//==========================================================================
// Specialized generic detector constructor
//==========================================================================

#include "Acts/Plugins/DD4hep/ActsExtension.hpp"
#include "Acts/Plugins/DD4hep/ConvertDD4hepMaterial.hpp"
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/Printout.h"

using namespace std;
using namespace dd4hep;
using namespace dd4hep::detail;


Assembly getModule( string m_nam, int n, xml_det_t x_det, double module_rmin, Detector& description, SensitiveDetector sens, map<string, vector<PlacedVolume>> &sensitives);

/** A barrel tracker with a module that is curved (not flat).
 *
 *
 */
static Ref_t create_detector(Detector& description, xml_h e, SensitiveDetector sens)
{
  typedef vector<PlacedVolume> Placements;
  xml_det_t                    x_det = e;
  Material                     air   = description.air();

  int        det_id   = x_det.id();
  string     det_name = x_det.nameStr();
  DetElement sdet(det_name, det_id);

  //Acts::ActsExtension* barrelExtension = new Acts::ActsExtension();
  //barrelExtension->addType("barrel", "detector");
  //sdet.addExtension<Acts::ActsExtension>(barrelExtension);

  Assembly                assembly(det_name);
  map<string, Volume>     mod_volumes;
  map<string, Placements> sensitives;
  map<string, xml_comp_t> modules;
  PlacedVolume            pv;

  sens.setType("tracker");


  
  
  
  // layers
  // ===================


  for (xml_coll_t li(x_det, _U(layer)); li; ++li) {
    xml_comp_t x_layer  = li;
    xml_comp_t x_barrel = x_layer.child(_U(barrel_envelope));
    xml_comp_t x_layout = x_layer.child(_U(rphi_layout));
    xml_comp_t z_layout = x_layer.child(_U(z_layout)); // Get the <z_layout> element.
    int        lay_id   = x_layer.id();
    string     m_nam    = x_layer.moduleStr();
    string     lay_nam  = _toString(x_layer.id(), "layer%d");
    Tube       lay_tub(x_barrel.inner_r(), x_barrel.outer_r(), x_barrel.z_length() / 2);
    Volume     lay_vol(lay_nam, lay_tub, air); // Create the layer envelope volume.
    lay_vol.setVisAttributes(description.visAttributes(x_layer.visStr()));
    double     phi0     = x_layout.phi0();     // Starting phi of first module.
    double     phi_tilt = x_layout.phi_tilt(); // Phi tilt of a module.
    double     rc       = x_layout.rc();       // Radius of the module center.
    int        nphi     = x_layout.nphi();     // Number of modules in phi.
    double     rphi_dr  = x_layout.dr();       // The delta radius of every other module.
    double     phi_incr = (M_PI * 2) / nphi;   // Phi increment for one module.
    double     phic     = phi0;                // Phi of the module center.
    double     z0       = z_layout.z0();       // Z position of first module in phi.
    double     nz       = z_layout.nz();       // Number of modules to place in z.
    double     z_dr     = z_layout.dr();       // Radial displacement parameter, of every other module.
    auto      dz       = getAttrOrDefault(z_layout, _Unicode(dz), 0.);       // z offset
    
    // get the module for this layer from the xml
    Volume     m_env    = getModule( m_nam, lay_id, x_det, x_barrel.inner_r(), description, sens, sensitives ) ;
    
    DetElement lay_elt(sdet, _toString(x_layer.id(), "layer%d"), lay_id);

    //Acts::ActsExtension* layerExtension = new Acts::ActsExtension();
    //layerExtension->addType("sensitive cylinder", "layer");
    //// layerExtension->addValue(10. * Acts::UnitConstants::mm, "r", "envelope");
    //lay_elt.addExtension<Acts::ActsExtension>(layerExtension);

    Placements& sensVols = sensitives[m_nam];

    // Z increment for module placement along Z axis.
    // Adjust for z0 at center of module rather than
    // the end of cylindrical envelope.
    double z_incr = nz > 1 ? (2.0 * z0) / (nz - 1) : 0.0;
    // Starting z for module placement along Z axis.
    double module_z = -z0;
    int    module   = 1;

    // Loop over the number of modules in phi.
    for (int ii = 0; ii < nphi; ii++) {

      double dx = z_dr * std::cos(phic + phi_tilt); // Delta x of module position.
      double dy = z_dr * std::sin(phic + phi_tilt); // Delta y of module position.
      double x  = rc * std::cos(phic);              // Basic x module position.
      double y  = rc * std::sin(phic);              // Basic y module position.

      // Loop over the number of modules in z.
      for (int j = 0; j < nz; j++) {

        string     module_name = _toString(module, "module%d");
        DetElement mod_elt(lay_elt, module_name, module);
        // Module PhysicalVolume.
        //         Transform3D
        //         tr(RotationZYX(0,-((M_PI/2)-phic-phi_tilt),M_PI/2),Position(x,y,module_z));
        // NOTE (Nikiforos, 26/08 Rotations needed to be fixed so that component1 (silicon) is on the
        // outside
        Transform3D tr(RotationZYX(phic - phi_tilt, 0, 0), Position(x, y, module_z + dz));

        pv = lay_vol.placeVolume(m_env, tr);
        pv.addPhysVolID("module", module);
        mod_elt.setPlacement(pv);

        for (size_t ic = 0; ic < sensVols.size(); ++ic) {
          PlacedVolume sens_pv = sensVols[ic];
          DetElement   comp_elt(mod_elt, sens_pv.volume().name(), module);
          comp_elt.setPlacement(sens_pv);
          
          //Acts::ActsExtension* moduleExtension = new Acts::ActsExtension("YZX");
          //comp_elt.addExtension<Acts::ActsExtension>(moduleExtension);
        }

        /// Increase counters etc.
        module++;
        // Adjust the x and y coordinates of the module.
        x += dx;
        y += dy;
        // Flip sign of x and y adjustments.
        dx *= -1;
        dy *= -1;
        // Add z increment to get next z placement pos.
        module_z += z_incr;
      }
      phic += phi_incr; // Increment the phi placement of module.
      rc += rphi_dr;    // Increment the center radius according to dr parameter.
      rphi_dr *= -1;    // Flip sign of dr parameter.
      module_z = -z0;   // Reset the Z placement parameter for module.
    }
    // Create the PhysicalVolume for the layer.
    pv = assembly.placeVolume(lay_vol); // Place layer in mother

    pv.addPhysVolID("layer", lay_id);   // Set the layer ID.
    lay_elt.setAttributes(description, lay_vol, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr());
    lay_elt.setPlacement(pv);
  }
  sdet.setAttributes(description, assembly, x_det.regionStr(), x_det.limitsStr(), x_det.visStr());
  // assembly.setVisAttributes(description.invisible());
  pv = description.pickMotherVolume(sdet).placeVolume(assembly);
  pv.addPhysVolID("system", det_id); // Set the subdetector system ID.
  pv.addPhysVolID("barrel", 1);      // Flag this as a barrel subdetector.
  sdet.setPlacement(pv);
  return sdet;
}

// clang-format off
DECLARE_DETELEMENT(refdet_CylinderTrackerBarrel, create_detector)
DECLARE_DETELEMENT(refdet_MMTrackerBarrel, create_detector)
DECLARE_DETELEMENT(refdet_RWellTrackerBarrel, create_detector)




Assembly getModule( string m_nam, int n, xml_det_t x_det, double module_rmin, Detector& description, SensitiveDetector sens, map<string, vector<PlacedVolume>> &sensitives){
  
    Material                     air   = description.air();
    Assembly module_assembly( _toString(n,"mod_assembly_%d"));
    
    int n_modules = 0;
    for (xml_coll_t mi(x_det, _U(module)); mi; ++mi) {
      n_modules++;
      xml_comp_t x_mod = mi;
      if( x_mod.nameStr() == m_nam ) {
  
        xml_comp_t m_env = x_mod.child(_U(module_envelope));
        string     m_nam = x_mod.nameStr();

    //     auto     module_rmin      = m_env.rmin();
        auto     module_length    = m_env.length();
        auto     module_phi       = getAttrOrDefault(m_env, _Unicode(phi), 90.0);

        // compute thickness as the sum of all components
        double total_thickness = 0.;
        xml_coll_t ci(x_mod, _U(module_component));
        for (ci.reset(), total_thickness = 0.0; ci; ++ci)
          total_thickness += xml_comp_t(ci).thickness();
        
        Volume m_vol(m_nam, Tube(module_rmin, module_rmin + total_thickness, module_length / 2), air);
        
        int    ncomponents = 0, sensor_number = 1;
        module_assembly.placeVolume(m_vol, Position(-module_rmin, 0, 0));
    //     mod_volumes[m_nam] = module_assembly;
        m_vol.setVisAttributes(description.visAttributes(x_mod.visStr()));

        // loop over detector components
        auto comp_rmin = module_rmin;
        for (ci.reset(); ci; ++ci, ++ncomponents) {
          xml_comp_t x_comp = ci;
          xml_comp_t x_pos  = x_comp.position(false);
          xml_comp_t x_rot  = x_comp.rotation(false);
          string     c_nam  = _toString(ncomponents, "component%d_") + _toString(n);

          auto comp_thickness = x_comp.thickness();
          auto comp_phi       = getAttrOrDefault(x_comp, _Unicode(phi), module_phi);
          auto comp_phi0      = getAttrOrDefault(x_comp, _Unicode(phi0), 0.0);
          auto comp_length    = getAttrOrDefault(x_comp, _Unicode(length), module_length);

          Tube         c_tube(comp_rmin, comp_rmin + comp_thickness, comp_length / 2, -comp_phi / 2.0 + comp_phi0,
                      comp_phi / 2.0 + comp_phi0);
          Volume       c_vol(c_nam, c_tube, description.material(x_comp.materialStr()));

          PlacedVolume c_pv;

          if (x_pos && x_rot) {
            Position    c_pos(x_pos.x(0), x_pos.y(0), x_pos.z(0));
            RotationZYX c_rot(x_rot.z(0), x_rot.y(0), x_rot.x(0));
            c_pv = m_vol.placeVolume(c_vol, Transform3D(c_rot, c_pos));
          } else if (x_rot) {
            c_pv = m_vol.placeVolume(c_vol, RotationZYX(x_rot.z(0), x_rot.y(0), x_rot.x(0)));
          } else if (x_pos) {
            c_pv = m_vol.placeVolume(c_vol, Position(x_pos.x(0), x_pos.y(0), x_pos.z(0)));
          } else {
            c_pv = m_vol.placeVolume(c_vol);
          }
          c_vol.setRegion(description, x_comp.regionStr());
          c_vol.setLimitSet(description, x_comp.limitsStr());
          c_vol.setVisAttributes(description, x_comp.visStr());
          if (x_comp.isSensitive()) {
            c_pv.addPhysVolID(_U(sensor), sensor_number++);
            c_vol.setSensitiveDetector(sens);
            sensitives[m_nam].push_back(c_pv);
          }
          comp_rmin = comp_rmin + comp_thickness;
        }
        

        if( x_mod.hasChild("frame")){
          // build the carbon fiber frame around the gas volume
          // two bars along z and two arches at the two ends
          // TODO make the frame hollow
          xml_comp_t m_frame         = x_mod.child(_U(frame));
          auto thickness       = m_frame.thickness();
          
          // get sensitive component rmin
          auto m_rmin = module_rmin + m_frame.rmin();
          
      
          // bars
          Tube    c_tubeL(m_rmin, m_rmin + thickness, module_length / 2, -module_phi / 2.0,
                      -module_phi / 2.0 + thickness/m_rmin);
          Volume  c_volL( m_nam + "_barL", c_tubeL, description.material(m_frame.materialStr()));
          Tube    c_tubeR(m_rmin, m_rmin + thickness, module_length / 2, module_phi / 2.0 -  thickness/m_rmin,
                    module_phi / 2.0 );
          Volume  c_volR(m_nam + "_barR", c_tubeR, description.material(m_frame.materialStr()));

          //arches
          Tube    c_tubeN(m_rmin, m_rmin + thickness, thickness / 2, - module_phi / 2.0 +  thickness/m_rmin,
                    module_phi / 2.0 - thickness/m_rmin );
          Volume  c_volN(m_nam + "_archN", c_tubeN, description.material(m_frame.materialStr()));
          c_volN.setVisAttributes( description, m_frame.visStr() );
          
          PlacedVolume c_pv;
          c_pv = m_vol.placeVolume(c_volL);
          c_pv = m_vol.placeVolume(c_volR);
          
          c_pv = m_vol.placeVolume(c_volN, Position(0,0, -module_length / 2 + thickness/2) );
          c_pv = m_vol.placeVolume(c_volN, Position(0,0,  module_length / 2 - thickness/2) );
          
        }
        
    }
  }
  return module_assembly;
}