/** \class THcHallCSpectrometer \ingroup Base \brief A standard Hall C spectrometer apparatus Uses the standard optics polynomials to trace back to target Contains no standard detectors. All detectors must be added. The usual name of this object is either "H", "S", "P" for HMS, SOS, or suPerHMS respectively \author S. A. Wood */ ////////////////////////////////////////////////////////////////////////// #include "THcHallCSpectrometer.h" #include "THaTrackingDetector.h" #include "THcGlobals.h" #include "THcParmList.h" #include "THaTrack.h" #include "THaTrackProj.h" #include "THaTriggerTime.h" #include "TMath.h" #include "TList.h" #include "THcRawShowerHit.h" #include "THcSignalHit.h" #include "THcShower.h" #include "THcHitList.h" #include "THcHodoscope.h" #include <vector> #include <cstring> #include <cstdio> #include <cstdlib> #include <iostream> #include <fstream> using std::vector; using namespace std; //_____________________________________________________________________________ THcHallCSpectrometer::THcHallCSpectrometer( const char* name, const char* description ) : THaSpectrometer( name, description ) { // Constructor. Defines the standard detectors for the HRS. // AddDetector( new THaTriggerTime("trg","Trigger-based time offset")); //sc_ref = static_cast<THaScintillator*>(GetDetector("s1")); SetTrSorting(kTRUE); } //_____________________________________________________________________________ THcHallCSpectrometer::~THcHallCSpectrometer() { // Destructor DefineVariables( kDelete ); } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::DefineVariables( EMode mode ) { // Define/delete standard variables for a spectrometer (tracks etc.) // Can be overridden or extended by derived (actual) apparatuses if( mode == kDefine && fIsSetup ) return kOK; THaSpectrometer::DefineVariables( mode ); fIsSetup = ( mode == kDefine ); RVarDef vars[] = { { "tr.betachisq", "Chi2 of beta", "fTracks.THaTrack.GetBetaChi2()"}, { 0 } }; return DefineVarsFromList( vars, mode ); } //_____________________________________________________________________________ Bool_t THcHallCSpectrometer::SetTrSorting( Bool_t set ) { if( set ) fProperties |= kSortTracks; else fProperties &= ~kSortTracks; return set; } //_____________________________________________________________________________ Bool_t THcHallCSpectrometer::GetTrSorting() const { return ((fProperties & kSortTracks) != 0); } //_____________________________________________________________________________ void THcHallCSpectrometer::InitializeReconstruction() { fNReconTerms = 0; fReconTerms.clear(); fAngSlope_x = 0.0; fAngSlope_y = 0.0; fAngOffset_x = 0.0; fAngOffset_y = 0.0; fDetOffset_x = 0.0; fDetOffset_y = 0.0; fZTrueFocus = 0.0; } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::ReadDatabase( const TDatime& date ) { static const char* const here = "THcHallCSpectrometer::ReadDatabase"; #ifdef WITH_DEBUG cout << "In THcHallCSpectrometer::ReadDatabase()" << endl; #endif const char* detector_name = "hod"; //THaApparatus* app = GetDetector(); THaDetector* det = GetDetector("hod"); // THaDetector* det = app->GetDetector( shower_detector_name ); if( dynamic_cast<THcHodoscope*>(det) ) { fHodo = static_cast<THcHodoscope*>(det); // fHodo is a membervariable } else { Error("THcHallCSpectrometer", "Cannot find hodoscope detector %s", detector_name ); fHodo = NULL; } THaDetector* detdc = GetDetector("dc"); if( dynamic_cast<THcDC*>(detdc) ) { fDC = static_cast<THcDC*>(detdc); // fHodo is a membervariable } else { Error("THcHallCSpectrometer", "Cannot find detector DC"); fDC = NULL; } // Get the matrix element filename from the variable store // Read in the matrix InitializeReconstruction(); char prefix[2]; #ifdef WITH_DEBUG cout << " GetName() " << GetName() << endl; #endif prefix[0]=tolower(GetName()[0]); prefix[1]='\0'; string reconCoeffFilename; DBRequest list[]={ {"_recon_coeff_filename", &reconCoeffFilename, kString }, {"theta_offset", &fThetaOffset, kDouble }, {"phi_offset", &fPhiOffset, kDouble }, {"delta_offset", &fDeltaOffset, kDouble }, {"thetacentral_offset", &fThetaCentralOffset, kDouble }, {"_oopcentral_offset", &fOopCentralOffset, kDouble }, {"pcentral_offset", &fPCentralOffset, kDouble }, {"pcentral", &fPcentral, kDouble }, {"theta_lab", &fTheta_lab, kDouble }, {"partmass", &fPartMass, kDouble }, {"phi_lab", &fPhi_lab, kDouble, 0, 1}, {"sel_using_scin", &fSelUsingScin, kInt, 0, 1}, {"sel_using_prune", &fSelUsingPrune, kInt, 0, 1}, {"sel_ndegreesmin", &fSelNDegreesMin, kDouble, 0, 1}, {"sel_dedx1min", &fSeldEdX1Min, kDouble, 0, 1}, {"sel_dedx1max", &fSeldEdX1Max, kDouble, 0, 1}, {"sel_betamin", &fSelBetaMin, kDouble, 0, 1}, {"sel_betamax", &fSelBetaMax, kDouble, 0, 1}, {"sel_etmin", &fSelEtMin, kDouble, 0, 1}, {"sel_etmax", &fSelEtMax, kDouble, 0, 1}, {"hodo_num_planes", &fNPlanes, kInt }, {"scin_2x_zpos", &fScin2XZpos, kDouble, 0, 1}, {"scin_2x_dzpos", &fScin2XdZpos, kDouble, 0, 1}, {"scin_2y_zpos", &fScin2YZpos, kDouble, 0, 1}, {"scin_2y_dzpos", &fScin2YdZpos, kDouble, 0, 1}, {"prune_xp", &fPruneXp, kDouble, 0, 1}, {"prune_yp", &fPruneYp, kDouble, 0, 1}, {"prune_ytar", &fPruneYtar, kDouble, 0, 1}, {"prune_delta", &fPruneDelta, kDouble, 0, 1}, {"prune_beta", &fPruneBeta, kDouble, 0, 1}, {"prune_df", &fPruneDf, kDouble, 0, 1}, {"prune_chibeta", &fPruneChiBeta, kDouble, 0, 1}, {"prune_npmt", &fPruneNPMT, kDouble, 0, 1}, {"prune_fptime", &fPruneFpTime, kDouble, 0, 1}, {0} }; // Default values fSelUsingScin = 0; fSelUsingPrune = 0; fPhi_lab = 0.; gHcParms->LoadParmValues((DBRequest*)&list,prefix); EnforcePruneLimits(); #ifdef WITH_DEBUG cout << "\n\n\nhodo planes = " << fNPlanes << endl; cout << "sel using scin = " << fSelUsingScin << endl; cout << "fPruneXp = " << fPruneXp << endl; cout << "fPruneYp = " << fPruneYp << endl; cout << "fPruneYtar = " << fPruneYtar << endl; cout << "fPruneDelta = " << fPruneDelta << endl; cout << "fPruneBeta = " << fPruneBeta << endl; cout << "fPruneDf = " << fPruneDf << endl; cout << "fPruneChiBeta = " << fPruneChiBeta << endl; cout << "fPruneFpTime = " << fPruneFpTime << endl; cout << "fPruneNPMT = " << fPruneNPMT << endl; cout << "sel using prune = " << fSelUsingPrune << endl; #endif cout << "fPartMass = " << fPartMass << endl; cout << "fPcentral = " << fPcentral << " " <<fPCentralOffset << endl; cout << "fThetalab = " << fTheta_lab << " " <<fThetaCentralOffset << endl; fPcentral= fPcentral*(1.+fPCentralOffset/100.); // Check that these offsets are in radians fTheta_lab=fTheta_lab + fThetaCentralOffset*TMath::RadToDeg(); Double_t ph = fPhi_lab+fPhiOffset*TMath::RadToDeg(); cout << "Central angles = " << fTheta_lab << endl; SetCentralAngles(fTheta_lab, ph, false); Double_t off_x = 0.0, off_y = 0.0, off_z = 0.0; fPointingOffset.SetXYZ( off_x, off_y, off_z ); // ifstream ifile; ifile.open(reconCoeffFilename.c_str()); if(!ifile.is_open()) { Error(here, "error opening reconstruction coefficient file %s",reconCoeffFilename.c_str()); // return kInitError; // Is this the right return code? return kOK; } string line="!"; int good=1; while(good && line[0]=='!') { good = getline(ifile,line).good(); // cout << line << endl; } // Read in focal plane rotation coefficients // Probably not used, so for now, just paste in fortran code as a comment while(good && line.compare(0,4," ---")!=0) { // if(line(1:13).eq.'h_ang_slope_x')read(line,1201,err=94)h_ang_slope_x // if(line(1:13).eq.'h_ang_slope_y')read(line,1201,err=94)h_ang_slope_y // if(line(1:14).eq.'h_ang_offset_x')read(line,1201,err=94)h_ang_offset_x // if(line(1:14).eq.'h_ang_offset_y')read(line,1201,err=94)h_ang_offset_y // if(line(1:14).eq.'h_det_offset_x')read(line,1201,err=94)h_det_offset_x // if(line(1:14).eq.'h_det_offset_y')read(line,1201,err=94)h_det_offset_y // if(line(1:14).eq.'h_z_true_focus')read(line,1201,err=94)h_z_true_focus good = getline(ifile,line).good(); } // Read in reconstruction coefficients and exponents line=" "; good = getline(ifile,line).good(); // cout << line << endl; fNReconTerms = 0; fReconTerms.clear(); fReconTerms.reserve(500); //cout << "Reading matrix elements" << endl; while(good && line.compare(0,4," ---")!=0) { fReconTerms.push_back(reconTerm()); sscanf(line.c_str()," %le %le %le %le %1d%1d%1d%1d%1d" ,&fReconTerms[fNReconTerms].Coeff[0],&fReconTerms[fNReconTerms].Coeff[1] ,&fReconTerms[fNReconTerms].Coeff[2],&fReconTerms[fNReconTerms].Coeff[3] ,&fReconTerms[fNReconTerms].Exp[0] ,&fReconTerms[fNReconTerms].Exp[1] ,&fReconTerms[fNReconTerms].Exp[2] ,&fReconTerms[fNReconTerms].Exp[3] ,&fReconTerms[fNReconTerms].Exp[4]); fNReconTerms++; good = getline(ifile,line).good(); } cout << "Read " << fNReconTerms << " matrix element terms" << endl; if(!good) { Error(here, "Error processing reconstruction coefficient file %s",reconCoeffFilename.c_str()); return kInitError; // Is this the right return code? } return kOK; } //_____________________________________________________________________________ void THcHallCSpectrometer::EnforcePruneLimits() { // Enforce minimum values for the prune cuts fPruneXp = TMath::Max( 0.08, fPruneXp); fPruneYp = TMath::Max( 0.04, fPruneYp); fPruneYtar = TMath::Max( 4.0, fPruneYtar); fPruneDelta = TMath::Max( 13.0, fPruneDelta); fPruneBeta = TMath::Max( 0.1, fPruneBeta); fPruneDf = TMath::Max( 1.0, fPruneDf); fPruneChiBeta = TMath::Max( 2.0, fPruneChiBeta); fPruneFpTime = TMath::Max( 5.0, fPruneFpTime); fPruneNPMT = TMath::Max( 6.0, fPruneNPMT); } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::FindVertices( TClonesArray& tracks ) { // Reconstruct target coordinates for all tracks found in the focal plane. // In Hall A, this is passed off to the tracking detectors. // In Hall C, we do the target traceback here since the traceback should // not depend on which tracking detectors are used. fNtracks = tracks.GetLast()+1; for (Int_t it=0;it<tracks.GetLast()+1;it++) { THaTrack* track = static_cast<THaTrack*>( tracks[it] ); Double_t hut[5]; Double_t hut_rot[5]; hut[0] = track->GetX()/100.0 + fZTrueFocus*track->GetTheta() + fDetOffset_x;//m hut[1] = track->GetTheta() + fAngOffset_x;//radians hut[2] = track->GetY()/100.0 + fZTrueFocus*track->GetPhi() + fDetOffset_y;//m hut[3] = track->GetPhi() + fAngOffset_y;//radians Double_t gbeam_y = 0.0;// This will be the y position from the fast raster hut[4] = -gbeam_y/100.0; // Retrieve the focal plane coordnates // Do the transpormation // Stuff results into track hut_rot[0] = hut[0]; hut_rot[1] = hut[1] + hut[0]*fAngSlope_x; hut_rot[2] = hut[2]; hut_rot[3] = hut[3] + hut[2]*fAngSlope_y; hut_rot[4] = hut[4]; // Compute COSY sums Double_t sum[4]; for(Int_t k=0;k<4;k++) { sum[k] = 0.0; } for(Int_t iterm=0;iterm<fNReconTerms;iterm++) { Double_t term=1.0; for(Int_t j=0;j<5;j++) { if(fReconTerms[iterm].Exp[j]!=0) { term *= pow(hut_rot[j],fReconTerms[iterm].Exp[j]); } } for(Int_t k=0;k<4;k++) { sum[k] += term*fReconTerms[iterm].Coeff[k]; } } // Transfer results to track // No beam raster yet //; In transport coordinates phi = hyptar = dy/dz and theta = hxptar = dx/dz //; but for unknown reasons the yp offset is named htheta_offset //; and the xp offset is named hphi_offset track->SetTarget(0.0, sum[1]*100.0, sum[0]+fPhiOffset, sum[2]+fThetaOffset); track->SetDp(sum[3]*100.0+fDeltaOffset); // Percent. (Don't think podd cares if it is % or fraction) // There is an hpcentral_offset that needs to be applied somewhere. // (happly_offs) Double_t ptemp = fPcentral*(1+track->GetDp()/100.0); track->SetMomentum(ptemp); TVector3 pvect_temp; TransportToLab(track->GetP(),track->GetTTheta(),track->GetTPhi(),pvect_temp); track->SetPvect(pvect_temp); } if (fHodo==0 || (( fSelUsingScin == 0 ) && ( fSelUsingPrune == 0 )) ) { BestTrackSimple(); } else if (fHodo!=0 && fSelUsingPrune !=0) { BestTrackUsingPrune(); } else if (fHodo!=0){ BestTrackUsingScin(); } return 0; } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::TrackCalc() { if( fNtracks > 0 ) { Int_t hit_gold_track=0; // find track with index =0 which is best track for (Int_t itrack = 0; itrack < fNtracks; itrack++ ){ THaTrack* aTrack = static_cast<THaTrack*>( fTracks->At(itrack) ); if (aTrack->GetIndex()==0) hit_gold_track=itrack; } fDC->SetFocalPlaneBestTrack(hit_gold_track); fGoldenTrack = static_cast<THaTrack*>( fTracks->At(hit_gold_track) ); fTrkIfo = *fGoldenTrack; fTrk = fGoldenTrack; } else fGoldenTrack = NULL; return TrackTimes( fTracks ); } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::BestTrackSimple() { if( GetTrSorting() ) fTracks->Sort(); // Assign index=0 to the best track, for (Int_t itrack = 0; itrack < fNtracks; itrack++ ){ THaTrack* aTrack = static_cast<THaTrack*>( fTracks->At(itrack) ); aTrack->SetIndex(1); if (itrack==0) aTrack->SetIndex(0); } return(0); } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::BestTrackUsingScin() { Double_t chi2Min; if( fNtracks > 0 ) { fGoodTrack = -1; chi2Min = 10000000000.0; Int_t y2Dmin = 100; Int_t x2Dmin = 100; Bool_t* x2Hits = new Bool_t [fHodo->GetNPaddles(2)]; Bool_t* y2Hits = new Bool_t [fHodo->GetNPaddles(3)]; for (UInt_t j = 0; j < fHodo->GetNPaddles(2); j++ ){ x2Hits[j] = kFALSE; } for (UInt_t j = 0; j < fHodo->GetNPaddles(3); j++ ){ y2Hits[j] = kFALSE; } for (Int_t rawindex=0; rawindex<fHodo->GetTotHits(); rawindex++) { Int_t ip = fHodo->GetGoodRawPlane(rawindex); if(ip==2) { // X2 Int_t goodRawPad = fHodo->GetGoodRawPad(rawindex); x2Hits[goodRawPad] = kTRUE; } else if (ip==3) { // Y2 Int_t goodRawPad = fHodo->GetGoodRawPad(rawindex); y2Hits[goodRawPad] = kTRUE; } } for (Int_t itrack = 0; itrack < fNtracks; itrack++ ){ Double_t chi2PerDeg; THaTrack* aTrack = static_cast<THaTrack*>( fTracks->At(itrack) ); if (!aTrack) return -1; if ( aTrack->GetNDoF() > fSelNDegreesMin ){ chi2PerDeg = aTrack->GetChi2() / aTrack->GetNDoF(); if( ( aTrack->GetDedx() > fSeldEdX1Min ) && ( aTrack->GetDedx() < fSeldEdX1Max ) && ( aTrack->GetBeta() > fSelBetaMin ) && ( aTrack->GetBeta() < fSelBetaMax ) && ( aTrack->GetEnergy() > fSelEtMin ) && ( aTrack->GetEnergy() < fSelEtMax ) ) { Int_t x2D, y2D; if ( fNtracks > 1 ){ Double_t hitpos3 = aTrack->GetX() + aTrack->GetTheta() * ( fScin2XZpos + 0.5 * fScin2XdZpos ); Int_t icounter3 = TMath::Nint( ( hitpos3 - fHodo->GetPlaneCenter(2) ) / fHodo->GetPlaneSpacing(2) ) + 1; Int_t hitCnt3 = TMath::Max( TMath::Min(icounter3, (Int_t) fHodo->GetNPaddles(2) ) , 1); // scin_2x_nr = 16 // fHitDist3 = fHitPos3 - ( fHodo->GetPlaneSpacing(2) * ( hitCnt3 - 1 ) + fHodo->GetPlaneCenter(2) ); Double_t hitpos4 = aTrack->GetY() + aTrack->GetPhi() * ( fScin2YZpos + 0.5 * fScin2YdZpos ); Int_t icounter4 = TMath::Nint( ( fHodo->GetPlaneCenter(3) - hitpos4 ) / fHodo->GetPlaneSpacing(3) ) + 1; Int_t hitCnt4 = TMath::Max( TMath::Min(icounter4, (Int_t) fHodo->GetNPaddles(3) ) , 1); // scin_2y_nr = 10 // fHitDist4 = fHitPos4 - ( fHodo->GetPlaneCenter(3) - fHodo->GetPlaneSpacing(3) * ( hitCnt4 - 1 ) ); // Plane 3 Int_t mindiff=1000; for (UInt_t i = 0; i < fHodo->GetNPaddles(2); i++ ){ if ( x2Hits[i] ) { Int_t diff = TMath::Abs((Int_t)hitCnt3-(Int_t)i-1); if (diff < mindiff) mindiff = diff; } } if(mindiff < 1000) { x2D = mindiff; } else { x2D = 0; // Is this what we really want if there were no hits on this plane? } // Plane 4 mindiff = 1000; for (UInt_t i = 0; i < fHodo->GetNPaddles(3); i++ ){ if ( y2Hits[i] ) { Int_t diff = TMath::Abs((Int_t)hitCnt4-(Int_t)i-1); if (diff < mindiff) mindiff = diff; } } if(mindiff < 1000) { y2D = mindiff; } else { y2D = 0; // Is this what we really want if there were no hits on this plane? } } else { // Only a single track x2D = 0.; y2D = 0.; } if ( y2D <= y2Dmin ) { if ( y2D < y2Dmin ) { x2Dmin = 100; chi2Min = 10000000000.; } // y2D min if ( x2D <= x2Dmin ){ if ( x2D < x2Dmin ){ chi2Min = 10000000000.0; } // condition x2D if ( chi2PerDeg < chi2Min ){ fGoodTrack = itrack; // fGoodTrack = itrack y2Dmin = y2D; x2Dmin = x2D; chi2Min = chi2PerDeg; fGoldenTrack = static_cast<THaTrack*>( fTracks->At( fGoodTrack ) ); fTrkIfo = *fGoldenTrack; fTrk = fGoldenTrack; } } // condition x2D } // condition y2D } // conditions for dedx, beta and trac energy } // confition for fNFreeFP greater than fSelNDegreesMin } // loop over tracks // Fall back to using track with minimum chi2 if ( fGoodTrack == -1 ){ chi2Min = 10000000000.0; for (Int_t iitrack = 0; iitrack < fNtracks; iitrack++ ){ Double_t chi2PerDeg; THaTrack* aTrack = dynamic_cast<THaTrack*>( fTracks->At(iitrack) ); if (!aTrack) return -1; if ( aTrack->GetNDoF() > fSelNDegreesMin ){ chi2PerDeg = aTrack->GetChi2() / aTrack->GetNDoF(); if ( chi2PerDeg < chi2Min ){ fGoodTrack = iitrack; chi2Min = chi2PerDeg; } } } // loop over trakcs // Set index for fGoodTrack = 0 for (Int_t iitrack = 0; iitrack < fNtracks; iitrack++ ){ THaTrack* aTrack = dynamic_cast<THaTrack*>( fTracks->At(iitrack) ); aTrack->SetIndex(1); if (iitrack==fGoodTrack) aTrack->SetIndex(0); } // } } return(0); } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::BestTrackUsingPrune() { Int_t nGood; Double_t chi2Min; if ( fNtracks > 0 ) { chi2Min = 10000000000.0; fGoodTrack = 0; Bool_t* keep = new Bool_t [fNtracks]; Int_t* reject = new Int_t [fNtracks]; THaTrack *testTracks[fNtracks]; // ! Initialize all tracks to be good for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ keep[ptrack] = kTRUE; reject[ptrack] = 0; testTracks[ptrack] = static_cast<THaTrack*>( fTracks->At(ptrack) ); if (!testTracks[ptrack]) return -1; } // ! Prune on xptar nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( TMath::Abs( testTracks[ptrack]->GetTTheta() ) < fPruneXp ) && ( keep[ptrack] ) ){ nGood ++; } } if ( nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( TMath::Abs( testTracks[ptrack]->GetTTheta() ) >= fPruneXp ){ keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 1; } } } // ! Prune on yptar nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( TMath::Abs( testTracks[ptrack]->GetTPhi() ) < fPruneYp ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( TMath::Abs( testTracks[ptrack]->GetTPhi() ) >= fPruneYp ){ keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 2; } } } // ! Prune on ytar nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( TMath::Abs( testTracks[ptrack]->GetTY() ) < fPruneYtar ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( TMath::Abs( testTracks[ptrack]->GetTY() ) >= fPruneYtar ){ keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 10; } } } // ! Prune on delta nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( TMath::Abs( testTracks[ptrack]->GetDp() ) < fPruneDelta ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( TMath::Abs( testTracks[ptrack]->GetDp() ) >= fPruneDelta ){ keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 20; } } } // ! Prune on beta nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ Double_t p = testTracks[ptrack]->GetP(); Double_t betaP = p / TMath::Sqrt( p * p + fPartMass * fPartMass ); if ( ( TMath::Abs( testTracks[ptrack]->GetBeta() - betaP ) < fPruneBeta ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ Double_t p = testTracks[ptrack]->GetP(); Double_t betaP = p / TMath::Sqrt( p * p + fPartMass * fPartMass ); if ( TMath::Abs( testTracks[ptrack]->GetBeta() - betaP ) >= fPruneBeta ) { keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 100; } } } // ! Prune on deg. freedom for track chisq nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( testTracks[ptrack]->GetNDoF() >= fPruneDf ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( testTracks[ptrack]->GetNDoF() < fPruneDf ){ keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 200; } } } //! Prune on num pmt hits nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( testTracks[ptrack]->GetNPMT() >= fPruneNPMT ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( testTracks[ptrack]->GetNPMT() < fPruneNPMT ){ keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 100000; } } } // ! Prune on beta chisqr nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( testTracks[ptrack]->GetBetaChi2() < fPruneChiBeta ) && ( testTracks[ptrack]->GetBetaChi2() > 0.01 ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( testTracks[ptrack]->GetBetaChi2() >= fPruneChiBeta ) || ( testTracks[ptrack]->GetBetaChi2() <= 0.01 ) ){ keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 1000; } } } // ! Prune on fptime nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( TMath::Abs( testTracks[ptrack]->GetFPTime() - fHodo->GetStartTimeCenter() ) < fPruneFpTime ) && ( keep[ptrack] ) ){ nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( TMath::Abs( testTracks[ptrack]->GetFPTime() - fHodo->GetStartTimeCenter() ) >= fPruneFpTime ) { keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 2000; } } } // ! Prune on Y2 being hit nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( testTracks[ptrack]->GetGoodPlane4() == 1 ) && keep[ptrack] ) { nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( testTracks[ptrack]->GetGoodPlane4() != 1 ) { keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 10000; } } } // ! Prune on X2 being hit nGood = 0; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( ( testTracks[ptrack]->GetGoodPlane3() == 1 ) && keep[ptrack] ) { nGood ++; } } if (nGood > 0 ) { for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ if ( testTracks[ptrack]->GetGoodPlane3() != 1 ) { keep[ptrack] = kFALSE; reject[ptrack] = reject[ptrack] + 20000; } } } // ! Pick track with best chisq if more than one track passed prune tests Double_t chi2PerDeg = 0.; for (Int_t ptrack = 0; ptrack < fNtracks; ptrack++ ){ chi2PerDeg = testTracks[ptrack]->GetChi2() / testTracks[ptrack]->GetNDoF(); if ( ( chi2PerDeg < chi2Min ) && ( keep[ptrack] ) ){ fGoodTrack = ptrack; chi2Min = chi2PerDeg; } } // Set index=0 for fGoodTrack for (Int_t iitrack = 0; iitrack < fNtracks; iitrack++ ){ THaTrack* aTrack = dynamic_cast<THaTrack*>( fTracks->At(iitrack) ); aTrack->SetIndex(1); if (iitrack==fGoodTrack) aTrack->SetIndex(0); } // } return(0); } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::TrackTimes( TClonesArray* Tracks ) { // Do the actual track-timing (beta) calculation. // Use multiple scintillators to average together and get "best" time at S1. // // To be useful, a meaningful timing resolution should be assigned // to each Scintillator object (part of the database). return 0; } //_____________________________________________________________________________ Int_t THcHallCSpectrometer::ReadRunDatabase( const TDatime& date ) { // Override THaSpectrometer with nop method. All needed kinamatics // read in ReadDatabase. return kOK; } //_____________________________________________________________________________ ClassImp(THcHallCSpectrometer)