization is possible to arbitrary order with arelatively simple algorithm. It is a
tually mu
h easier to 
ompute them from the mapthan using Lie algebrai
 te
hniques alone. The 
ommandMLF <MA> <C> <M> <F> <I> ;
omputes the fa
torization from the transfer map MA. On return, the ve
tor C 
ontainsthe 
onstant part, M the linear part and F 
ontains the fi from the table. In 
ase ofthe last four fa
torization F has to be an array. I is the identi�er of the fa
torizationfollowing the numbering in the table.1 : M(~x) =n ~L exp(: f> :)~x+ ~C



54 4 ANALYZING SYSTEMS WITH COSY�1 : M(~x) =n exp(: f> :)~L~x+ ~C2 : M(~x) =n ~L exp(: f3 :) exp(: f4 :) : : : exp(: fn+1 :)~x+ ~C�2 : M(~x) =n exp(: fn+1 :) : : : exp(: f3 :)~L~x+ ~C3 : M(~x) =2n+1 ~L exp(: f3;3 :) exp(: f4;5 :) exp(: f6;9 :) : : : exp(: f(2n+2);(2n+1+1) :)~x + ~C�3 : M(~x) =2n+1 exp(: f2n+2;2n+1+1 :) : : : exp(: f6;9 :) exp(: f4;5 :) exp(: f3;3 :)~L~x+ ~CHere fi denotes homogeneous polynomials of exa
t order i and fi;j polynomials withorders from i to j. Given a fa
torization, the 
ommandLFM <MA> <C> <M> <F> <I> ;
al
ulates the a

ording map. The 
ommandLFLF <C> <M> <F> <P> <I> <J> ;
omputes the fa
torization of type J with exponent P from a fa
torization of type Iwith exponent F. Without the map representation this would be a very elaborate task,be
ause the Campbell-Baker-Hausdor� formula would be needed to the appropriateorder.



555 ExamplesThis se
tion provides several examples for the use of 
ore features of COSY. The 
odeDEMO.FOX whi
h is distributed with COSY 
ontains many more programs that 
anserve as demonstrations. Further ideas how to use the COSY language 
an also beobtained by studying COSY.FOX.5.1 A Simple Sequen
e of ElementsAfter having dis
ussed the parti
le opti
al elements and features available in COSYINFINITY in the previous se
tions, we now dis
uss the 
omputation of maps of simplesystems.We begin with the 
omputation of the transfer map of a quadrupole doublet to tenthorder. Here the COSY input resembles the input of many other opti
s 
odes [5℄.INCLUDE 'COSY' ;PROCEDURE RUN ;OV 10 2 0 ; {order 10, phase spa
e dim 2, # of parameters 0}RP 10 4 2 ; {kineti
 energy 10 MeV, mass 4 amu, 
harge 2}UM ; {sets map to unity}DL .1 ; {drift of length .1 m}MQ .2 .1 .05 ; {quad; length .2 m, field .1 T, aperture .05 m}DL .1 ;MQ .2 -.1 .05 ; {defo
ussing quad}DL .1 ;PM 11 ; {prints map to unit 11}ENDPROCEDURE ;RUN ; END ;The �rst few lines of the resulting transfer map on unit 11 look like this:0.7084974 -0.1798230 0.0000000E+00 0.0000000E+00 0.0000000E+00 1000000.6952214 1.234984 0.0000000E+00 0.0000000E+00 0.0000000E+00 0100000.0000000E+00 0.0000000E+00 1.234984 -0.1798230 0.0000000E+00 0010000.0000000E+00 0.0000000E+00 0.6952214 0.7084974 0.0000000E+00 000100-0.7552782E-01-0.5173663E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 3000000.2751172 0.1728297 0.0000000E+00 0.0000000E+00 0.0000000E+00 210000-0.4105719 -0.2057598 0.0000000E+00 0.0000000E+00 0.0000000E+00 1200000.3541071 0.8137949E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 0300000.0000000E+00 0.0000000E+00 0.5676311E-01-0.5150457E-01 0.0000000E+00 201000The di�erent 
olumns 
orrespond to the �nal 
oordinates x; a; y; b and t: The lines
ontain the various expansion 
oeÆ
ients, whi
h are identi�ed by the exponents of the



56 5 EXAMPLESinitial 
ondition. For example, the last entry in the third 
olumn is the expansion
oeÆ
ient (y; xxy):5.2 Maps with KnobsThe DA approa
h easily allows to 
ompute maps not only depending on phase spa
evariables, but also on system parameters. This 
an be very helpful for di�erent reasons.For example, it dire
tly tells how sensitive the system is to errors in a parti
ular quantity.In the same way it 
an be used to �nd out ideal positions to pla
e 
orre
ting elements.Furthermore, it 
an be very helpful for the optimization of systems, and sometimes veryfast 
onvergen
e 
an be a
hieved with it (for details, see [1, Optimization and Graphi
s℄).In the 
ontext of COSY INFINITY, the treatment of su
h system parameters orknobs is parti
ularly elegant.In the following example, we 
ompute the map of a system depending on the strengthof one quadrupole. The COSY fun
tion PARA(I) is used, whi
h identi�es the quantityas parameter number I by turning it into an appropriate DA ve
tor.INCLUDE 'COSY' ;PROCEDURE RUN ;OV 5 2 1 ; {order 5, phase spa
e dim 2, parameters 1}RP 10 4 2 ; {sets kineti
 energy, mass and 
harge}UM ;DL .1 ;MQ .2 .1*PARA(1) .05 ; {quadrupole; now field is a DA quantity}DL .1 ;MQ .2 -.1 .05 ;DL .1 ;PM 11 ; {prints map depending on quad strength}ENDPROCEDURE ;RUN ; END ;Sin
e the COSY language supports freedom of types at 
ompile time, the se
ondargument of the quad 
an be either real or DA. For details, 
onsult [1, The COSYLanguage℄.The idea of maps with knobs 
an also be used to 
ompute the dependen
e on theparti
le mass and 
harge as well as on energy in 
ase time of 
ight terms are notneeded. In the following example, the map of the quad doublet is 
omputed in
ludingthe dependen
e on energy, mass and 
harge.INCLUDE 'COSY' ;



5.3 Grouping of Elements 57PROCEDURE RUN ;OV 5 2 3 ; {order 5, phase spa
e dim 2, parameters 3}RP 10*PARA(1) 4*PARA(2) 2*PARA(3) ; {sets kineti
 energy, massand 
harge as DA quantities}UM ;DL .1 ;MQ .2 .1 .05 ;DL .1 ;MQ .2 -.1 .05 ;DL .1 ;PM 11 ; {prints map with dependen
e on energy,mass and 
harge, to unit 11}ENDPROCEDURE ;RUN ; END ;5.3 Grouping of ElementsUsually it is ne
essary to group a set of elements together into a 
ell. For example,sin
e most 
ir
ular a

elerators are built of several at least almost identi
al 
ells, it isdesirable to refer to the 
ell as a blo
k. Similar situations often o

ur for spe
trometersor mi
ros
opes if similar quad multiplets are used repetitively.Grouping is easily a

omplished in COSY by just putting the elements into a pro
e-dure. In the following example, the strength of a quadrupole in the 
ell of an a

eleratoris adjusted manually su
h that the motion in both planes is stable. Sin
e the motionsare stable if the two tra
es are less than two in magnitude, the map is printed to thes
reen whi
h allows a dire
t 
he
k.INCLUDE 'COSY' ;PROCEDURE RUN ; VARIABLE QS 1 ; {de
lare a real variable}PROCEDURE CELL Q H1 H2 ; {defines a 
ell of a ring}DL .3 ; DI 10 20 .1 0 0 0 0 ; DL .1 ; MH .1 H1 .05 ;DL .1 ; MQ .1 Q .05 ; DL .3 ; MH .1 H2 .05 ;ENDPROCEDURE ;OV 3 2 0 ; RPP 1000 ; {third order, one GeV protons}QS := .1 ; {set initial value for quad}WHILE QS#0 ; WRITE 6 ' GIVE QS ' ; READ 5 QS ;UM ; CELL QS 0 0 ; PM 6 ; WRITE 6 ME(3,3) ;ENDWHILE ;ENDPROCEDURE ; RUN ; END ;Su
h groupings 
an be nested if ne
essary, and parameters on whi
h the elements inthe group depend 
an be passed freely. Note that 
alling a group entails that all elements



58 5 EXAMPLESin it are exe
uted; so grouping is not a means to redu
e exe
ution time, but a way toorganize 
ompli
ated systems into easily manageable parts. Redu
tion of exe
ution time
an be a
hieved by saving maps of subsystems that do not 
hange using SM and AMdis
ussed above.5.4 OptimizationOne of the most important tasks in the design of opti
al systems is the optimizationof 
ertain parameters of the system to meet 
ertain spe
i�
ations. Be
ause of the im-portan
e of optimization, there is dire
t support from the COSY language via the FITand ENDFIT 
ommands. COSY provides several Fortran based optimizers; a detaileddes
ription of the optimizers available in COSY 
an be found in [1, Optimization andGraphi
s℄.In the �rst example we illustrate a simple optimization task: to �t the strengths ofthe quadrupoles of a symmetri
 triplet to perform stigmati
 point-to-point imaging.To monitor the optimization pro
ess, the momentary values of the quad strengths andthe obje
tive fun
tion are printed to the s
reen. Furthermore, a graphi
 display of thesystem at ea
h step of the optimizer is displayed in two graphi
 windows, here identi�edwith units -101 and -102, one for ea
h phase spa
e proje
tion, 
reating a movie-likee�e
t. [1, Supported Graphi
s Drivers℄ lists the graphi
s drivers 
urrently supported inCOSY. At the end, the �nal pi
tures of the x and y proje
tion of the system are printedin LATEX pi
ture format, identi�ed with unit -7, for in
lusion in this manual.INCLUDE 'COSY' ;PROCEDURE RUN ;VARIABLE Q1 1 ; VARIABLE Q2 1 ; VARIABLE OBJ 1 ;PROCEDURE TRIPLET A B ;MQ .1 A .05 ; DL .05 ; MQ .1 -B .05 ; DL .05 ; MQ .1 A .05 ;ENDPROCEDURE ;OV 1 2 0 ;RP 1 1 1 ;SB .15 .15 0 .15 .15 0 0 0 0 0 0 ;Q1 := .5 ; Q2 := .5 ;FIT Q1 Q2 ;UM ; CR ; ER 1 4 1 4 1 1 1 1 ;BP ; DL .2 ; TRIPLET Q1 Q2 ; DL .2 ; EP ;PP -101 0 0 ; PP -102 0 90 ;OBJ := ABS(ME(1,2))+ABS(ME(3,4)) ;WRITE 6 'STRENGTHS Q1, Q2, OBJECTIVE FUNCTION: ' Q1 Q2 OBJ ;ENDFIT 1E-5 1000 1 OBJ ; PP -7 0 0 ; PP -7 0 90 ;ENDPROCEDURE ; RUN ; END ;
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Figure 4: COSY LATEX pi
ture of the stigmati
ally fo
using systemThe x proje
tion pi
ture of the system after optimization is shown in Figure 4. TheLATEX �le of this pi
ture, lpi
001.tex, produ
ed by COSY has been 
opied into the LATEXsour
e of this manual.Besides providing \
anned" optimization strategies, the COSY language allows tofollow one's own path of optimizing a system, whi
h typi
ally 
onsists of several runswith varying parameters and subsequent optimizations.In the following example, the goal is to vary several parameters of the system man-ually, �t the quad strengths, and then look at the spheri
al aberrations. This pro
ess isrepeated by inputting di�erent values for the parameters until the spheri
al aberrationshave been redu
ed to a satisfa
tory level. When this is a
hieved, the pi
tures of thesystem are output dire
tly to PostS
ript �les, identi�ed with unit -10, with the namespi
001.ps and pi
002.ps.INCLUDE 'COSY' ;PROCEDURE RUN ;VARIABLE Q1 1 ; VARIABLE Q2 1 ; VARIABLE L1 1 ; VARIABLE L2 1 ;VARIABLE OBJ 1 ; VARIABLE ISTOP 1 ;PROCEDURE TRIPLET ;UM ; CR ; ER 1 4 1 4 1 1 1 1 ; BP ;DL L1 ; MQ .1 Q1 .05 ; DL L2 ; MQ .1 -Q2 .05 ;DL L2 ; MQ .1 Q1 .05 ; DL L1 ; EP ; PP -101 0 0 ;



60 5 EXAMPLESENDPROCEDURE ;OV 3 2 0 ; RP 1 1 1 ; SB .08 .08 0 .08 .08 0 0 0 0 0 0 ; ISTOP := 1 ;WHILE ISTOP#0 ;WRITE 6 ' GIVE VALUES FOR L1, L2: ' ; READ 5 L1 ; READ 5 L2 ;Q1 := .5 ; Q2 := .5 ; CO 1 ;FIT Q1 Q2 ; TRIPLET ; OBJ := ABS(ME(1,2))+ABS(ME(3,4)) ;ENDFIT 1E-5 1000 1 OBJ ;CO 3 ; TRIPLET ;WRITE 6 ' SPHERICAL ABERRATION FOR THIS SYSTEM: ' ME(1,222) ;WRITE 6 ' CONTINUE SEARCH? (1/0) ' ; READ 5 ISTOP ;ENDWHILE ; PP -10 0 0 ; PP -10 0 90 ;ENDPROCEDURE ; RUN ; END ;This example shows how it is possible to phrase more 
ompli
ated intera
tive opti-mization tasks in the COSY language. One 
an even go far beyond the level of sophisti
a-tion displayed here; by nesting suÆ
iently many WHILE, IF, and LOOP statements,it is often possible to optimize a whole system in one intera
tive session without everleaving COSY. For example, the �rst order design in [38℄ whi
h is subje
t to quite anumber of 
onstraints and requires a sophisti
ated 
ombination of trial and optimizationwas performed in this way.5.5 Normal Form, Tune Shifts and Twiss ParametersThe following example shows the use of normal form methods and parameter dependentTwiss parameters for the analysis of a repetitive system. For the sake of simpli
ity, we
hoose here a simple FODO 
ell that is des
ribed by the pro
edure CELL. The map ofthe 
ell is 
omputed to �fth order, with the energy as a parameter. In the 
ell itself, thequadrupole strength is another parameter.As a �rst step, the parameter dependent tunes are 
omputed and written to unit 7,following the algorithm in [35℄. Next follow the tunes depending on parameters and am-plitude; this is done with DA normal form theory [34℄. Finally, several other quantitiesand their parameter dependen
e are 
omputed using the pro
edure GT. They in
ludethe parameter dependent �xed point, the parameter dependent Twiss parameters, aswell as the parameter dependent damping (whi
h here is unity be
ause no radiatione�e
ts are taken into a

ount).INCLUDE 'COSY' ;PROCEDURE RUN ;VARIABLE A 100 2 ; VARIABLE B 100 2 ; VARIABLE G 100 2 ;VARIABLE R 100 2 ; VARIABLE MU 100 2 ; VARIABLE F 100 6 ;PROCEDURE CELL ;DL .1 ; DI 1 45 .1 0 0 0 0 ; DL .1 ; MQ .1 -.1*PARA(2) .1 ; DL .2 ;



5.6 Repetitive Tra
king 61ENDPROCEDURE ;OV 5 2 2 ; RP 1*PARA(1) 1 1 ; UM ; CELL ;TP MU ; WRITE 7 ' DELTA DEPENDENT TUNES ' MU(1) MU(2) ;TS MU ; WRITE 7 ' DELTA AND EPS DEPENDENT TUNES ' MU(1) MU(2) ;GT MAP F MU A B G R ;WRITE 7 ' DELTA DEPENDENT FIXED POINT ' F(1) F(2) F(3) F(4) ;WRITE 7 ' DELTA DEPENDENT ALPHAS ' A(1) A(2) ;WRITE 7 ' DELTA DEPENDENT BETAS ' B(1) B(2) ;WRITE 7 ' DELTA DEPENDENT GAMMAS ' G(1) G(2) ;WRITE 7 ' DELTA DEPENDENT DAMPINGS ' R(1) R(2) ;ENDPROCEDURE ; RUN ; END ;5.6 Repetitive Tra
kingIn the following example, we want to study the nonlinear behavior of a ring by a qual-itative analysis of tra
king data. The ring 
onsists of 18 identi
al 
ells. Nine of these
ells are pa
ked into a half 
ell by the pro
edure HALFCELL. At exe
ution, the systemasks for the values of the strengths of the two hexapoles whi
h in
uen
e its degree ofnonlinearity. The tra
king data for ea
h setting are displayed and then also output inLATEX format for in
lusion in this manual, shown in Figure 5. In order to keep the sizeof the LATEX sour
e �le limited, only 100 turns were tra
ked for �ve parti
les.INCLUDE 'COSY' ;PROCEDURE RUN ; VARIABLE QS 1 ; VARIABLE H1 1 ; VARIABLE H2 1 ; VARIABLE N 1 ;PROCEDURE CELL Q H1 H2 ; {defines a 
ell of a ring}DL .3 ; DI 10 20 .1 0 0 0 0 ; DL .1 ; MH .1 H1 .05 ;DL .1 ; MQ .1 Q .05 ; DL .3 ; MH .1 H2 .05 ;ENDPROCEDURE ;PROCEDURE HALFRING Q H1 H2 ; VARIABLE I 1 ;LOOP I 1 9 ; CELL Q H1 H2 ; ENDLOOP ; ENDPROCEDURE ;OV 3 2 0 ; RPP 1000 ; {third order, one GeV protons}QS := -.05 ; H1 := .01 ;WHILE H1#0 ; WRITE 6 ' GIVE HEXAPOLE STRENGTHS ' ; READ 5 H1 ; READ 5 H2 ;UM ; HALFRING QS H1 H2 ;WRITE 6 ' GIVE NUMBER OF TURNS ' ; READ 5 N ;SR .005 0 .005 0 0 0 0 0 1 ;SR .01 0 .01 0 0 0 0 0 1 ;SR .015 0 .015 0 0 0 0 0 1 ;SR .02 0 .02 0 0 0 0 0 1 ;TR N 1 1 2 .03 .002 0 0 -101 ; CR ;SR .005 0 .005 0 0 0 0 0 1 ;SR .01 0 .01 0 0 0 0 0 1 ;SR .015 0 .015 0 0 0 0 0 1 ;
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Figure 5: COSY LATEX tra
king pi
tureSR .02 0 .02 0 0 0 0 0 1 ;TR N 1 1 2 .03 .002 0 0 -7 ; ENDWHILE ;ENDPROCEDURE ; RUN ; END ;5.7 Introdu
ing New ElementsWhen looking into the physi
s part of COSY INFINITY, it be
omes apparent thatall parti
le opti
al elements des
ribed above are nothing but pro
edures written in theCOSY language. Due to the openness of the approa
h, users 
an 
onstru
t their ownparti
le opti
al elements.Here we want to show how a user 
an de�ne his own parti
le opti
al element andwork with it. As a �rst example, we begin with a skew quadrupole that is rotated againstthe regular orientation by the angle �. The a
tion of su
h a quad 
an be obtained by�rst rotating the map by ��, then let the quad a
t, and �nally rotate ba
k. All thesesteps are performed on the DA variable 
ontaining the momentary value of the transfermap, whi
h is the global COSY array MAP. For the 
onversion of degrees to radians,the global COSY variable DEGRAD is used. Note that many important global variablesof COSY are des
ribed in se
tion 5.8.INCLUDE 'COSY' ;PROCEDURE RUN ;



5.8 Introdu
ing New Features 63PROCEDURE SQ PHI L B D ; {
omputes the a
tion of a skew quad}PROCEDURE ROTATE PHI ; {lo
al pro
edure for rotation}VARIABLE M 1000 4 ; VARIABLE I 1 ;M(1) := COS(PHI*DEGRAD)*MAP(1) + SIN(PHI*DEGRAD)*MAP(3) ;M(3) := -SIN(PHI*DEGRAD)*MAP(1) + COS(PHI*DEGRAD)*MAP(3) ;M(2) := COS(PHI*DEGRAD)*MAP(2) + SIN(PHI*DEGRAD)*MAP(4) ;M(4) := -SIN(PHI*DEGRAD)*MAP(2) + COS(PHI*DEGRAD)*MAP(4) ;LOOP I 1 4 ; MAP(I) := M(I) ; ENDLOOP ; ENDPROCEDURE ;ROTATE -PHI ; MQ L B D ; ROTATE PHI ; ENDPROCEDURE ;OV 5 2 0 ; RP 1 1 1 ;UM ; DL .1 ; SQ -30 .2 .1 .1 ; DL .1 ; SQ 30 .2 .1 .1 ; PM 6 ;ENDPROCEDURE ; RUN ; END ;It is 
lear that a similar te
hnique 
an be used to study misaligned elements. In asimilar way, it is easily possible to generate a \ki
k-environment" in COSY INFINITY,where every parti
le opti
al element is just represented by a ki
k in its 
enter.This te
hnique is also useful in many other ways. For example, if a 
ertain elementis rather time 
onsuming to 
ompute, whi
h 
an be the 
ase with 
ylindri
al lenses tohigh orders, one 
an write a pro
edure that 
omputes the map of the element, in
ludingthe dependen
e on some of its parameters, and saves the map somewhere. When 
alledagain with di�erent values, the pro
edure de
ides if the values are 
lose enough to theold ones to just utilize the previously 
omputed map with the parameters plugged in,or if it is ne
essary to 
ompute the element again. In 
ase the parameters are variedonly slightly, a very signi�
ant speed up 
an be a
hieved in this way, yet for the userthe pro
edure looks like any other element.5.8 Introdu
ing New FeaturesThe whole 
on
ept of COSY INFINITY is very open in that it easily allows extensions forspe
i�
 tasks. The user is free to provide his own pro
edures for parti
le opti
al elementsor for many other purposes. To interfa
e with COSY INFINITY most eÆ
iently, it isimportant to know the names of 
ertain key global variables, fun
tions and pro
edures.Furthermore it is important to know that all quantities in COSY INFINITY are in SIunits, with the ex
eption of voltages, whi
h are in kV.For some appli
ations, it is helpful to a

ess some of COSY INFINITY's globalvariables. Sin
e the physi
s of the 
ode is written in its own language, all these variablesare dire
tly visible to the user. The �rst set of relevant global variables are the natural
onstants des
ribing the physi
s. These variables are set after the routine OV or DEFis 
alled and 
an be utilized for 
al
ulations by the user. The data are taken from [23℄(CAUTION: The data was updated in September 2001 in COSY.FOX). In order tomat
h other 
odes, the variables 
an be 
hanged by the user in COSY.FOX if ne
essary.



64 5 EXAMPLESAMU Atomi
 Mass Unit 1:66053873 � 10�27 kgAMUMEV Atomi
 Mass Unit in MeV 
omputed as AMU�
2=e�= 931:4940136 MeVEZERO The 
harge unit e 1:602176462 � 10�19 CCLIGHT The speed of light 
 2:99792458 � 108 m/sPI the value of � 
omputed as 4 ar
tan(1:0)The se
ond set of variables des
ribes the referen
e parti
le. These variables are updatedevery time the pro
edure RP is 
alled.E0 Energy in MeVM0 Mass in AMUZ0 Charge in unitsV0 Velo
ity in m/sP0 Momentum p0
 in MeVCHIM Magneti
 RigidityCHIE Ele
tri
 RigidityETA Kineti
 Energy over m
2Finally, there are the variables that are updated by parti
le opti
al elements:MAP Array of 8 DA ve
tors 
ontaining MapRAY Array of 8 VE ve
tors 
ontaining CoordinatesSPOS Momentary value of the independent variableCOSY INFINITY 
ontains several pro
edures that are not used expli
itly by the userbut are used internally for 
ertain operations. Firstly, there are the three DA fun
tionsDER(<n>,<a>)INTEG(<n>,<a>)PB (<a>,<b>)whi
h 
ompute the DA derivation with respe
t to variable n, the integral with respe
tto variable n, and the Poisson bra
ket between a and b. Another helpful fun
tion isNMON (<NO>,<NV>)whi
h returns the maximum number of 
oeÆ
ients in a DA ve
tor in NV variables toorder NO. An important pro
edure isPOLVAL <L> <P> <NP> <A> <NA> <R> <NR> ;whi
h lets the polynomial des
ribed by the NP DA ve
tors or Taylor models [1℄ storedin the array P a
t on the NA arguments A, and the result is stored in the NR Ve
torsR. In the normal situation, L should be set 1. After POLVAL is 
alled with L= 1; the



5.8 Introdu
ing New Features 65analysis of the polynomial array P 
an be omitted by 
alling POLVAL with L= �1or L= 0: The other setting for L is dis
ouraged, be
ause it may interfere with COSY'sinternal use of POLVAL.The type of A is free, but all the array elements of A have to be the same type; it
an be either DA or CD, in whi
h 
ase the pro
edure a
ts as a 
on
atenator, it 
an bereal, 
omplex or intervals, in whi
h 
ase it a
ts like a polynomial evaluator, or it 
anbe of ve
tor type VE, in whi
h 
ase it a
ts as a very eÆ
ient ve
torizing map evaluatorand is used for repetitive tra
king. If ne
essary, adding 0*A(1) 
an make the type ofthe argument array element A(I) agreeing to that type of A(1).Further details on using the COSY INFINITY environment for a
tive programmingtasks 
an be found in [1℄.
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 Glass, 42Spheri
al Glass, 42Misalignment, 44MLF (Lie Fa
torization), 53MM (Magneti
 Multipole), 24MMS (Magneti
 Multipole), 24MO (Magneti
 O
tupole), 24Momentum, 17Compa
tion (MCM), 49MQ (Magneti
 Quadrupole), 24MR (Reversed Map), 20MS (Magneti
 Se
tor), 38MS (Magneti
 Se
tor), 26MSS (Magneti
 Se
tor s-dependent), 26MT (Twisted Map), 20Multipole, 24Ele
tri
, 25Magneti
, 24, 41Skew, 24, 25MZ (Magneti
 Dode
apole), 24

Natural Constants, 63New FeaturesIntrodu
tion of, 63NF (Normal Form), 48Nonlinearities, 46Normal Form, 48Example, 60O
tupoleEle
tri
, 25Magneti
, 24OE (Orthogonal Error), 51O�set, 44On-Line Aberration Corre
tion, 47Opti
 AxisO�set, 44Rotation, 44Tilt, 44Opti
s Books, 15Optimization, 58Customized (Example), 59Example, 58Expensive Submaps, 19OrderChanging, 16Maximum, 16Orthogonality Test, 51Output, see WritingOV (Order and Variables), 16p (Parti
le Momentum) , 17PA (Print Aberrations), 46PARA (COSY Fun
tion), 45, 56Paraboli
Mirror, 42Parallel Fa
ed Magnet, 27Parameter, 16Automati
 Adjustment, 58Example, 56Fixed Point Depending on, 48Maps Depending on, 56Maximum Values, 18Tune Shifts Depending on, 48Parti
le Opti
s Books, 15



INDEX 75Pas
al, 14PB (COSY Fun
tion), 64PG (Print Graphi
s), 22PGE (Print Envelope), 23PGPLOT Graphi
s, 6Phase Spa
e, 16Maximum Sizes, 17Variables, 17Weight, 51Physi
al Constants, 64Pi
ture, see Graphi
sBeginning, 22End, 22Type (PTY), 22Writing, 22Plane of Interest, 23PM (Print Map), 19Poin
are Se
tion (PS), 23Poisson Bra
ket, 64POLVAL (Intrinsi
 Pro
edure), 64Polynomial, 64PostS
ript Graphi
sDire
t, 6PP (Print Pi
ture), 22PR (Print Rays), 22Pre
ompiler, 13Printing, see WritingPrism, 42Problems, 5PROCEDURE RUN, 15Proton Beam, 17PS (Poin
are Se
tion), 23PS Graphi
sDire
t, 6PSM (Print Spin Matrix), 19PT (Print TRANSPORT), 46PTY (Pi
ture Type), 22QuadrupoleEle
tri
, 25Magneti
, 24Questions, 5RA (Rotate Axis), 44

RayClearing, 21Computation, 20Energy 
losed orbit, � fun
tion, 21Envelope, 21Global COSY Variable), 64Sele
tion, 21Sele
tion, Ensemble, 21Sine, Cosine, Dispersion, Envelope ,21Tra
ing, 12Traje
tories, 22Writing, 22ReadingMap, 19S
aling Map (RSM), 20Re
onstru
tion of Traje
tories, 47Re
onstru
tive Corre
tion, 47Referen
e�les for fringe �elds, 36Parti
le, 17Traje
toryO�set, 44Rotation, 44Tilt, 44Repetitive Systems, 50Resolution, 46Linear, 46Re
onstru
tive Corre
tion, 47Under Aberrations, 47Resonan
e Strength, 49Reversed Map, 20RF, 29RF (RF Cavity), 29RigidityEle
tri
, 64Magneti
, 64RM (Read Map), 19Rotation, 44Round Lenses, 29RP (Referen
e Parti
le), 17RPE (Ele
tron Referen
e Parti
le), 17RPM (Referen
e Parti
le), 17RPP (Proton Referen
e Parti
le), 17



76 INDEXRPR (Referen
e Parti
le), 17RPS (Referen
e Parti
le Spin), 17RR (Re
onstru
tive Resolution), 47RS (Resonan
e Strength), 49RSM (Read S
aling Map), 20RUN (COSY User Pro
edure), 16SA (Shift Axis), 44SB (Set Beam), 17SBE (Set ellipse), 18SCDE (Chara
teristi
 Rays), 21SCOFF Approximation, 26SE (Symple
ti
 Error), 51Se
torBending Dire
tion, 24Combined Fun
tion with Edge An-gles, 27Ele
tri
, 26Homogeneous Magneti
, 26Magneti
, 26Parallel Fa
ed, 27Servran
kx, Roger, 43SextupoleEle
tri
, 25Magneti
, 24Sharp Cut O�, 26SI Units, 15SIGMA, 20Sigma Matrix, 20Simple System (Example), 55SkewEle
tri
 Multipole, 25Magneti
 Multipole, 24SM (Save Map), 18SNM (Save Map), 18Solenoid, 30Sour
e Files, 6SP (Set Parameters), 18Spe
trograph, 46Spe
trometer, 46Speed of Light, 64Spheri
alLens, 42Mirror, 42

Spin�n, 49Coordinates for Parti
le, 21Initialization, 17Orthogonality Test, 51Printing Matrix, 19Tuneshift, 49Spot Size, 47Squew Element, 62SR (Sele
t Ray), 21SSR (Sele
t Spin of Ray), 21Stigmati
 Image, 58Stray Fields, 31STURNS, 11Support, 5Swit
hed Map, 20SXFInput for COSY, 44SY (Symple
ti�
ation), 52Symple
ti
ity Test, 51Symple
ti�
ation, 52Syntax Changes, 11Systemof Units, 15Optimization, 58Plot, 22TA (Tilt Axis), 44Te
hni
al Support, 5ThreeAperture Lens, 31Tube Lens, 30Tilt, 44Time of Flight Terms, 16TP (Tune on Parameters), 48TR (Tra
k Rays), 50Tra
king, 50Example, 61EXPO, 50Symple
ti
, 52Traje
tories, 20, see Ray, 22Traje
tory Re
onstru
tion, 47Transfer Map Output(Example), 55TRANSPORT, 12, 13



INDEX 77Map in Coordinates, 46TRIO, 12, 13TRT (Tra
king Title), 51TS (Tune Shift), 48TSP (Tune on Parameters, Spin), 49TSS (Tune Shift, Spin), 49Tune, 48Shift, 48Shift (Example), 60Shift, Spin, 49Twiss Parameters, 48Example, 60Twisted Map, 20UM (Unity Map), 18Undulator, 28Unit, 15of Coordinates, 17UNIX, 7Installation, 7User's Agreement, 5VariableImportant Global, 63Phase Spa
e, 17VAX/Open VMS Installation, 7VERSION, 7VMS, 7Voltage Unit, 15WC (Combined Fun
tion Wien Filter),28Weak Fo
using Lenses, 29WF (Wien Filter), 28WI (Wiggler), 28Wien Filter, 28Wiggler, 28Windows PC, 7WM (Write Map), 19Working Set (VAX), 7Write S
aling Map (WSM), 20WritingAberrations, 46Map, 19

Map in TRANSPORT 
oordinates,46Pi
ture, 22Spin Matrix, 19WSET (Phase Spa
e Weight), 51WSM (Write S
aling Map), 20x (COSY Variable), 17y (COSY Variable), 17z (Parti
le Charge), 17


