//*-- Author : ////////////////////////////////////////////////////////////////////////// // // THcShowerArray // ////////////////////////////////////////////////////////////////////////// #include "THcShowerArray.h" #include "TClonesArray.h" #include "THcSignalHit.h" #include "THcGlobals.h" #include "THcParmList.h" #include "THcHitList.h" #include "THcShower.h" #include "THcRawShowerHit.h" #include "TClass.h" #include "math.h" #include "THaTrack.h" #include "THaTrackProj.h" #include <cstring> #include <cstdio> #include <cstdlib> #include <iostream> #include <fstream> using namespace std; ClassImp(THcShowerArray) //______________________________________________________________________________ THcShowerArray::THcShowerArray( const char* name, const char* description, const Int_t layernum, THaDetectorBase* parent ) : THaSubDetector(name,description,parent) { fADCHits = new TClonesArray("THcSignalHit",100); fLayerNum = layernum; fClusterList = new THcShowerClusterList; } //______________________________________________________________________________ THcShowerArray::~THcShowerArray() { // Destructor delete fXPos; delete fYPos; delete fADCHits; delete [] fA; delete [] fP; delete [] fA_p; delete [] fE; } //_____________________________________________________________________________ THaAnalysisObject::EStatus THcShowerArray::Init( const TDatime& date ) { // Extra initialization for shower layer: set up DataDest map if( IsZombie()) return fStatus = kInitError; // How to get information for parent // if( GetParent() ) // fOrigin = GetParent()->GetOrigin(); EStatus status; if( (status=THaSubDetector::Init( date )) ) return fStatus = status; return fStatus = kOK; } //_____________________________________________________________________________ Int_t THcShowerArray::ReadDatabase( const TDatime& date ) { char prefix[2]; prefix[0]=tolower(GetParent()->GetPrefix()[0]); prefix[1]='\0'; cout << "Parent name: " << GetParent()->GetPrefix() << endl; fNRows=fNColumns=0; fXFront=fYFront=fZFront=0.; fXStep=fYStep=0.; fUsingFADC=0; fPedSampLow=0; fPedSampHigh=9; fDataSampLow=23; fDataSampHigh=49; DBRequest list[]={ {"cal_arr_nrows", &fNRows, kInt}, {"cal_arr_ncolumns", &fNColumns, kInt}, {"cal_arr_front_x", &fXFront, kDouble}, {"cal_arr_front_y", &fYFront, kDouble}, {"cal_arr_front_z", &fZFront, kDouble}, {"cal_arr_xstep", &fXStep, kDouble}, {"cal_arr_ystep", &fYStep, kDouble}, {"cal_using_fadc", &fUsingFADC, kInt, 0, 1}, {"cal_ped_sample_low", &fPedSampLow, kInt, 0, 1}, {"cal_ped_sample_high", &fPedSampHigh, kInt, 0, 1}, {"cal_data_sample_low", &fDataSampLow, kInt, 0, 1}, {"cal_data_sample_high", &fDataSampHigh, kInt, 0, 1}, {0} }; gHcParms->LoadParmValues((DBRequest*)&list, prefix); fNelem = fNRows*fNColumns; fXPos = new Double_t* [fNRows]; fYPos = new Double_t* [fNRows]; for (UInt_t i=0; i<fNRows; i++) { fXPos[i] = new Double_t [fNColumns]; fYPos[i] = new Double_t [fNColumns]; } //Looking to the front, the numbering goes from left to right, and from top //to bottom. for (UInt_t j=0; j<fNColumns; j++) for (UInt_t i=0; i<fNRows; i++) { fXPos[i][j] = fXFront - (fNRows-1)*fXStep/2 + fXStep*i; fYPos[i][j] = fYFront + (fNColumns-1)*fYStep/2 - fYStep*j; } // Debug output. THcShower* fParent; fParent = (THcShower*) GetParent(); if (fParent->fdbg_init_cal) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerArray::ReadDatabase for " << GetParent()->GetPrefix() << ":" << endl; cout << " Layer #" << fLayerNum << ", number of elements " << dec << fNelem << endl; cout << " Columns " << fNColumns << ", Rows " << fNRows << endl; cout << "Front X, Y Z: " << fXFront << ", " << fYFront << ", " << fZFront << " cm" << endl; cout << " Block to block X and Y distances: " << fXStep << ", " << fYStep << " cm" << endl; cout << "Block X coordinates:" << endl; for (UInt_t i=0; i<fNRows; i++) { for (UInt_t j=0; j<fNColumns; j++) { cout << fXPos[i][j] << " "; } cout << endl; } cout << endl; cout << "Block Y coordinates:" << endl; for (UInt_t i=0; i<fNRows; i++) { for (UInt_t j=0; j<fNColumns; j++) { cout << fYPos[i][j] << " "; } cout << endl; } cout << endl; cout << " Using FADC " << fUsingFADC << endl; if (fUsingFADC) { cout << " FADC pedestal sample low = " << fPedSampLow << ", high = " << fPedSampHigh << endl; cout << " FADC data sample low = " << fDataSampLow << ", high = " << fDataSampHigh << endl; } } // Here read the 2-D arrays of pedestals, gains, etc. // Pedestal limits per channel. fPedLimit = new Int_t [fNelem]; Double_t cal_arr_cal_const[fNelem]; Double_t cal_arr_gain_cor[fNelem]; DBRequest list1[]={ {"cal_arr_ped_limit", fPedLimit, kInt, fNelem}, {"cal_arr_cal_const", cal_arr_cal_const, kDouble, fNelem}, {"cal_arr_gain_cor", cal_arr_gain_cor, kDouble, fNelem}, // {"cal_min_peds", &fShMinPeds, kInt}, {0} }; gHcParms->LoadParmValues((DBRequest*)&list1, prefix); // Debug output. if (fParent->fdbg_init_cal) { cout << " fPedLimit:" << endl; Int_t el=0; for (UInt_t j=0; j<fNColumns; j++) { cout << " "; for (UInt_t i=0; i<fNRows; i++) { cout << fPedLimit[el++] << " "; }; cout << endl; }; cout << " cal_arr_cal_const:" << endl; el=0; for (UInt_t j=0; j<fNColumns; j++) { cout << " "; for (UInt_t i=0; i<fNRows; i++) { cout << cal_arr_cal_const[el++] << " "; }; cout << endl; }; cout << " cal_arr_gain_cor:" << endl; el=0; for (UInt_t j=0; j<fNColumns; j++) { cout << " "; for (UInt_t i=0; i<fNRows; i++) { cout << cal_arr_gain_cor[el++] << " "; }; cout << endl; }; } // end of debug output // Calibration constants (GeV / ADC channel). fGain = new Double_t [fNelem]; for (UInt_t i=0; i<fNelem; i++) { fGain[i] = cal_arr_cal_const[i] * cal_arr_gain_cor[i]; } // Debug output. if (fParent->fdbg_init_cal) { cout << " fGain:" << endl; Int_t el=0; for (UInt_t j=0; j<fNColumns; j++) { cout << " "; for (UInt_t i=0; i<fNRows; i++) { cout << fGain[el++] << " "; }; cout << endl; }; } fMinPeds = fParent->GetMinPeds(); InitializePedestals(); // Event by event amplitude and pedestal fA = new Double_t[fNelem]; fP = new Double_t[fNelem]; fA_p = new Double_t[fNelem]; // Energy depositions per block. fE = new Double_t[fNelem]; #ifdef HITPIC hitpic = new char*[fNRows]; for(Int_t row=0;row<fNRows;row++) { hitpic[row] = new char[NPERLINE*(fNColumns+1)+2]; } piccolumn=0; #endif // Debug output. if (fParent->fdbg_init_cal) { cout << " fMinPeds = " << fMinPeds << endl; // cout << " Origin of Layer at X = " << fOrigin.X() // << " Y = " << fOrigin.Y() << " Z = " << fOrigin.Z() << endl; cout << "---------------------------------------------------------------\n"; } return kOK; } //_____________________________________________________________________________ Int_t THcShowerArray::DefineVariables( EMode mode ) { // Initialize global variables if( mode == kDefine && fIsSetup ) return kOK; fIsSetup = ( mode == kDefine ); // Register variables in global list RVarDef vars[] = { {"adchits", "List of ADC hits", "fADCHits.THcSignalHit.GetPaddleNumber()"}, {"a", "Raw ADC Amplitude", "fA"}, {"p", "Dynamic ADC Pedestal", "fP"}, {"a_p", "Sparsified, ped-subtracted ADC Amplitudes", "fA_p"}, { "nhits", "Number of hits", "fNhits" }, { "nclust", "Number of clusters", "fNclust" }, {"e", "Energy Depositions per block", "fE"}, {"earray", "Energy Deposition in array", "fEarray"}, { "ntracks", "Number of shower tracks", "fNtracks" }, { 0 } }; return DefineVarsFromList( vars, mode ); } //_____________________________________________________________________________ void THcShowerArray::Clear( Option_t* ) { // Clears the hit lists fADCHits->Clear(); fNhits = 0; fNclust = 0; fNtracks = 0; for (THcShowerClusterListIt i=fClusterList->begin(); i!=fClusterList->end(); ++i) { delete *i; *i = 0; } fClusterList->clear(); } //_____________________________________________________________________________ Int_t THcShowerArray::Decode( const THaEvData& evdata ) { // Doesn't actually get called. Use Fill method instead return 0; } //_____________________________________________________________________________ Int_t THcShowerArray::CoarseProcess( TClonesArray& tracks ) { // Fill set of unclustered shower array hits. THcShowerHitSet HitSet; UInt_t k=0; for (UInt_t i=0; i<fNRows; i++) { for(UInt_t j=0; j < fNColumns; j++) { if (fA_p[k] > 0) { //hit THcShowerHit* hit = new THcShowerHit(i, j, fXPos[i][j], fYPos[i][j], fE[k], 0., 0.); HitSet.insert(hit); } k++; } } fNhits = HitSet.size(); //Debug output, print out hits before clustering. THcShower* fParent = (THcShower*) GetParent(); if (fParent->fdbg_clusters_cal) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerArray::CoarseProcess for " << GetName() << endl; cout << " List of unclustered hits. Total hits: " << fNhits << endl; THcShowerHitIt it = HitSet.begin(); //<set> version for (Int_t i=0; i!=fNhits; i++) { cout << " hit " << i << ": "; (*(it++))->show(); } } // Fill list of clusters. fParent->ClusterHits(HitSet, fClusterList); fNclust = (*fClusterList).size(); //number of clusters if (fParent->fdbg_clusters_cal) { cout << " Clustered hits. Number of clusters: " << fNclust << endl; UInt_t i = 0; for (THcShowerClusterListIt ppcl = (*fClusterList).begin(); ppcl != (*fClusterList).end(); ppcl++) { cout << " Cluster #" << i++ <<": E=" << clE(*ppcl) << " Epr=" << clEpr(*ppcl) << " X=" << clX(*ppcl) << " Z=" << clZ(*ppcl) << " size=" << (**ppcl).size() << endl; Int_t j=0; for (THcShowerClusterIt pph=(**ppcl).begin(); pph!=(**ppcl).end(); pph++) { cout << " hit " << j++ << ": "; (**pph).show(); } } cout << "---------------------------------------------------------------\n"; } return 0; } //_____________________________________________________________________________ Int_t THcShowerArray::FineProcess( TClonesArray& tracks ) { return 0; } //_____________________________________________________________________________ Int_t THcShowerArray::ProcessHits(TClonesArray* rawhits, Int_t nexthit) { // Extract the data for this layer from hit list. THcShower* fParent; fParent = (THcShower*) GetParent(); // Initialize variables. Int_t nADCHits=0; fADCHits->Clear(); for(Int_t i=0;i<fNelem;i++) { fA[i] = 0; fA_p[i] = 0; fE[i] = 0; } fEarray = 0; // Process raw hits. Get ADC hits for the plane, assign variables for each // channel. Int_t nrawhits = rawhits->GetLast()+1; Int_t ihit = nexthit; Int_t ngood = 0; Int_t threshold = 100; while(ihit < nrawhits) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ihit); if(hit->fPlane != fLayerNum) { break; } // Should probably check that counter # is in range if(fUsingFADC) { fA[hit->fCounter-1] = hit->GetData(0,fPedSampLow,fPedSampHigh, fDataSampLow,fDataSampHigh); fP[hit->fCounter-1] = hit->GetPedestal(0,fPedSampLow,fPedSampHigh); } else { fA[hit->fCounter-1] = hit->GetData(0); } if(fA[hit->fCounter-1] > threshold) { ngood++; } // Sparsify hits, fill the hit list, compute the energy depostion. if(fA[hit->fCounter-1] > fThresh[hit->fCounter -1]) { THcSignalHit *sighit = (THcSignalHit*)fADCHits->ConstructedAt(nADCHits++); sighit->Set(hit->fCounter, fA[hit->fCounter-1]); fUsingFADC ? fA_p[hit->fCounter-1] = fA[hit->fCounter-1] : fA_p[hit->fCounter-1] = fA[hit->fCounter-1] - fPed[hit->fCounter -1]; fE[hit->fCounter-1] += fA_p[hit->fCounter-1] * fGain[hit->fCounter-1]; } // Accumulate energies in the plane. fEarray += fE[hit->fCounter-1]; ihit++; } #if 0 if(ngood > 0) { cout << "+"; for(Int_t column=0;column<fNColumns;column++) { cout << "-"; } cout << "+" << endl; for(Int_t row=0;row<fNRows;row++) { cout << "|"; for(Int_t column=0;column<fNColumns;column++) { Int_t counter = column*fNRows + row; if(fA[counter]>threshold) { cout << "X"; } else { cout << " "; } } cout << "|" << endl; } } #endif #ifdef HITPIC if(ngood > 0) { for(Int_t row=0;row<fNRows;row++) { if(piccolumn==0) { hitpic[row][0] = '|'; } for(Int_t column=0;column<fNColumns;column++) { Int_t counter = column*fNRows+row; if(fA[counter] > threshold) { hitpic[row][piccolumn*(fNColumns+1)+column+1] = 'X'; } else { hitpic[row][piccolumn*(fNColumns+1)+column+1] = ' '; } hitpic[row][(piccolumn+1)*(fNColumns+1)] = '|'; } } piccolumn++; if(piccolumn==NPERLINE) { cout << "+"; for(Int_t pc=0;pc<NPERLINE;pc++) { for(Int_t column=0;column<fNColumns;column++) { cout << "-"; } cout << "+"; } cout << endl; for(Int_t row=0;row<fNRows;row++) { hitpic[row][(piccolumn+1)*(fNColumns+1)+1] = '\0'; cout << hitpic[row] << endl; } piccolumn = 0; } } #endif //Debug output. if (fParent->fdbg_decoded_cal) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerArray::ProcessHits for " << fParent->GetPrefix() << ":" << endl; cout << " nrawhits = " << nrawhits << " nexthit = " << nexthit << endl; cout << " Sparsified hits for shower array, plane #" << fLayerNum << ", " << GetName() << ":" << endl; Int_t nspar = 0; for (Int_t jhit = nexthit; jhit < nrawhits; jhit++) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(jhit); if(hit->fPlane != fLayerNum) { break; } if(fA[hit->fCounter-1] > fThresh[hit->fCounter -1]) { cout << " counter = " << hit->fCounter << " E = " << fE[hit->fCounter-1] << endl; nspar++; } } if (nspar == 0) cout << " No hits\n"; cout << " Earray = " << fEarray << endl; cout << "---------------------------------------------------------------\n"; } return(ihit); } //_____________________________________________________________________________ Int_t THcShowerArray::AccumulatePedestals(TClonesArray* rawhits, Int_t nexthit) { // Extract data for this plane from hit list and accumulate in // arrays for subsequent pedestal calculations. Int_t nrawhits = rawhits->GetLast()+1; Int_t ihit = nexthit; while(ihit < nrawhits) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ihit); if(hit->fPlane != fLayerNum) { break; } Int_t element = hit->fCounter - 1; // Should check if in range Int_t adc = fUsingFADC ? hit->GetData(0,fPedSampLow,fPedSampHigh,fDataSampLow,fDataSampHigh) : hit->GetData(0); if(adc <= fPedLimit[element]) { fPedSum[element] += adc; fPedSum2[element] += adc*adc; fPedCount[element]++; if(fPedCount[element] == fMinPeds/5) { fPedLimit[element] = 100 + fPedSum[element]/fPedCount[element]; } } ihit++; } fNPedestalEvents++; // Debug output. if ( ((THcShower*) GetParent())->fdbg_raw_cal ) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerArray::AcculatePedestals for " << GetParent()->GetPrefix() << ":" << endl; cout << "Processed hit list for plane " << GetName() << ":\n"; for (Int_t ih=nexthit; ih<nrawhits; ih++) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ih); if(hit->fPlane != fLayerNum) { break; } Int_t adc = fUsingFADC ? hit->GetData(0,fPedSampLow,fPedSampHigh,fDataSampLow,fDataSampHigh) : hit->GetData(0); cout << " hit " << ih << ":" << " plane = " << hit->fPlane << " counter = " << hit->fCounter << " ADC = " << adc << endl; } cout << "---------------------------------------------------------------\n"; } return(ihit); } //_____________________________________________________________________________ void THcShowerArray::CalculatePedestals( ) { // Use the accumulated pedestal data to calculate pedestals. for(Int_t i=0; i<fNelem;i++) { fPed[i] = ((Float_t) fPedSum[i]) / TMath::Max(1, fPedCount[i]); fSig[i] = sqrt(((Float_t)fPedSum2[i])/TMath::Max(1, fPedCount[i]) - fPed[i]*fPed[i]); fThresh[i] = fPed[i] + TMath::Min(50., TMath::Max(10., 3.*fSig[i])); } // Debug output. if ( ((THcShower*) GetParent())->fdbg_raw_cal ) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerArray::CalculatePedestals for " << GetParent()->GetPrefix() << ":" << endl; cout << " ADC pedestals and thresholds for calorimeter plane " << GetName() << endl; for(Int_t i=0; i<fNelem;i++) { cout << " element " << i << ": " << " Pedestal = " << fPed[i] << " threshold = " << fThresh[i] << endl; } cout << "---------------------------------------------------------------\n"; } } //_____________________________________________________________________________ void THcShowerArray::InitializePedestals( ) { fNPedestalEvents = 0; fPedSum = new Int_t [fNelem]; fPedSum2 = new Int_t [fNelem]; fPedCount = new Int_t [fNelem]; fSig = new Float_t [fNelem]; fPed = new Float_t [fNelem]; fThresh = new Float_t [fNelem]; for(Int_t i=0;i<fNelem;i++) { fPedSum[i] = 0; fPedSum2[i] = 0; fPedCount[i] = 0; } } //------------------------------------------------------------------------------ // Fiducial volume limits. Double_t THcShowerArray::fvXmin() { THcShower* fParent; fParent = (THcShower*) GetParent(); return fXPos[0][0] - fXStep/2 + fParent->fvDelta; } Double_t THcShowerArray::fvYmax() { THcShower* fParent; fParent = (THcShower*) GetParent(); return fYPos[0][0] + fYStep/2 - fParent->fvDelta; } Double_t THcShowerArray::fvXmax() { THcShower* fParent; fParent = (THcShower*) GetParent(); return fXPos[fNRows-1][fNColumns-1] + fXStep/2 - fParent->fvDelta; } Double_t THcShowerArray::fvYmin() { THcShower* fParent; fParent = (THcShower*) GetParent(); return fYPos[fNRows-1][fNColumns-1] - fYStep/2 + fParent->fvDelta; }