/** \class THcRaster \ingroup DetSupport A class to the fast raster signals. Measures the two magnet currents which are proportional to horizontal and vertical beam position \author Buddhini Waidyawansa \author Burcu Duran - Melanie Rehfuss (2017) */ #include "TMath.h" #include "THcRaster.h" #include "THaEvData.h" #include "THaDetMap.h" #include "THcParmList.h" #include "THcGlobals.h" #include "THaGlobals.h" #include "THaApparatus.h" #include "THcRawAdcHit.h" #include "THcSignalHit.h" //#include "THcHitList.h" #include <cstring> #include <cstdio> #include <cstdlib> #include <iostream> #include <fstream> using namespace std; //_____________________________________________________________________________ THcRaster::THcRaster( const char* name, const char* description, THaApparatus* apparatus ) : THaBeamDet(name,description,apparatus) { fAnalyzePedestals = 0; fNPedestalEvents = 0; FRXA_rawadc = 0; FRXB_rawadc = 0; FRYA_rawadc = 0; FRYB_rawadc = 0; fXA_ADC = 0; fYA_ADC = 0; fXB_ADC = 0; fYB_ADC = 0; fXA_pos = 0; fYA_pos = 0; fXB_pos = 0; fYB_pos = 0; fFrCalMom = 0; fFrXA_ADCperCM = 1.0; fFrYA_ADCperCM = 1.0; fFrXB_ADCperCM = 1.0; fFrYB_ADCperCM = 1.0; fFrXA_ADC_zero_offset = 0; fFrXA_ADC_zero_offset =0; fFrXA_ADC_zero_offset =0; fFrXA_ADC_zero_offset =0; frPosAdcPulseIntRaw = NULL; for(Int_t i=0;i<4;i++){ fPedADC[i] = 0; } InitArrays(); } //_____________________________________________________________________________ THcRaster::THcRaster( ) : THaBeamDet("THcRaster") // no default constructor available { frPosAdcPulseIntRaw = NULL; InitArrays(); } //_____________________________________________________________________________ THcRaster::~THcRaster() { // Destructor delete frPosAdcPulseIntRaw; frPosAdcPulseIntRaw = NULL; DeleteArrays(); } //_____________________________________________________________________________ THaAnalysisObject::EStatus THcRaster::Init( const TDatime& date ) { //cout << "THcRaster::Init()" << endl; char EngineDID[] = "xRASTER"; EngineDID[0] = toupper(GetApparatus()->GetName()[0]); // Fill detector map with RASTER type channels if( gHcDetectorMap->FillMap(fDetMap, EngineDID) < 0 ) { static const char* const here = "Init()"; Error( Here(here), "Error filling detectormap for %s.", EngineDID); return kInitError; } InitHitList(fDetMap,"THcRasterRawHit",fDetMap->GetTotNumChan()+1); EStatus status; if( (status = THaBeamDet::Init( date )) ) return fStatus=status; return fStatus = kOK; } //_____________________________________________________________________________ Int_t THcRaster::ReadDatabase( const TDatime& date ) { // Read parameters such as calibration factor, of this detector from the database. //cout << "THcRaster::ReadDatabase()" << endl; char prefix[2]; //cout << " THcRaster::ReadDatabase GetName() called " << GetName() << endl; // prefix[0]=tolower(GetName()[0]); // bpw- The prefix is hardcoded so that we don't have to change the gbeam.param file. o/w to get the following variables, we need to change to parameter names to rfr_cal_mom, etc where "r" comes from prefix[0]=tolower(GetName()[0]). prefix[0]='g'; prefix[1]='\0'; // string names; DBRequest list[]={ {"fr_cal_mom",&fFrCalMom, kDouble}, {"frxa_adcpercm",&fFrXA_ADCperCM, kDouble}, {"frya_adcpercm",&fFrYA_ADCperCM, kDouble}, {"frxb_adcpercm",&fFrXB_ADCperCM, kDouble}, {"fryb_adcpercm",&fFrYB_ADCperCM, kDouble}, {"frxa_adc_zero_offset",&fFrXA_ADC_zero_offset,kDouble}, {"frya_adc_zero_offset",&fFrYA_ADC_zero_offset,kDouble}, {"frxb_adc_zero_offset",&fFrXB_ADC_zero_offset,kDouble}, {"fryb_adc_zero_offset",&fFrYB_ADC_zero_offset,kDouble}, {"pbeam",&fgpbeam, kDouble}, {"frx_dist", &fgfrx_dist, kDouble}, {"fry_dist", &fgfry_dist, kDouble}, {"beam_x", &fgbeam_xoff, kDouble,0,1}, {"beam_xp", &fgbeam_xpoff, kDouble,0,1}, {"beam_y", &fgbeam_yoff, kDouble,0,1}, {"beam_yp", &fgbeam_ypoff, kDouble,0,1}, {"usefr", &fgusefr, kInt,0,1}, {0} }; // Default offsets to zero fgbeam_xoff = 0.0; fgbeam_xpoff = 0.0; fgbeam_yoff = 0.0; fgbeam_ypoff = 0.0; fgusefr = 0; // get the calibration factors from gbeam.param file gHcParms->LoadParmValues((DBRequest*)&list,prefix); frPosAdcPulseIntRaw = new TClonesArray("THcSignalHit", 4); return kOK; } //_____________________________________________________________________________ Int_t THcRaster::DefineVariables( EMode mode ) { // Initialize global variables for histogramming and tree //cout << "THcRaster::DefineVariables called " << GetName() << endl; if( mode == kDefine && fIsSetup ) return kOK; fIsSetup = ( mode == kDefine ); // Register variables in global list RVarDef vars[] = { {"frxaRawAdc", "Raster XA raw ADC", "FRXA_rawadc"}, {"fryaRawAdc", "Raster YA raw ADC", "FRXB_rawadc"}, {"frxbRawAdc", "Raster XB raw ADC", "FRYA_rawadc"}, {"frybRawAdc", "Raster YB raw ADC", "FRYB_rawadc"}, {"frxa_adc", "Raster XA ADC", "fXA_ADC"}, {"frya_adc", "Raster YA ADC", "fYA_ADC"}, {"frxb_adc", "Raster XB ADC", "fXB_ADC"}, {"fryb_adc", "Raster YB ADC", "fYB_ADC"}, {"fr_xa", "Raster XA position", "fXA_pos"}, {"fr_ya", "Raster YA position", "fYA_pos"}, {"fr_xb", "Raster XB position", "fXB_pos"}, {"fr_yb", "Raster YB position", "fYB_pos"}, { 0 } }; return DefineVarsFromList( vars, mode ); } //_____________________________________________________________________________ inline void THcRaster::Clear(Option_t* opt) { fNhits = 0; frPosAdcPulseIntRaw->Clear(); } //_____________________________________________________________________________ void THcRaster::AccumulatePedestals(TClonesArray* rawhits) { /* Extract data from the hit list, accumulating into arrays for calculating pedestals. From ENGINE/g_analyze_misc.f - * JRA: Code to check FR pedestals. Since the raster is a fixed frequency * and the pedestals come at a fixed rate, it is possible to keep getting * the same value for each pedestal event, and get the wrong zero value. * (see HCLOG #28325). So calculate pedestal from first 1000 REAL * events and compare to value from pedestal events. Error on each * measurement is RMS/sqrt(1000), error on diff is *sqrt(2), so 3 sigma * check is 3*sqrt(2)*RMS/sqrt(1000) = .13*RMS ! ! Can't use RMS, since taking sum of pedestal**2 for these signals ! gives rollover for integer*4. Just assume signal is +/-2000 ! channels, gives sigma of 100 channels, so check for diff>130. ! */ Int_t nrawhits = rawhits->GetLast()+1; Int_t ihit = 0; UInt_t nrPosAdcHits=0; while(ihit < nrawhits) { THcRasterRawHit* hit = (THcRasterRawHit *) fRawHitList->At(ihit); THcRawAdcHit& rawPosAdcHit = hit->GetRawAdcHitPos(); Int_t nsig = hit->fCounter; for (UInt_t thit=0; thit<rawPosAdcHit.GetNPulses(); ++thit) { ((THcSignalHit*) frPosAdcPulseIntRaw->ConstructedAt(nrPosAdcHits))->Set(nsig, rawPosAdcHit.GetPulseIntRaw(thit)); ++nrPosAdcHits; } ihit++; } for(Int_t ielem = 0; ielem < frPosAdcPulseIntRaw->GetEntries(); ielem++) { Int_t nraster = ((THcSignalHit*) frPosAdcPulseIntRaw->ConstructedAt(ielem))->GetPaddleNumber() - 1; Double_t pulseIntRaw = ((THcSignalHit*) frPosAdcPulseIntRaw->ConstructedAt(ielem))->GetData(); if (nraster ==0) fPedADC[0] = pulseIntRaw; if (nraster ==1) fPedADC[1] = pulseIntRaw; if (nraster ==2) fPedADC[2] = pulseIntRaw; if (nraster ==3) fPedADC[3] = pulseIntRaw; } } //_____________________________________________________________________________ void THcRaster::CalculatePedestals( ) { /* Use the accumulated pedestal data to calculate pedestals From ENGINE/g_analyze_misc.f - if (numfr.eq.1000) then avefrx = sumfrx / float(numfr) avefry = sumfry / float(numfr) if (abs(avefrx-gfrx_adc_ped).gt.130.) then write(6,*) 'FRPED: peds give <frx>=',gfrx_adc_ped, $ ' realevents give <frx>=',avefrx endif if (abs(avefry-gfry_adc_ped).gt.130.) then write(6,*) 'FRPED: peds give <fry>=',gfry_adc_ped, $ ' realevents give <fry>=',avefry endif endif */ fFrXA_ADC_zero_offset = fPedADC[0]/ fNPedestalEvents; fFrYA_ADC_zero_offset = fPedADC[1]/ fNPedestalEvents; fFrXB_ADC_zero_offset = fPedADC[2]/ fNPedestalEvents; fFrYB_ADC_zero_offset = fPedADC[3]/ fNPedestalEvents; } //_____________________________________________________________________________ Int_t THcRaster::Decode( const THaEvData& evdata ) { // Get the Hall C style hitlist (fRawHitList) for this event fNhits = DecodeToHitList(evdata); // Get the pedestals from the first 1000 events //if(fNPedestalEvents < 10) if(gHaCuts->Result("Pedestal_event") & (fNPedestalEvents < 1000)) { AccumulatePedestals(fRawHitList); fAnalyzePedestals = 1; // Analyze pedestals first normal events fNPedestalEvents++; return(0); } if(fAnalyzePedestals) { CalculatePedestals(); fAnalyzePedestals = 0; // Don't analyze pedestals next event } Int_t ihit = 0; UInt_t nrPosAdcHits=0; while(ihit < fNhits) { THcRasterRawHit* hit = (THcRasterRawHit *) fRawHitList->At(ihit); THcRawAdcHit& rawPosAdcHit = hit->GetRawAdcHitPos(); Int_t nsig = hit->fCounter; for (UInt_t thit=0; thit<rawPosAdcHit.GetNPulses(); ++thit) { ((THcSignalHit*) frPosAdcPulseIntRaw->ConstructedAt(nrPosAdcHits))->Set(nsig, rawPosAdcHit.GetPulseIntRaw(thit)); ++nrPosAdcHits; } ihit++; } for(Int_t ielem = 0; ielem < frPosAdcPulseIntRaw->GetEntries(); ielem++) { Int_t nraster = ((THcSignalHit*) frPosAdcPulseIntRaw->ConstructedAt(ielem))->GetPaddleNumber() - 1; Double_t pulseIntRaw = ((THcSignalHit*) frPosAdcPulseIntRaw->ConstructedAt(ielem))->GetData(); if (nraster ==0) FRXA_rawadc = pulseIntRaw; if (nraster ==1) FRXB_rawadc = pulseIntRaw; if (nraster ==2) FRYA_rawadc = pulseIntRaw; if (nraster ==3) FRYB_rawadc = pulseIntRaw; } return 0; } //_____________________________________________________________________________ Int_t THcRaster::Process( ){ Double_t fgpBeam = 0.001; DBRequest list[] = { {"gpbeam", &fgpBeam, kDouble, 0, 1}, {0} }; gHcParms->LoadParmValues(list); /* calculate raster position from ADC value. From ENGINE/g_analyze_misc.f - gfrx_adc = gfrx_raw_adc - gfrx_adc_ped gfry_adc = gfry_raw_adc - gfry_adc_ped */ // calculate the raster currents fXA_ADC = FRXA_rawadc-fFrXA_ADC_zero_offset; fYA_ADC = FRXB_rawadc-fFrYA_ADC_zero_offset; fXB_ADC = FRYA_rawadc-fFrXB_ADC_zero_offset; fYB_ADC = FRYB_rawadc-fFrYB_ADC_zero_offset; //std::cout<<" Raw X ADC = "<<fXADC<<" Raw Y ADC = "<<fYADC<<std::endl; /* calculate the raster positions gfrx = (gfrx_adc/gfrx_adcpercm)*(gfr_cal_mom/ebeam) gfry = (gfry_adc/gfry_adcpercm)*(gfr_cal_mom/ebeam) */ fXA_pos = (fXA_ADC/fFrXA_ADCperCM)*(fFrCalMom/fgpBeam); fYA_pos = (fYA_ADC/fFrYA_ADCperCM)*(fFrCalMom/fgpBeam); fXB_pos = (fXB_ADC/fFrXB_ADCperCM)*(fFrCalMom/fgpBeam); fYB_pos = (fYB_ADC/fFrYB_ADCperCM)*(fFrCalMom/fgpBeam); // std::cout<<" X = "<<fXpos<<" Y = "<<fYpos<<std::endl; Double_t tt; Double_t tp; if(fgusefr != 0) { fPosition[1].SetXYZ(fXA_pos+fgbeam_xoff, fYA_pos+fgbeam_yoff, 0.0); tt = fXA_pos/fgfrx_dist+fgbeam_xpoff; tp = fYA_pos/fgfry_dist+fgbeam_ypoff; } else { // Just use fixed beam position and angle fPosition[0].SetXYZ(fgbeam_xoff, fgbeam_yoff, 0.0); tt = fgbeam_xpoff; tp = fgbeam_ypoff; } fDirection.SetXYZ(tt, tp ,1.0); // Set arbitrarily to avoid run time warnings fDirection *= 1.0/TMath::Sqrt(1.0+tt*tt+tp*tp); return 0; } ClassImp(THcRaster) ////////////////////////////////////////////////////////////////////////////////