/** \class THcShowerPlane \group DetSupport One plane of shower blocks with side readout */ #include "THcShowerPlane.h" #include "TClonesArray.h" #include "THcSignalHit.h" #include "THcGlobals.h" #include "THcParmList.h" #include "THcHitList.h" #include "THcShower.h" #include "THcRawShowerHit.h" #include "TClass.h" #include "math.h" #include "THaTrack.h" #include "THaTrackProj.h" #include <cstring> #include <cstdio> #include <cstdlib> #include <iostream> #include <fstream> using namespace std; ClassImp(THcShowerPlane) //______________________________________________________________________________ THcShowerPlane::THcShowerPlane( const char* name, const char* description, const Int_t layernum, THaDetectorBase* parent ) : THaSubDetector(name,description,parent) { // Normal constructor with name and description fPosADCHits = new TClonesArray("THcSignalHit",fNelem); fNegADCHits = new TClonesArray("THcSignalHit",fNelem); frPosAdcPedRaw = new TClonesArray("THcSignalHit", 16); frPosAdcPulseIntRaw = new TClonesArray("THcSignalHit", 16); frPosAdcPulseAmpRaw = new TClonesArray("THcSignalHit", 16); frPosAdcPulseTimeRaw = new TClonesArray("THcSignalHit", 16); frPosAdcPed = new TClonesArray("THcSignalHit", 16); frPosAdcPulseInt = new TClonesArray("THcSignalHit", 16); frPosAdcPulseAmp = new TClonesArray("THcSignalHit", 16); frNegAdcPedRaw = new TClonesArray("THcSignalHit", 16); frNegAdcPulseIntRaw = new TClonesArray("THcSignalHit", 16); frNegAdcPulseAmpRaw = new TClonesArray("THcSignalHit", 16); frNegAdcPulseTimeRaw = new TClonesArray("THcSignalHit", 16); frNegAdcPed = new TClonesArray("THcSignalHit", 16); frNegAdcPulseInt = new TClonesArray("THcSignalHit", 16); frNegAdcPulseAmp = new TClonesArray("THcSignalHit", 16); //#if ROOT_VERSION_CODE < ROOT_VERSION(5,32,0) // fPosADCHitsClass = fPosADCHits->GetClass(); // fNegADCHitsClass = fNegADCHits->GetClass(); //#endif fLayerNum = layernum; } //______________________________________________________________________________ THcShowerPlane::~THcShowerPlane() { // Destructor delete fPosADCHits; delete fNegADCHits; frPosAdcPedRaw = NULL; frPosAdcPulseIntRaw = NULL; frPosAdcPulseAmpRaw = NULL; frPosAdcPulseTimeRaw = NULL; frPosAdcPed = NULL; frPosAdcPulseInt = NULL; frPosAdcPulseAmp = NULL; frNegAdcPedRaw = NULL; frNegAdcPulseIntRaw = NULL; frNegAdcPulseAmpRaw = NULL; frNegAdcPulseTimeRaw = NULL; frNegAdcPed = NULL; frNegAdcPulseInt = NULL; frNegAdcPulseAmp = NULL; delete [] fA_Pos; delete [] fA_Neg; delete [] fA_Pos_p; delete [] fA_Neg_p; delete [] fEpos; delete [] fEneg; delete [] fEmean; } //_____________________________________________________________________________ THaAnalysisObject::EStatus THcShowerPlane::Init( const TDatime& date ) { // Extra initialization for shower layer: set up DataDest map if( IsZombie()) return fStatus = kInitError; // How to get information for parent // if( GetParent() ) // fOrigin = GetParent()->GetOrigin(); EStatus status; if( (status=THaSubDetector::Init( date )) ) return fStatus = status; return fStatus = kOK; } //_____________________________________________________________________________ Int_t THcShowerPlane::ReadDatabase( const TDatime& date ) { // Retrieve FADC parameters. In principle may want different dynamic // pedestal and integration range for preshower and shower, but for now // use same parameters char prefix[2]; prefix[0]=tolower(GetParent()->GetPrefix()[0]); prefix[1]='\0'; fUsingFADC=0; fPedSampLow=0; fPedSampHigh=9; fDataSampLow=23; fDataSampHigh=49; DBRequest list[]={ {"cal_using_fadc", &fUsingFADC, kInt, 0, 1}, {"cal_ped_sample_low", &fPedSampLow, kInt, 0, 1}, {"cal_ped_sample_high", &fPedSampHigh, kInt, 0, 1}, {"cal_data_sample_low", &fDataSampLow, kInt, 0, 1}, {"cal_data_sample_high", &fDataSampHigh, kInt, 0, 1}, {0} }; gHcParms->LoadParmValues((DBRequest*)&list, prefix); // Retrieve more parameters we need from parent class // THcShower* fParent; fParent = (THcShower*) GetParent(); // Find the number of elements fNelem = fParent->GetNBlocks(fLayerNum-1); // Origin of the plane: // // X is average of top X coordinates of the top and bottom blocks // shifted by a half of the block thickness; // Y is average of left and right edges; // Z is _front_ position of the plane along the beam. Double_t BlockThick = fParent->GetBlockThick(fLayerNum-1); Double_t xOrig = (fParent->GetXPos(fLayerNum-1,0) + fParent->GetXPos(fLayerNum-1,fNelem-1))/2 + BlockThick/2; Double_t yOrig = (fParent->GetYPos(fLayerNum-1,0) + fParent->GetYPos(fLayerNum-1,1))/2; Double_t zOrig = fParent->GetZPos(fLayerNum-1); fOrigin.SetXYZ(xOrig, yOrig, zOrig); // Create arrays to hold results here // // Pedestal limits per channel. fPosPedLimit = new Int_t [fNelem]; fNegPedLimit = new Int_t [fNelem]; for(Int_t i=0;i<fNelem;i++) { fPosPedLimit[i] = fParent->GetPedLimit(i,fLayerNum-1,0); fNegPedLimit[i] = fParent->GetPedLimit(i,fLayerNum-1,1); } fMinPeds = fParent->GetMinPeds(); InitializePedestals(); // ADC amplitudes per channel. fA_Pos = new Double_t[fNelem]; fA_Neg = new Double_t[fNelem]; fA_Pos_p = new Double_t[fNelem]; fA_Neg_p = new Double_t[fNelem]; // Energy depositions per block (not corrected for track coordinate) fEpos = new Double_t[fNelem]; fEneg = new Double_t[fNelem]; fEmean= new Double_t[fNelem]; // Debug output. if (fParent->fdbg_init_cal) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerPlane::ReadDatabase for " << GetParent()->GetPrefix() << ":" << endl; cout << " Layer #" << fLayerNum << ", number of elements " << dec << fNelem << endl; cout << " Origin of Layer at X = " << fOrigin.X() << " Y = " << fOrigin.Y() << " Z = " << fOrigin.Z() << endl; cout << " fPosPedLimit:"; for(Int_t i=0;i<fNelem;i++) cout << " " << fPosPedLimit[i]; cout << endl; cout << " fNegPedLimit:"; for(Int_t i=0;i<fNelem;i++) cout << " " << fNegPedLimit[i]; cout << endl; cout << " fMinPeds = " << fMinPeds << endl; cout << "---------------------------------------------------------------\n"; } return kOK; } //_____________________________________________________________________________ Int_t THcShowerPlane::DefineVariables( EMode mode ) { // Initialize global variables and lookup table for decoder if( mode == kDefine && fIsSetup ) return kOK; fIsSetup = ( mode == kDefine ); // Register variables in global list RVarDef vars[] = { {"posadchits", "List of Positive ADC hits","fPosADCHits.THcSignalHit.GetPaddleNumber()"}, {"negadchits", "List of Negative ADC hits","fNegADCHits.THcSignalHit.GetPaddleNumber()"}, {"apos", "Raw Positive ADC Amplitudes", "fA_Pos"}, {"aneg", "Raw Negative ADC Amplitudes", "fA_Neg"}, {"apos_p", "Ped-subtracted Positive ADC Amplitudes", "fA_Pos_p"}, {"aneg_p", "Ped-subtracted Negative ADC Amplitudes", "fA_Neg_p"}, {"epos", "Energy Depositions from Positive Side PMTs", "fEpos"}, {"eneg", "Energy Depositions from Negative Side PMTs", "fEneg"}, {"emean", "Mean Energy Depositions", "fEmean"}, {"eplane", "Energy Deposition per plane", "fEplane"}, {"eplane_pos", "Energy Deposition per plane from pos. PMTs","fEplane_pos"}, {"eplane_neg", "Energy Deposition per plane from neg. PMTs","fEplane_neg"}, {"posAdcCounter", "List of positive ADC counter numbers.", "frPosAdcPulseIntRaw.THcSignalHit.GetPaddleNumber()"}, {"negAdcCounter", "List of negative ADC counter numbers.", "frNegAdcPulseIntRaw.THcSignalHit.GetPaddleNumber()"}, {"posAdcPedRaw", "List of positive raw ADC pedestals", "frPosAdcPedRaw.THcSignalHit.GetData()"}, {"posAdcPulseIntRaw", "List of positive raw ADC pulse integrals.", "frPosAdcPulseIntRaw.THcSignalHit.GetData()"}, {"posAdcPulseAmpRaw", "List of positive raw ADC pulse amplitudes.", "frPosAdcPulseAmpRaw.THcSignalHit.GetData()"}, {"posAdcPulseTimeRaw", "List of positive raw ADC pulse times.", "frPosAdcPulseTimeRaw.THcSignalHit.GetData()"}, {"posAdcPed", "List of positive ADC pedestals", "frPosAdcPed.THcSignalHit.GetData()"}, {"posAdcPulseInt", "List of positive ADC pulse integrals.", "frPosAdcPulseInt.THcSignalHit.GetData()"}, {"posAdcPulseAmp", "List of positive ADC pulse amplitudes.", "frPosAdcPulseAmp.THcSignalHit.GetData()"}, {"negAdcPedRaw", "List of negative raw ADC pedestals", "frNegAdcPedRaw.THcSignalHit.GetData()"}, {"negAdcPulseIntRaw", "List of negative raw ADC pulse integrals.", "frNegAdcPulseIntRaw.THcSignalHit.GetData()"}, {"negAdcPulseAmpRaw", "List of negative raw ADC pulse amplitudes.", "frNegAdcPulseAmpRaw.THcSignalHit.GetData()"}, {"negAdcPulseTimeRaw", "List of negative raw ADC pulse times.", "frNegAdcPulseTimeRaw.THcSignalHit.GetData()"}, {"negAdcPed", "List of negative ADC pedestals", "frNegAdcPed.THcSignalHit.GetData()"}, {"negAdcPulseInt", "List of negative ADC pulse integrals.", "frNegAdcPulseInt.THcSignalHit.GetData()"}, {"negAdcPulseAmp", "List of negative ADC pulse amplitudes.", "frNegAdcPulseAmp.THcSignalHit.GetData()"}, { 0 } }; return DefineVarsFromList( vars, mode ); } //_____________________________________________________________________________ void THcShowerPlane::Clear( Option_t* ) { // Clears the hit lists fPosADCHits->Clear(); fNegADCHits->Clear(); frPosAdcPedRaw->Clear(); frPosAdcPulseIntRaw->Clear(); frPosAdcPulseAmpRaw->Clear(); frPosAdcPulseTimeRaw->Clear(); frPosAdcPed->Clear(); frPosAdcPulseInt->Clear(); frPosAdcPulseAmp->Clear(); frNegAdcPedRaw->Clear(); frNegAdcPulseIntRaw->Clear(); frNegAdcPulseAmpRaw->Clear(); frNegAdcPulseTimeRaw->Clear(); frNegAdcPed->Clear(); frNegAdcPulseInt->Clear(); frNegAdcPulseAmp->Clear(); // Debug output. if ( ((THcShower*) GetParent())->fdbg_decoded_cal ) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerPlane::Clear for " << GetParent()->GetPrefix() << ":" << endl; cout << " Cleared ADC hits for plane " << GetName() << endl; cout << "---------------------------------------------------------------\n"; } } //_____________________________________________________________________________ Int_t THcShowerPlane::Decode( const THaEvData& evdata ) { // Doesn't actually get called. Use Fill method instead //Debug output. if ( ((THcShower*) GetParent())->fdbg_decoded_cal ) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerPlane::Decode for " << GetParent()->GetPrefix() << ":" << endl; cout << " Called for plane " << GetName() << endl; cout << "---------------------------------------------------------------\n"; } return 0; } //_____________________________________________________________________________ Int_t THcShowerPlane::CoarseProcess( TClonesArray& tracks ) { // Nothing is done here. See ProcessHits method instead. // return 0; } //_____________________________________________________________________________ Int_t THcShowerPlane::FineProcess( TClonesArray& tracks ) { return 0; } //_____________________________________________________________________________ Int_t THcShowerPlane::ProcessHits(TClonesArray* rawhits, Int_t nexthit) { // Extract the data for this layer from hit list // Assumes that the hit list is sorted by layer, so we stop when the // plane doesn't agree and return the index for the next hit. THcShower* fParent; fParent = (THcShower*) GetParent(); // Initialize variables. Int_t nPosADCHits=0; Int_t nNegADCHits=0; fPosADCHits->Clear(); fNegADCHits->Clear(); frPosAdcPedRaw->Clear(); frPosAdcPulseIntRaw->Clear(); frPosAdcPulseAmpRaw->Clear(); frPosAdcPulseTimeRaw->Clear(); frPosAdcPed->Clear(); frPosAdcPulseInt->Clear(); frPosAdcPulseAmp->Clear(); frNegAdcPedRaw->Clear(); frNegAdcPulseIntRaw->Clear(); frNegAdcPulseAmpRaw->Clear(); frNegAdcPulseTimeRaw->Clear(); frNegAdcPed->Clear(); frNegAdcPulseInt->Clear(); frNegAdcPulseAmp->Clear(); for(Int_t i=0;i<fNelem;i++) { fA_Pos[i] = 0; fA_Neg[i] = 0; fA_Pos_p[i] = 0; fA_Neg_p[i] = 0; fEpos[i] = 0; fEneg[i] = 0; fEmean[i] = 0; } fEplane = 0; fEplane_pos = 0; fEplane_neg = 0; UInt_t nrPosAdcHits = 0; UInt_t nrNegAdcHits = 0; // Process raw hits. Get ADC hits for the plane, assign variables for each // channel. Int_t nrawhits = rawhits->GetLast()+1; Int_t ihit = nexthit; while(ihit < nrawhits) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ihit); // This is OK as far as the hit list is sorted by layer. // if(hit->fPlane > fLayerNum) { break; } Int_t padnum = hit->fCounter; THcRawAdcHit& rawPosAdcHit = hit->GetRawAdcHitPos(); for (UInt_t thit=0; thit<rawPosAdcHit.GetNPulses(); ++thit) { ((THcSignalHit*) frPosAdcPedRaw->ConstructedAt(nrPosAdcHits))->Set(padnum, rawPosAdcHit.GetPedRaw()); ((THcSignalHit*) frPosAdcPed->ConstructedAt(nrPosAdcHits))->Set(padnum, rawPosAdcHit.GetPed()); ((THcSignalHit*) frPosAdcPulseIntRaw->ConstructedAt(nrPosAdcHits))->Set(padnum, rawPosAdcHit.GetPulseIntRaw()); ((THcSignalHit*) frPosAdcPulseInt->ConstructedAt(nrPosAdcHits))->Set(padnum, rawPosAdcHit.GetPulseInt()); ((THcSignalHit*) frPosAdcPulseAmpRaw->ConstructedAt(nrPosAdcHits))->Set(padnum, rawPosAdcHit.GetPulseAmpRaw()); ((THcSignalHit*) frPosAdcPulseAmp->ConstructedAt(nrPosAdcHits))->Set(padnum, rawPosAdcHit.GetPulseAmp()); ((THcSignalHit*) frPosAdcPulseTimeRaw->ConstructedAt(nrPosAdcHits))->Set(padnum, rawPosAdcHit.GetPulseTimeRaw()); ++nrPosAdcHits; } THcRawAdcHit& rawNegAdcHit = hit->GetRawAdcHitNeg(); for (UInt_t thit=0; thit<rawNegAdcHit.GetNPulses(); ++thit) { ((THcSignalHit*) frNegAdcPedRaw->ConstructedAt(nrNegAdcHits))->Set(padnum, rawNegAdcHit.GetPedRaw()); ((THcSignalHit*) frNegAdcPed->ConstructedAt(nrNegAdcHits))->Set(padnum, rawNegAdcHit.GetPed()); ((THcSignalHit*) frNegAdcPulseIntRaw->ConstructedAt(nrNegAdcHits))->Set(padnum, rawNegAdcHit.GetPulseIntRaw()); ((THcSignalHit*) frNegAdcPulseInt->ConstructedAt(nrNegAdcHits))->Set(padnum, rawNegAdcHit.GetPulseInt()); ((THcSignalHit*) frNegAdcPulseAmpRaw->ConstructedAt(nrNegAdcHits))->Set(padnum, rawNegAdcHit.GetPulseAmpRaw()); ((THcSignalHit*) frNegAdcPulseAmp->ConstructedAt(nrNegAdcHits))->Set(padnum, rawNegAdcHit.GetPulseAmp()); ((THcSignalHit*) frNegAdcPulseTimeRaw->ConstructedAt(nrNegAdcHits))->Set(padnum, rawNegAdcHit.GetPulseTimeRaw()); ++nrNegAdcHits; } // Should probably check that counter # is in range if (fUsingFADC) { fA_Pos[hit->fCounter-1] = hit->GetRawAdcHitPos().GetData( fPedSampLow, fPedSampHigh, fDataSampLow, fDataSampHigh ); fA_Neg[hit->fCounter-1] = hit->GetRawAdcHitNeg().GetData( fPedSampLow, fPedSampHigh, fDataSampLow, fDataSampHigh ); } else { fA_Pos[hit->fCounter-1] = hit->GetData(0); fA_Neg[hit->fCounter-1] = hit->GetData(1); } // Sparsify positive side hits, fill the hit list, compute the // energy depostion from positive side for the counter. Double_t thresh_pos = fPosThresh[hit->fCounter -1]; if(fA_Pos[hit->fCounter-1] > thresh_pos) { THcSignalHit *sighit = (THcSignalHit*) fPosADCHits->ConstructedAt(nPosADCHits++); sighit->Set(hit->fCounter, fA_Pos[hit->fCounter-1]); fA_Pos_p[hit->fCounter-1] = fA_Pos[hit->fCounter-1] - fPosPed[hit->fCounter -1]; fEpos[hit->fCounter-1] += fA_Pos_p[hit->fCounter-1]* fParent->GetGain(hit->fCounter-1,fLayerNum-1,0); } // Sparsify negative side hits, fill the hit list, compute the // energy depostion from negative side for the counter. Double_t thresh_neg = fNegThresh[hit->fCounter -1]; if(fA_Neg[hit->fCounter-1] > thresh_neg) { THcSignalHit *sighit = (THcSignalHit*) fNegADCHits->ConstructedAt(nNegADCHits++); sighit->Set(hit->fCounter, fA_Neg[hit->fCounter-1]); fA_Neg_p[hit->fCounter-1] = fA_Neg[hit->fCounter-1] - fNegPed[hit->fCounter -1]; fEneg[hit->fCounter-1] += fA_Neg_p[hit->fCounter-1]* fParent->GetGain(hit->fCounter-1,fLayerNum-1,1); } // Mean energy in the counter. fEmean[hit->fCounter-1] += (fEpos[hit->fCounter-1] + fEneg[hit->fCounter-1]); // Accumulate energies in the plane. fEplane += fEmean[hit->fCounter-1]; fEplane_pos += fEpos[hit->fCounter-1]; fEplane_neg += fEneg[hit->fCounter-1]; ihit++; } //Debug output. if (fParent->fdbg_decoded_cal) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerPlane::ProcessHits for " << fParent->GetPrefix() << ":" << endl; cout << " nrawhits = " << nrawhits << " nexthit = " << nexthit << endl; cout << " Sparsified hits for HMS calorimeter plane #" << fLayerNum << ", " << GetName() << ":" << endl; Int_t nspar = 0; for (Int_t jhit = nexthit; jhit < nrawhits; jhit++) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(jhit); if(hit->fPlane > fLayerNum) { break; } if(fA_Pos[hit->fCounter-1] > fPosThresh[hit->fCounter -1] || fA_Neg[hit->fCounter-1] > fNegThresh[hit->fCounter -1]) { cout << " plane = " << hit->fPlane << " counter = " << hit->fCounter << " Emean = " << fEmean[hit->fCounter-1] << " Epos = " << fEpos[hit->fCounter-1] << " Eneg = " << fEneg[hit->fCounter-1] << endl; nspar++; } } if (nspar == 0) cout << " No hits\n"; cout << " Eplane = " << fEplane << " Eplane_pos = " << fEplane_pos << " Eplane_neg = " << fEplane_neg << endl; cout << "---------------------------------------------------------------\n"; } return(ihit); } //_____________________________________________________________________________ Int_t THcShowerPlane::AccumulatePedestals(TClonesArray* rawhits, Int_t nexthit) { // Extract the data for this plane from hit list, accumulating into // arrays for calculating pedestals. Int_t nrawhits = rawhits->GetLast()+1; Int_t ihit = nexthit; while(ihit < nrawhits) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ihit); // OK for hit list sorted by layer. if(hit->fPlane > fLayerNum) { break; } Int_t element = hit->fCounter - 1; // Should check if in range Int_t adcpos = hit->GetData(0); Int_t adcneg = hit->GetData(1); if(adcpos <= fPosPedLimit[element]) { fPosPedSum[element] += adcpos; fPosPedSum2[element] += adcpos*adcpos; fPosPedCount[element]++; if(fPosPedCount[element] == fMinPeds/5) { fPosPedLimit[element] = 100 + fPosPedSum[element]/fPosPedCount[element]; } } if(adcneg <= fNegPedLimit[element]) { fNegPedSum[element] += adcneg; fNegPedSum2[element] += adcneg*adcneg; fNegPedCount[element]++; if(fNegPedCount[element] == fMinPeds/5) { fNegPedLimit[element] = 100 + fNegPedSum[element]/fNegPedCount[element]; } } ihit++; } fNPedestalEvents++; // Debug output. if ( ((THcShower*) GetParent())->fdbg_raw_cal ) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerPlane::AcculatePedestals for " << GetParent()->GetPrefix() << ":" << endl; cout << "Processed hit list for plane " << GetName() << ":\n"; for (Int_t ih=nexthit; ih<nrawhits; ih++) { THcRawShowerHit* hit = (THcRawShowerHit *) rawhits->At(ih); // OK for hit list sorted by layer. if(hit->fPlane > fLayerNum) { break; } cout << " hit " << ih << ":" << " plane = " << hit->fPlane << " counter = " << hit->fCounter << " ADCpos = " << hit->GetData(0) << " ADCneg = " << hit->GetData(1) << endl; } cout << "---------------------------------------------------------------\n"; } return(ihit); } //_____________________________________________________________________________ void THcShowerPlane::CalculatePedestals( ) { // Use the accumulated pedestal data to calculate pedestals // Later add check to see if pedestals have drifted ("Danger Will Robinson!") for(Int_t i=0; i<fNelem;i++) { // Positive tubes fPosPed[i] = ((Float_t) fPosPedSum[i]) / TMath::Max(1, fPosPedCount[i]); fPosSig[i] = sqrt(((Float_t)fPosPedSum2[i])/TMath::Max(1, fPosPedCount[i]) - fPosPed[i]*fPosPed[i]); fPosThresh[i] = fPosPed[i] + TMath::Min(50., TMath::Max(10., 3.*fPosSig[i])); // Negative tubes fNegPed[i] = ((Float_t) fNegPedSum[i]) / TMath::Max(1, fNegPedCount[i]); fNegSig[i] = sqrt(((Float_t)fNegPedSum2[i])/TMath::Max(1, fNegPedCount[i]) - fNegPed[i]*fNegPed[i]); fNegThresh[i] = fNegPed[i] + TMath::Min(50., TMath::Max(10., 3.*fNegSig[i])); } // Debug output. if ( ((THcShower*) GetParent())->fdbg_raw_cal ) { cout << "---------------------------------------------------------------\n"; cout << "Debug output from THcShowerPlane::CalculatePedestals for " << GetParent()->GetPrefix() << ":" << endl; cout << " ADC pedestals and thresholds for calorimeter plane " << GetName() << endl; for(Int_t i=0; i<fNelem;i++) { cout << " element " << i << ": " << " Pos. pedestal = " << fPosPed[i] << " Pos. threshold = " << fPosThresh[i] << " Neg. pedestal = " << fNegPed[i] << " Neg. threshold = " << fNegThresh[i] << endl; } cout << "---------------------------------------------------------------\n"; } } //_____________________________________________________________________________ void THcShowerPlane::InitializePedestals( ) { fNPedestalEvents = 0; fPosPedSum = new Int_t [fNelem]; fPosPedSum2 = new Int_t [fNelem]; fPosPedCount = new Int_t [fNelem]; fNegPedSum = new Int_t [fNelem]; fNegPedSum2 = new Int_t [fNelem]; fNegPedCount = new Int_t [fNelem]; fPosSig = new Float_t [fNelem]; fNegSig = new Float_t [fNelem]; fPosPed = new Float_t [fNelem]; fNegPed = new Float_t [fNelem]; fPosThresh = new Float_t [fNelem]; fNegThresh = new Float_t [fNelem]; for(Int_t i=0;i<fNelem;i++) { fPosPedSum[i] = 0; fPosPedSum2[i] = 0; fPosPedCount[i] = 0; fNegPedSum[i] = 0; fNegPedSum2[i] = 0; fNegPedCount[i] = 0; } }